A Novel Virtual Sensor Modeling Method Based on Deep Learning and Its Application in Heating, Ventilation, and Air-Conditioning System
<p>Some basic structures. (<b>a</b>) Structure of an encoder–decoder. (<b>b</b>) Structure of an attention-based encoder–decoder.</p> "> Figure 2
<p>Structure of STA-LSTM.</p> "> Figure 3
<p>Structure of the LSTM unit.</p> "> Figure 4
<p>Framework of MIC-STALSTM-based virtual sensor modeling.</p> "> Figure 5
<p>Working principle diagram of HVAC systems.</p> "> Figure 6
<p>Schematic of the HVAC system (Reprinted from Ref. [<a href="#B20-energies-15-05743" class="html-bibr">20</a>]. 2017, Official of TipDM Cup).</p> "> Figure 7
<p>Coefficient matrix between variables of the HVAC system.</p> "> Figure 8
<p>Scatter plots of <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>c</mi> <mi>h</mi> <mi>w</mi> <mi>r</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> <mi>b</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>c</mi> <mi>h</mi> <mi>w</mi> <mi>r</mi> </mrow> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>c</mi> <mi>h</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 9
<p>The training curve of the neural networks: (<b>a</b>) Description of the relationship between RMSE and batch size for <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>c</mi> <mi>h</mi> <mi>w</mi> <mi>r</mi> </mrow> </msub> </semantics></math> based on STA-LSTM. (<b>b</b>) Convergence curve of STA-LSTM.</p> "> Figure 10
<p>Predicted performance of four algorithms: (<b>a</b>) Prediction result of LSTM. (<b>b</b>) Prediction residual of LSTM. (<b>c</b>) Prediction result of TA-LSTM. (<b>d</b>) Prediction residual of TA-LSTM. (<b>e</b>) Prediction result of STA-LSTM. (<b>f</b>) Prediction residual of STA-LSTM. (<b>g</b>) Prediction result of MIC-STALSTM. (<b>h</b>) Prediction residual of MIC-STALSTM.</p> "> Figure 11
<p>The scatter plots of predicted and labeled values for <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>c</mi> <mi>h</mi> <mi>w</mi> <mi>s</mi> </mrow> </msub> </semantics></math> with LSTM, TA-LSTM, STA-LSTM, MIC-STALSTM. (<b>a</b>) Prediction of <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>c</mi> <mi>h</mi> <mi>w</mi> <mi>s</mi> </mrow> </msub> </semantics></math> based on LSTM. (<b>b</b>) Prediction of <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>c</mi> <mi>h</mi> <mi>w</mi> <mi>s</mi> </mrow> </msub> </semantics></math> based on TA-LSTM. (<b>c</b>) Prediction of <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>c</mi> <mi>h</mi> <mi>w</mi> <mi>s</mi> </mrow> </msub> </semantics></math> based on STA-LSTM. (<b>d</b>) Prediction of <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>c</mi> <mi>h</mi> <mi>w</mi> <mi>s</mi> </mrow> </msub> </semantics></math> based on MIC-STALSTM.</p> "> Figure 12
<p>Rectangular box plot of absolute prediction error.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Maximal Information Coefficient
2.2. Spatio-Temporal Attention Long Short-Term Memory
3. Virtual Sensor Modeling Based on MIC-STALSTM
3.1. Offline Training
3.2. Online Prediction
Algorithm 1 Feature selection through maximal information coefficient |
|
3.3. Performance Indicators
4. Case Study
4.1. Description of HVAC Systems
4.1.1. The Working Principles of HVAC Systems
4.1.2. Data Description
4.2. MIC-STALSTM for Temperature Prediction
4.2.1. Pre-Processing of Variables in the HVAC System by MIC
4.2.2. The Selection of Hyperparameters of STA-LSTM
4.2.3. Performance Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reppa, V.; Papadopoulos, P.; Polycarpou, M.M.; Panayiotou, C.G. A Distributed Architecture for HVAC Sensor Fault Detection and Isolation. IEEE Trans. Control Syst. Technol. 2014, 23, 1323–1337. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Yoon, S. Virtual sensor-assisted in situ sensor calibration in operational HVAC systems. Build. Environ. 2020, 181, 107079–107090. [Google Scholar] [CrossRef]
