Time-Dependent Stagnation Point Flow of Water Conveying Titanium Dioxide Nanoparticle Aggregation on Rotating Sphere Object Experiencing Thermophoresis Particle Deposition Effects
"> Figure 1
<p>Geometry of the problem.</p> "> Figure 2
<p>Influence of acceleration parameter on <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>’</mo> </mrow> </semantics></math>.</p> "> Figure 3
<p>Influence of acceleration parameter on <math display="inline"><semantics> <mi>s</mi> </semantics></math>.</p> "> Figure 4
<p>Influence of acceleration parameter on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>.</p> "> Figure 5
<p>Influence of acceleration parameter on <math display="inline"><semantics> <mi>χ</mi> </semantics></math>.</p> "> Figure 6
<p>Influence of rotation parameter on <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>’</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>Influence of Schmidt number on <math display="inline"><semantics> <mi>χ</mi> </semantics></math>.</p> "> Figure 8
<p>Influence of thermophoretic parameter on <math display="inline"><semantics> <mi>χ</mi> </semantics></math>.</p> "> Figure 9
<p>Influence of <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>f</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>λ</mi> </semantics></math> for numerous values of <math display="inline"><semantics> <mi>A</mi> </semantics></math>.</p> "> Figure 10
<p>Influence of <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>f</mi> <mi>z</mi> </mrow> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>λ</mi> </semantics></math> for numerous values of <math display="inline"><semantics> <mi>A</mi> </semantics></math>.</p> "> Figure 11
<p>Influence of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>u</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> for numerous values of <math display="inline"><semantics> <mi>A</mi> </semantics></math>.</p> "> Figure 12
<p>Influence of <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>h</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>τ</mi> <mn>1</mn> </msub> </mrow> </semantics></math> for numerous values of <math display="inline"><semantics> <mi>A</mi> </semantics></math>.</p> ">
Abstract
:1. Introduction
- What is the impact of the nanoparticle aggregation effect on the acceleration parameter in velocity, thermal, and concentration profiles?
- What is the thermal performance in the presence/absence of nanoparticle aggregation?
- What is the impact of the thermophoretic effect on the concentration profile in the presence/absence of nanoparticle aggregation?
2. Materials and Methods
3. Numerical Technique and Validation of the Code
4. Results and Discussion
5. Conclusions
- Primary velocity enhances with increasing values of the acceleration parameter, but secondary velocity diminishes;
- Thermal distribution enhances in the case of nanoparticles in the absence of aggregation as compared to nanoparticles in the presence of aggregation over the acceleration parameter;
- Growth in the rotational parameter will escalate the primary velocity;
- For an inclination in the thermophoretic parameter, the concentration decreases more in the case of nanoparticle aggregation than in the absence of nanoparticle aggregation;
- The surface drag force is greater in nanoparticles with aggregation than nanoparticles without aggregation in the case but the reverse trend is seen in the case;
- The rate of heat distribution increases as the solid volume fraction rises, whereas the rate of mass transfer grows as the thermophoretic parameter increases.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, S.U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab. (ANL): Argonne, IL, USA, 1995.
