Radial Turbine Design for Solar Chimney Power Plants
<p>Sectional view of a solar chimney power plant (SCPP) with an axial turbine in the chimney, adapted from [<a href="#B6-energies-14-00674" class="html-bibr">6</a>]. The dimensions are: D<math display="inline"><semantics> <msub> <mrow/> <mn>1</mn> </msub> </semantics></math> = D<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math> = 10 m, H<math display="inline"><semantics> <msub> <mrow/> <mn>1</mn> </msub> </semantics></math> = H<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math> = 1.85 m, and H<math display="inline"><semantics> <msub> <mrow/> <mi>C</mi> </msub> </semantics></math> = 194.6 m.</p> "> Figure 2
<p>Configurations of axial turbines in an SCPP; (<b>a</b>) single vertical axis (VA) turbine, (<b>b</b>) multiple VA turbines, and (<b>c</b>) multiple horizontal axis (HA) turbines from Fluri [<a href="#B2-energies-14-00674" class="html-bibr">2</a>].</p> "> Figure 3
<p>Schematic drawing of turbine layouts, adapted from [<a href="#B11-energies-14-00674" class="html-bibr">11</a>].</p> "> Figure 4
<p>Schematic of the proposed radial turbine using Manzanares SCPP dimensions.</p> "> Figure 5
<p>Main geometrical features of the radial inflow (RIF) blade.</p> "> Figure 6
<p>Velocity triangles for an RIF turbine with radial inlet flow and axial outlet flow adapted from [<a href="#B29-energies-14-00674" class="html-bibr">29</a>]. <math display="inline"><semantics> <msub> <mi>C</mi> <mn>0</mn> </msub> </semantics></math> is the radial flow into the turbine located at the base of the chimney. The numbers on the left indicate the turbine sections.</p> "> Figure 7
<p>3D model of the stator and rotor completed in CFturbo for the three designs. Direction of rotation—counterclockwise. (<b>a</b>) First design; (<b>b</b>) second design; (<b>c</b>) third design.</p> "> Figure 8
<p>Grid completed in ANSYS Meshing using the 3D turbine model.</p> "> Figure 9
<p>Variation in the power output with the turbine rotational speed for the first design.</p> "> Figure 10
<p>Streamlines in rotating co-ordinates for the first and third designs. Direction of rotation—counterclockwise. (<b>a</b>) Streamlines for the first design; (<b>b</b>) streamlines for the third design.</p> ">
Abstract
:1. Introduction
2. Governing Equations
2.1. Collector and Chimney
2.2. Heat Transfer
2.3. Multiple Reference Frame (MRF) Model to Simulate the Turbine
3. Turbine Design
3.1. Velocity Triangles
3.2. Stator and Rotor Geometry Design
4. CFD Methodology
4.1. Boundary Conditions, Settings, and Material Properties
4.2. Choice of Turbulence Model and Grid Convergence Study
5. Results
5.1. The SCPP Available Power
5.2. SCPP with a Turbine
6. Conclusions
- The software CFturbo 10.3 was used to design the blade profile for three turbines. CFD was then applied to assess the final design using multiple reference frames, the renormalization group k- turbulence model, and a discrete ordinates radiation model. The IGVs were assumed to be integral to the columns to support the chimney, so their thickness made it necessary to simulate them in conjunction with the turbine.
- Grid convergence analysis was applied to determine the accuracy of the results. Richardson extrapolation values were taken to obtain the power output of the turbines.
- 1
- The maximum power of the third design of the radial turbine is 77.7 kW at 15 rpm, which is higher than the maximum power that could be extracted from the Manzanares prototype at 140 rpm, computed to be 63.6 kW, and is comparable to the most efficient designs of other turbine types in the literature. CFD calculations show that straight blades in a radial turbine have better performance because they reduce the flow restriction on the rotor outlet.