- Sedghi, S.; Sadeghian, A.; Huang, B. Mixture semisupervised probabilistic principal component regression model with missing inputs. Comput. Chem. Eng. 2017, 103, 176–178. [Google Scholar] [CrossRef]
- Chen, J.; Yang, C.; Zhou, C.; Li, Y.; Zhu, H.; Gui, W. Multivariate Regression Model for Industrial Process Measurement Based on Double Locally Weighted Partial Least Squares. IEEE Trans. Instrum. Meas. 2020, 69, 3962–3971. [Google Scholar] [CrossRef]
- Desai, K.; Badhe, Y.; Tambe, S.S.; Kulkarni, B.D. Soft-sensor development for fed-batch bioreactors using support vector regression. Biochem. Eng. J. 2006, 27, 225–239. [Google Scholar] [CrossRef]
- Kusiak, A.; Li, M.; Zheng, H. Virtual models of indoor-air-quality sensors. Appl. Energy 2010, 87, 2087–2094. [Google Scholar] [CrossRef]
- Lin, T.; Pan, Y.; Xue, G.; Song, J.; Qi, C. A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction. IEEE Access 2020, 8, 159182–159195. [Google Scholar] [CrossRef]
- Noor, F.; Haq, S.; Rakib, M.; Ahmed, T.; Jamal, Z.; Siam, Z.S.; Hasan, R.T.; Adnan, M.S.; Dewan, A.; Rahman, R.M. Water Level Forecasting Using Spatiotemporal Attention-Based Long Short-Term Memory Network. Water 2022, 14, 612. [Google Scholar] [CrossRef]
- Song, S.; Lan, C.; Xing, J. Spatio-Temporal Attention-Based LSTM Networks for 3D Action Recognition and Detection. IEEE Trans. Image Process 2018, 27, 3459–3471. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhao, C.; Sun, Y. Dual Attention-Based Encoder-Decoder: A Customized Sequence-to-Sequence Learning for Soft Sensor Development. IEEE Trans. Neur. Net. Lear 2021, 32, 3306–3317. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Ge, Z. Gated Stacked Target-Related Autoencoder: A Novel Deep Feature Extraction and Layerwise Ensemble Method for Industrial Soft Sensor Application. IEEE Trans. Cybern. 2020, 52, 3457–3468. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Rao, J.; Gu, Y.; Ye, L.; Wang, K.; Wang, Y. Online Adaptive Modeling Framework for Deep Belief Network-Based Quality Prediction in Industrial Processes. Ind. Eng. Chem. Res. 2021, 60, 15208–15218. [Google Scholar] [CrossRef]
- Ke, W.; Huang, D.; Yang, F.; Jiang, Y. Soft Sensor Development and Applications Based on LSTM in Deep Neural Networks. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence(SSCI), Honolulu, HI, USA, 27 November–1 December 2017. [Google Scholar]
- Yuan, X.; Li, L.; Wang, Y. Nonlinear Dynamic Soft Sensor Modeling With Supervised Long Short-Term Memory Network. IEEE Trans. Ind. Informat 2020, 16, 3168–3176. [Google Scholar] [CrossRef]
- Yuan, X.; Li, L.; Wang, Y.; Yang, C.; Gui, W. Deep learning for quality prediction of Nonlinear Dynamic Processes with Variable Attention-Based Long Short-Term Memory Network. Can. J. Chem. Eng. 2019, 98, 1377–1389. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, B.; Hao, M.; Wang, W.; Jiang, Y.; Zong, F. A novel hybrid method for flight departure delay prediction using Random Forest Regression and Maximal Information Coefficient. Aerosp. Sci. Technol. 2021, 116, 106822–106832. [Google Scholar] [CrossRef]
- Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti, P.C. Detecting Novel Associations in Large Data Sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Yan, X. Soft Sensor Modeling Method by Maximizing Output-Related Variable Characteristics Based on a Stacked Autoencoder and Maximal Information Coefficients. Int. J. Comput. Intell. Syst. 2019, 12, 1062–1074. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Li, L.; Shardt, Y.A.; Wang, Y.; Yang, C. Deep Learning With Spatiotemporal Attention-Based LSTM for Industrial Soft Sensor Model Development. IEEE Trans. Ind. Electron. 2021, 68, 4404–4414. [Google Scholar] [CrossRef]
- Official of TipDM Cup, China. Available online: https://www.tipdm.org/u/cms/www/201703/09223534dgbb.pdf (accessed on 8 March 2017).