- Abu-Nab, A.K.; Selima, E.S.; Morad, A.M. Theoretical investigation of a single vapor bubble during Al2O3/H2o nanofluids in power-law fluid affected by a variable surface tension. Phys. Scr. 2021, 96, 035222. [Google Scholar] [CrossRef]
- Prasannakumara, B.C. Assessment of the local thermal non-equilibrium condition for nanofluid flow through porous media: A comparative analysis. Indian J. Phys. 2021, 1–9. [Google Scholar] [CrossRef]
- Khan, U.; Ahmad, S.; Hayyat, A.; Khan, I.; Nisar, K.S.; Baleanu, D. On the Cattaneo–Christov Heat Flux Model and OHAM Analysis for Three Different Types of Nanofluids. Appl. Sci. 2020, 10, 886. [Google Scholar] [CrossRef] [Green Version]
- Alzahrani, H.A.H.; Alsaiari, A.; Madhukesh, J.K.; Naveen Kumar, R.; Prasanna, B.M. Effect of thermal radiation on heat transfer in plane wall jet flow of Casson nanofluid with suction subject to a slip boundary condition. Waves Random Complex Media 2022, 1–18. [Google Scholar] [CrossRef]
- Morad, A.M.; Selima, E.S.; Abu-Nab, A.K. Thermophysical bubble dynamics in N-dimensional Al2O3/H2O nanofluid between two-phase turbulent flow. Case Stud. Therm. Eng. 2021, 28, 101527. [Google Scholar] [CrossRef]
- Bhowmik, P.K.; Shamim, J.A.; Chen, X.; Suh, K.Y. Rod bundle thermal-hydraulics experiment with water and water-Al2O3 nanofluid for small modular reactor. Ann. Nucl. Energy 2021, 150, 107870. [Google Scholar] [CrossRef]
- Ahmed, F.; Abir, M.A.; Bhowmik, P.K.; Deshpande, V.; Mollah, A.S.; Kumar, D.; Alam, S. Computational assessment of thermo-hydraulic performance of Al2O3-water nanofluid in hexagonal rod-bundles subchannel. Prog. Nucl. Energy 2021, 135, 103700. [Google Scholar] [CrossRef]
- Wensel, J.; Wright, B.; Thomas, D.; Douglas, W.; Mannhalter, B.; Cross, W.; Hong, H.; Kellar, J.; Smith, P.; Roy, W. Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes. Appl. Phys. Lett. 2008, 92, 023110. [Google Scholar] [CrossRef]
- Xie, H.; Wang, J.; Xi, T.; Liu, Y.; Ai, F.; Wu, Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 2002, 91, 4568–4572. [Google Scholar] [CrossRef]
- Swain, K.; Mahanthesh, B. Thermal Enhancement of Radiating Magneto-Nanoliquid with Nanoparticles Aggregation and Joule Heating: A Three-Dimensional Flow. Arab. J. Sci. Eng. 2021, 46, 5865–5873. [Google Scholar] [CrossRef]
- Rana, P.; Mackolil, J.; Mahanthesh, B.; Muhammad, T. Cattaneo-Christov Theory to model heat flux effect on nanoliquid slip flow over a spinning disk with nanoparticle aggregation and Hall current. Waves Random Complex Media 2022, 1–23. [Google Scholar] [CrossRef]
- Sabu, A.; Mackolil, J.; Mahanthesh, B.; Mathew, A. Nanoparticle aggregation kinematics on the quadratic convective magnetohydrodynamic flow of nanomaterial past an inclined flat plate with sensitivity analysis. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 236, 1056–1066. [Google Scholar] [CrossRef]
- Yu, Y.; Madhukesh, J.K.; Khan, U.; Zaib, A.; Abdel-Aty, A.-H.; Yahia, I.S.; Alqahtani, M.S.; Wang, F.; Galal, A.M. Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet. Nanomaterials 2022, 12, 977. [Google Scholar] [CrossRef]
- Jestine, S.; Mahanthesh, B. Radiative heat transport and unsteady flow in an irregular channel with aggregation kinematics of nanofluid. Heat Transf. 2022, 51, 223–238. [Google Scholar] [CrossRef]