- 2
- Comparison was made between two turbulence models. It was shown that the power output changed by less than 1.7% when the turbulence model was changed from RNG k- to SST , so the turbulence model does not have a big impact on predicted performance.
- 3
- CFturbo proved invaluable as the initial design tool for the turbine blades and IGVs. It allows control of all the dimensions and curvatures in the trailing edge and leading edge.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Computational fluid dynamics |
DO | Discrete ordinate |
GCI | Grid convergence index |
HA | Horizontal axis |
IFR | Inflow radial [turbine] |
IGV | Inlet guide vane |
MRF | Multiple reference frame |
PCU | Power conversion unit |
RANS | Reynolds-averaged Navier–Stokes |
RIF | Radial inflow |
RNG | Renormalization group |
SCPP | Solar chimney power plant |
VA | Vertical axis |
Symbols | |
Inlet width of the turbine (m) | |
Absolute velocities of the fluid (m/s) | |
Meridional velocity (m/s) | |
Horizontal projection of (m/s) | |
Grashof number | |
h | Heat transfer coefficient (W/mK) |
M | Periodicity between the rotor blades and IGVs |
Mass flow rate (kg/s) | |
N | Number of turbine blades |
Prandtl number | |
Rayleigh number | |
Suction radius of the turbine (m) | |
Ambient temperature (C) | |
U | Tangential velocity of the rotor (m/s) |
W | Relative velocities of the fluid (m/s) |
y | Non-dimensional wall-distance value |
Thermal diffusivity (J/kg K) | |
Thermal expansion coefficient (K) | |
1 | Inlet angle at the stator () |
Wavelength in the spectrum radiation (μm) | |
Dynamic viscosity (kg m/s) | |
Ωs | Specific speed (rad) |
Density (kg/m) | |
Blockage of the flow by the IGVs | |
Number of rotor blades | |
Number of IGVs in the stator |
References
- Haaf, W.; Friedrich, K.; Mayr, G.; Schlaich, J. Solar Chimneys Part I: Principle and Construction of the Pilot Plant in Manzanares. Int. J. Sol. Energy 1983, 2, 3–20. [Google Scholar] [CrossRef]
- Fluri, T.P.; Von Backström, T.W. Performance analysis of the power conversion unit of a solar chimney power plant. Sol. Energy 2008, 82, 999–1008. [Google Scholar] [CrossRef]
- Gannon, A.J.; Von Backström, T.W. Solar Chimney Turbine Part 1 of 2: Design. In Proceedings of the International Solar Energy Conference, Reno, NV, USA, 15–20 June 2002; ASME: Matieland, South Africa, 2002; pp. 335–341. [Google Scholar] [CrossRef]
- Gannon, A.J.; Von Backström, T.W. Solar Chimney Turbine Part 2 of 2—Experimental Results. In Proceedings of the International Solar Energy Conference, Reno, NV, USA, 15–20 June 2002; ASME: Matieland, South Africa, 2002; pp. 343–349. [Google Scholar] [CrossRef]
- Von Backström, T.; Gannon, A. Solar chimney turbine characteristics. Sol. Energy 2004, 76, 235–241. [Google Scholar] [CrossRef]
- Dehghani, S.; Mohammadi, A.H. Optimum dimension of geometric parameters of solar chimney power plants—A multi-objective optimization approach. Sol. Energy 2014, 105, 603–612. [Google Scholar] [CrossRef]
- Denantes, F.; Bilgen, E. Counter-rotating turbines for solar chimney power plants. Renew. Energy 2006, 31, 1873–1891. [Google Scholar] [CrossRef]
- Tingzhen, M.; Wei, L.; Guoling, X.; Yanbin, X.; Xuhu, G.; Yuan, P. Numerical simulation of the solar chimney power plant systems coupled with turbine. Renew. Energy 2008, 33, 897–905. [Google Scholar] [CrossRef]