- Gao, L.; Li, D.; Li, D.; Yao, L.; Liang, L.; Gao, Y. A Novel Chiller Sensors Fault Diagnosis Method Based on Virtual Sensors. Sensors 2019, 19, 3013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Variables | Descriptions | Unit |
---|---|---|---|
1 | RH | Relative humidity | % |
2 | Dry bulb temperature | °C | |
3 | Wet bulb temperature | °C | |
4 | Status of the chiller No. 1 | ||
5 | Status of the chiller No. 2 | ||
6 | Status of the chiller No. 3 | ||
7 | Power of the chiller No. 1 | kW | |
8 | Power of the chiller No. 2 | kW | |
9 | Power of the chiller No. 3 | kW | |
10 | Efficiency of the chiller | kW/RT | |
11 | Status of chilled water pump No. 1 | ||
12 | Status of chilled water pump No. 2 | ||
13 | Status of chilled water pump No. 3 | ||
14 | Status of chilled water pump No. 4 | ||
15 | Power of chilled water pump No. 1 | kW | |
16 | Power of chilled water pump No. 2 | kW | |
17 | Power of chilled water pump No. 3 | kW | |
18 | Power of chilled water pump No. 4 | kW | |
19 | Speed of chilled water pump | % | |
20 | The temperature of water flowing out of the chiller | °C | |
21 | Cooling effect: temperature difference between and | °C | |
22 | The flow rate of cooling water in internal circulation | gal/min | |
23 | Load flow rate: / | gal/min·RT | |
24 | Setting point of | gal/min·RT | |
25 | Status of condenser water pump No. 1 | ||
26 | Status of condenser water pump No. 2 | ||
27 | Status of condenser water pump No. 3 | ||
28 | Power of condenser water pump No. 1 | kW | |
29 | Power of condenser water pump No. 2 | kW | |
30 | Power of condenser water pump No. 3 | kW | |
31 | Rate of condenser water pump | % | |
32 | Average efficiency of condenser water pump | kW/RT | |
33 | The temperature of the water flowing out of the condenser | °C | |
34 | The temperature of the water flowing into the condenser | °C | |
35 | The flow rate of chilled water in external circulation | gal/min | |
36 | Load flow rate: / | gal/min·RT | |
37 | Setting point of | gal/min·RT | |
38 | Status of cooling tower No. 1 | ||
39 | Status of cooling tower No. 2 | ||
40 | Power of cooling tower 1 | kW | |
41 | Power of cooling tower 2 | kW | |
42 | Speed of cooling tower fans | % | |
43 | Average efficiency of cooling tower | kW/RT | |
44 | Setting point of | kW/RT | |
45 | Power consumption of the total system | kW | |
46 | The cooling load of the total system | RT | |
47 | Efficiency of the total system | kW/RT | |
48 | Thermal balance of the total system | % | |
49 | Average efficiency of chilled water pumps | kW/RT | |
50 | The temperature of the water flowing into the chiller | °C |
Method | Learning Rate | Hidden Unit | Batch Size | Time Step | Iterations |
---|---|---|---|---|---|
0.001 | 60 | 64 | 4 | 50 | |
0.003 | 60 | 64 | 3 | 50 |
Method | MAE | RMSE | |
---|---|---|---|
LSTM | 0.9029 | 1.3146 | 0.3185 |
TA-LSTM | 0.2951 | 0.3940 | 0.9387 |
STA-LSTM | 0.0969 | 0.2340 | 0.9784 |
MIC-STALSTM | 0.0415 | 0.0758 | 0.9977 |
Parameter | LSTM | TA-LSTM | STA-LSTM | MIC-STALSTM |
---|---|---|---|---|
2.2743 | 1.1471 | 0.3319 | 0.0299 | |
1.1468 | 1.2216 | 0.3500 | 0.0445 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Li, X. A Novel Virtual Sensor Modeling Method Based on Deep Learning and Its Application in Heating, Ventilation, and Air-Conditioning System. Energies 2022, 15, 5743. https://doi.org/10.3390/en15155743
Wang D, Li X. A Novel Virtual Sensor Modeling Method Based on Deep Learning and Its Application in Heating, Ventilation, and Air-Conditioning System. Energies. 2022; 15(15):5743. https://doi.org/10.3390/en15155743
Chicago/Turabian StyleWang, Delin, and Xiangshun Li. 2022. "A Novel Virtual Sensor Modeling Method Based on Deep Learning and Its Application in Heating, Ventilation, and Air-Conditioning System" Energies 15, no. 15: 5743. https://doi.org/10.3390/en15155743
APA StyleWang, D., & Li, X. (2022). A Novel Virtual Sensor Modeling Method Based on Deep Learning and Its Application in Heating, Ventilation, and Air-Conditioning System. Energies, 15(15), 5743. https://doi.org/10.3390/en15155743