- Wang, F.; Kumar, R.N.; Prasannakumara, B.C.; Khan, U.; Zaib, A.; Abdel-Aty, A.-H.; Yahia, I.S.; Alqahtani, M.S.; Galal, A.M. Aspects of Uniform Horizontal Magnetic Field and Nanoparticle Aggregation in the Flow of Nanofluid with Melting Heat Transfer. Nanomaterials 2022, 12, 1000. [Google Scholar] [CrossRef]
- Green, H.L.; Lane, W.R. Particulate Clouds: Dusts, Smokes and Mists. Their Physics and Physical Chemistry and Industrial and Environmental Aspects. In Particulate Clouds: Dusts, Smokes and Mists. Their Physics and Physical Chemistry and Industrial and Environmental Aspects; E. & F. N. Spon, Ltd.: London, UK, 1957. [Google Scholar]
- Fuchs, N.A. The Mechanics of Aerosols; Pergamon Press: Oxford, UK, 1964. [Google Scholar]
- Goren, S.L. Thermophoresis of aerosol particles in the laminar boundary layer on a flat plate. J. Colloid Interface Sci. 1977, 61, 77–85. [Google Scholar] [CrossRef]
- Madhukesh, J.K.; Alhadhrami, A.; Naveen Kumar, R.; Punith Gowda, R.J.; Prasannakumara, B.C.; Varun Kumar, R.S. Physical insights into the heat and mass transfer in Casson hybrid nanofluid flow induced by a Riga plate with thermophoretic particle deposition. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 09544089211039305. [Google Scholar] [CrossRef]
- Waini, I.; Khan, U.; Zaib, A.; Ishak, A.; Pop, I. Thermophoresis particle deposition of CoFe2O4-TiO2 hybrid nanoparticles on micropolar flow through a moving flat plate with viscous dissipation effects. Int. J. Numer. Methods Heat Fluid Flow 2022. [Google Scholar] [CrossRef]
- Shankaralingappa, B.M.; Madhukesh, J.K.; Sarris, I.E.; Gireesha, B.J.; Prasannakumara, B.C. Influence of Thermophoretic Particle Deposition on the 3D Flow of Sodium Alginate-Based Casson Nanofluid over a Stretching Sheet. Micromachines 2021, 12, 1474. [Google Scholar] [CrossRef]
- Chen, S.B.; Shahmir, N.; Ramzan, M.; Sun, Y.L.; Aly, A.A.; Malik, M.Y. Thermophoretic particle deposition in the flow of dual stratified Casson fluid with magnetic dipole and generalized Fourier’s and Fick’s laws. Case Stud. Therm. Eng. 2021, 26, 101186. [Google Scholar] [CrossRef]
- Madhukesh, J.K.; Ramesh, G.K.; Alsulami, M.D.; Prasannakumara, B.C. Characteristic of thermophoretic effect and convective thermal conditions on flow of hybrid nanofluid over a moving thin needle. Waves Random Complex Media 2021, 1–23. [Google Scholar] [CrossRef]
- Punith Gowda, R.J.; Baskonus, H.M.; Naveen Kumar, R.; Prakasha, D.G.; Prasannakumara, B.C. Evaluation of heat and mass transfer in ferromagnetic fluid flow over a stretching sheet with combined effects of thermophoretic particle deposition and magnetic dipole. Waves Random Complex Media 2021, 1–19. [Google Scholar] [CrossRef]
- Zaib, A.; Khan, U.; Khan, I.; Seikh, A.H.; Sherif, E.-S.M. Entropy Generation and Dual Solutions in Mixed Convection Stagnation Point Flow of Micropolar Ti6Al4V Nanoparticle along a Riga Surface. Processes 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Khan, U.; Zaib, A.; Abu Bakar, S.; Ishak, A. Stagnation-point flow of a hybrid nanoliquid over a non-isothermal stretching/shrinking sheet with characteristics of inertial and microstructure. Case Stud. Therm. Eng. 2021, 26, 101150. [Google Scholar] [CrossRef]