- Rangel, L.P.; Contessi, B.A.; Copes, T.A.; Alberto, P.; Ropelato, K. Advances in solar chimney turbine modelling. Asociación Argentina de Mecánica Computacional 2016, XXXIV, 897–915. [Google Scholar]
- Zhou, Y.; Gao, B.; Dong, H.R.; Hao, K. Design for the turbine of solar chimney power plant system with vertical collector. IOP Conf. Ser. Earth Environ. Sci. 2016, 40, 012085. [Google Scholar] [CrossRef] [Green Version]
- Fluri, T.P. Turbine Layout for and Optimization of Solar Chimney Power Conversion Units. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2008. [Google Scholar]
- Elmagid, W.M.; Keppler, I. Axial flow turbine for solar chimney. Hung. Agric. Eng. 2017, 32, 29–37. [Google Scholar] [CrossRef]
- Haaf, W. Solar Chimneys Part II: Preliminary Test Results from the Manzanares Pilot Plant. Int. J. Sol. Energy 1984, 2, 141–161. [Google Scholar] [CrossRef]
- Gholamalizadeh, E.; Chung, J.D. A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants. Energies 2017, 10, 1674. [Google Scholar] [CrossRef] [Green Version]
- Gholamalizadeh, E.; Kim, M.H. Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model. Renew. Energy 2014, 63, 498–506. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, P.; Ruan, X.; Xu, Z.; Fu, X. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump. Shock Vib. 2017, 2017, 7363627. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tian, R.; Nie, J. Design of Wind Turbine Blade for Solar Chimney Power Plant. J. Shanghai Jiaotong Univ. (Sci.) 2018, 23, 820–826. [Google Scholar] [CrossRef]
- Caicedo, P.V. Feasibility Study of a Radial Turbine for a Solar Chimney Power Plant. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 2018. [Google Scholar] [CrossRef]
- Kasaeian, A.; Molana, S.; Rahmani, K.; Wen, D. A review on solar chimney systems. Renew. Sustain. Energy Rev. 2017, 67, 954–987. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Peric, M. Computational Methods for Fluid Dynamics, 3rd ed.; Springer: Berlin, Germany, 2002; p. 423. [Google Scholar] [CrossRef]
- Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; Wiley: Lawrence, NY, USA, 2017; ISBN ES8-1-119-32042-5. [Google Scholar]
- Andersson, B.; Andersson, R.; Håkansson, L.; Mortensen, M.; Sudiyo, R.; Van Wachem, B. Computational Fluid Dynamics for Engineers; Cambridge: Cambridge, UK, 2011; Volume 9781107018, pp. 1–189. [Google Scholar] [CrossRef] [Green Version]
- Ansys, I. Fluent Theory Guide; ANSYS: Canonsburg, PA, USA, 2020. [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Luo, J.Y.; Issa, R.I.; Gosman, A.D. Prediction of Impeller Induced Flows in Mixing Vessels Using Multiple Frames of Reference; IChemE Symposium Series; Institute of Chemical Engineers: New York, NY, USA, 1994. [Google Scholar]
- CFturbo GmbH. CFTurbo; Dresden, Germany, 2018. Available online: https://manual.cfturbo.com/en/index.html (accessed on 20 December 2020).
- Rohlik, H.E. Analytical Determination of Radial Inflow Turbine Design Geometry for Maximum Efficiency; NASA: Washington, DC, USA, 1968. [Google Scholar]
- World Weather Online. World Weather Online, 2008. Available online: https://www.worldweatheronline.com/manzanares-weather-history/castilla-la-mancha/es.aspx (accessed on 20 December 2020).