- Gul, T.; Ali, B.; Alghamdi, W.; Nasir, S.; Saeed, A.; Kumam, P.; Mukhtar, S.; Kumam, W.; Jawad, M. Mixed convection stagnation point flow of the blood based hybrid nanofluid around a rotating sphere. Sci. Rep. 2021, 11, 7460. [Google Scholar] [CrossRef]
- Ghasemi, S.E.; Hatami, M. Solar radiation effects on MHD stagnation point flow and heat transfer of a nanofluid over a stretching sheet. Case Stud. Therm. Eng. 2021, 25, 100898. [Google Scholar] [CrossRef]
- Malvandi, A. The unsteady flow of a nanofluid in the stagnation point region of a time-dependent rotating sphere. Therm. Sci. 2015, 19, 1603–1612. [Google Scholar] [CrossRef]
- Mahdy, A.; Chamkha, A.J.; Nabwey, H.A. Entropy analysis and unsteady MHD mixed convection stagnation-point flow of Casson nanofluid around a rotating sphere. Alex. Eng. J. 2020, 59, 1693–1703. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Rashed, Z.Z. Unsteady MHD Mixed Convection Flow with Slip of a Nanofluid in the Stagnation Region of an Impulsively Rotating Sphere with Effects of Thermal Radiation and Convective Boundary Conditions. World J. Mech. 2018, 8, 137–160. [Google Scholar] [CrossRef] [Green Version]
- Mackolil, J.; Mahanthesh, B. Sensitivity analysis of Marangoni convection in TiO2–EG nanoliquid with nanoparticle aggregation and temperature-dependent surface tension. J. Therm. Anal. Calorim. 2021, 143, 2085–2098. [Google Scholar] [CrossRef]
- Mahanthesh, B. Flow and heat transport of nanomaterial with quadratic radiative heat flux and aggregation kinematics of nanoparticles. Int. Commun. Heat Mass Transf. 2021, 127, 105521. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, C.Y.; Wang, B.X. Effect of nanoparticle aggregation on the thermal radiation properties of nanofluids: An experimental and theoretical study. Int. J. Heat Mass Transf. 2020, 154, 119690. [Google Scholar] [CrossRef]
- Mahanthesh, B.; Thriveni, K. Nanoparticle aggregation effects on radiative heat transport of nanoliquid over a vertical cylinder with sensitivity analysis. Appl. Math. Mech. 2021, 42, 331–346. [Google Scholar] [CrossRef]
- Anilkumar, D.; Roy, S. Self-similar solution of the unsteady mixed convection flow in the stagnation point region of a rotating sphere. Heat Mass Transf. 2004, 40, 487–493. [Google Scholar] [CrossRef]
Properties | Expression for Nanofluid | |
---|---|---|
01 | Viscosity | |
02 | Density | |
03 | Heat capacity | |
04 | Thermal conductivity |
Name of the Parameter | Notation | |
---|---|---|
01 | Acceleration parameter | |
02 | Rotation parameter | |
03 | Prandtl number | |
04 | Schmidt number | |
05 | Thermophoretic parameter | |
06 | ||
07 | ||
08 |
Engineering Coefficients | Definition | Reduced Form | |
---|---|---|---|
01 | Surface drag forceIn x-direction | ||
02 | Surface drag forceIn z-direction | ||
03 | Nusselt number | ||
04 | Sherwood number |
4250 | 686.2 | 8.9538 | - | |
997.1 | 4179 | 0.613 | 6.2 |
Ref. [37] | Ref. [30] | Present Result | Error % | |
---|---|---|---|---|
Quasilinearization | RK-4 | RKF-45 | ||
0.5 | 0.79946 | 0.79913 | 0.79919 | 0.0075 |
1 | 1.28271 | 1.2828 | 1.28231 | 0.0389 |
2 | 1.91728 | 1.9172 | 1.91765 | 0.0234 |
Ref. [37] | Ref. [30] | Present Result | Error % | |
---|---|---|---|---|
Quasilinearization | RK-4 | RKF-45 | ||
0.5 | 0.30351 | 0.30339 | 0.30348 | 0.0296 |
1 | 0.64575 | 0.64579 | 0.64585 | 0.0092 |
2 | 1.05422 | 1.05415 | 1.05427 | 0.0113 |
Ref. [37] | Ref. [30] | Present Result | Error % | |
---|---|---|---|---|
Quasilinearization | RK-4 | RKF-45 | ||
0.5 | 0.46743 | 0.467648 | 0.467656 | 0.0017 |
1 | 0.58957 | 0.589527 | 0.589536 | 0.0015 |
2 | 0.77954 | 0.779526 | 0.779538 | 0.0015 |
1 | 0.8 | 0.1 | 1 | 2.139808422 | 1.672304816 | 9.096392022 | 1.953593148 |
2 | 2.388841158 | 2.399686127 | 9.109856260 | 1.960978126 | |||
3 | 2.631209992 | 2.978918454 | 9.122719148 | 1.967982378 | |||
0.8 | 2.139808422 | 1.672304816 | 9.096392022 | 0.511508126 | |||
1.0 | 2.139808462 | 1.672304845 | 9.096392167 | 2.375204360 | |||
1.2 | 2.139808462 | 1.672304845 | 9.096392167 | 2.796341524 | |||
0.1 | 2.139808422 | 1.672304816 | 9.096392022 | 1.953593148 | |||
0.3 | 2.139808462 | 1.672304845 | 9.096392167 | 2.971849166 | |||
0.6 | 2.139808462 | 1.672304845 | 9.096392167 | 4.506727245 | |||
0.5 | 1.136239692 | 0.897164782 | 8.985929840 | 1.846421159 | |||
1.0 | 2.139808122 | 1.672304555 | 9.096391165 | 1.953593043 | |||
1.5 | 3.091232933 | 2.389139595 | 9.212597417 | 2.049708182 |
1 | 0.8 | 0.1 | 1 | 2.150493768 | 1.707536159 | 9.346671153 | 2.106243350 |
2 | 2.386049271 | 2.445904509 | 9.356523653 | 2.112991274 | |||
3 | 2.615895707 | 3.031585469 | 9.365992932 | 2.119423484 | |||
0.8 | 2.150493768 | 1.707536159 | 9.346671153 | 2.106243350 | |||
1.0 | 2.150493746 | 1.707536179 | 9.346671124 | 2.564734427 | |||
1.2 | 2.150493746 | 1.707536179 | 9.346671124 | 3.022504984 | |||
0.1 | 2.150493768 | 1.707536159 | 9.346671153 | 2.106243350 | |||
0.3 | 2.150493746 | 1.707536179 | 9.346671124 | 3.414321918 | |||
0.6 | 2.150493746 | 1.707536179 | 9.346671124 | 5.384543102 | |||
0.5 | 1.160159942 | 0.937705250 | 9.265662314 | 1.997594676 | |||
1.0 | 2.150493777 | 1.707536205 | 9.346671237 | 2.106243364 | |||
1.5 | 3.087013054 | 2.416943407 | 9.433920745 | 2.203222922 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madhukesh, J.K.; Prasannakumara, B.C.; Khan, U.; Madireddy, S.; Raizah, Z.; Galal, A.M. Time-Dependent Stagnation Point Flow of Water Conveying Titanium Dioxide Nanoparticle Aggregation on Rotating Sphere Object Experiencing Thermophoresis Particle Deposition Effects. Energies 2022, 15, 4424. https://doi.org/10.3390/en15124424
Madhukesh JK, Prasannakumara BC, Khan U, Madireddy S, Raizah Z, Galal AM. Time-Dependent Stagnation Point Flow of Water Conveying Titanium Dioxide Nanoparticle Aggregation on Rotating Sphere Object Experiencing Thermophoresis Particle Deposition Effects. Energies. 2022; 15(12):4424. https://doi.org/10.3390/en15124424
Chicago/Turabian StyleMadhukesh, Javali K., Ballajja C. Prasannakumara, Umair Khan, Sunitha Madireddy, Zehba Raizah, and Ahmed M. Galal. 2022. "Time-Dependent Stagnation Point Flow of Water Conveying Titanium Dioxide Nanoparticle Aggregation on Rotating Sphere Object Experiencing Thermophoresis Particle Deposition Effects" Energies 15, no. 12: 4424. https://doi.org/10.3390/en15124424
APA StyleMadhukesh, J. K., Prasannakumara, B. C., Khan, U., Madireddy, S., Raizah, Z., & Galal, A. M. (2022). Time-Dependent Stagnation Point Flow of Water Conveying Titanium Dioxide Nanoparticle Aggregation on Rotating Sphere Object Experiencing Thermophoresis Particle Deposition Effects. Energies, 15(12), 4424. https://doi.org/10.3390/en15124424