- López, E. Study on a Radial Turbine Stage with Inlet Guide Vanes for an ORC Process with an Electrical Output of 3, 5 kW; Final Project; Universität Stuttgart: Stuttgart, Germany, 2013. [Google Scholar]
- Glassman, A.J. Computer Program for Design Analysis of Radial-Inflow Turbines; NASA: Washington, DC, USA, 1976. [Google Scholar]
- Gholamalizadeh, E.; Chung, J.D. Analysis of fluid flow and heat transfer on a solar updraft tower power plant coupled with a wind turbine using computational fluid dynamics. Appl. Therm. Eng. 2017, 126, 548–558. [Google Scholar] [CrossRef]
- Dixon, S.L.; Hall, C.A. Fluid mechanics and Thermodynamics of Turbomachinery; Elsevier: Waltham, MA, USA, 2014. [Google Scholar] [CrossRef]
- Gholamalizadeh, E.; Kim, M.H. CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof. Energy 2016, 107, 661–667. [Google Scholar] [CrossRef]
- Burger, M. Prediction of the Temperature Distribution in Asphalt Pavement Samples. Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2005. [Google Scholar]
- NASA. Examining Spatial (Grid) Convergence; NASA: Washington, DC, USA, 2008.
Data | Units | Value |
---|---|---|
Inlet width () | m | 1.85 |
Suction radius () | m | 5 |
Rotor radius () | m | 7.5 |
Inlet angle (1) | 20 | |
IGV thickness () | m | 0.3 |
Mass flow rate () | kg/s | 1088 |
Ambient temperature () | C | 23 |
Ambient pressure () | Pa | 93,900 |
Density () | kg/m | 1.116 |
Location | Type | Description |
---|---|---|
Bottom of the heat storage layer | Wall | = 296.15 K |
Sides of the heat storage layer | Wall | Adiabatic |
Collector roof | Semi-transparent wall | h = 15.77 W/(mK), = 296.15 K, |
solar irradiation of 850 W/m | ||
Chimney wall | Wall | Adiabatic |
Collector inlet | Pressure inlet | = 0 Pa, = 296.15 K |
Chimney outlet | Pressure outlet | = 0 Pa |
Blades | Wall (MRF) | Adiabatic |
Classification | Setting |
---|---|
Solver | Pressure-based coupled algorithm 3-D simulation |
Steady state analysis (second-order upwind discretization) | |
Rotating reference frame | MRF |
Energy equation | Activated |
RANS model | RNG k- model |
Full buoyancy effects | |
Radiation model | DO (discrete ordinates) |
Theta divisions: 3 | |
Phi divisions: 5 | |
Theta pixels: 3 | |
Phi pixels: 5 | |
Solar load model | Solar ray tracing |
Mesh | No. of Cells | Power (kW) | Turbulence Model | Range |
---|---|---|---|---|
Coarse (3) | 570,000 | 81.63 | RNG k- | 10–260 |
Coarse (3) | 570,000 | 83.02 | SST | 10–260 |
Medium (2) | 1.9 million | 80.24 | SST | 0.2–26 |
Fine (1) | 6.5 million | 79.11 | SST | 0.1–19 |
Mesh | No. of Cells | Mass Flow Rate (kg/s) | Upwind Velocity (m/s) | Kinetic Energy (kW) |
---|---|---|---|---|
Coarse (3) | 1 million | 1019 | 11.7 | 70 |
Medium (2) | 2.7 million | 1044 | 12.0 | 75 |
Fine (1) | 7.4 million | 1060 | 12.1 | 78 |
Richardson Extrapolation | 1088 | 12.5 | 85 |
Mesh | No. of Cells | Mass Flow Rate (kg/s) | Torque (Nm) | Power (kW) |
---|---|---|---|---|
Coarse (3) | 5 million | 476 | 44,520 | 70 |
Medium (2) | 7.2 million | 477 | 42,780 | 67.2 |
Fine (1) | 10.4 million | 479 | 42,250 | 66.4 |
Richardson Extrapolation | 516 | 42,020 | 66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caicedo, P.; Wood, D.; Johansen, C. Radial Turbine Design for Solar Chimney Power Plants. Energies 2021, 14, 674. https://doi.org/10.3390/en14030674
Caicedo P, Wood D, Johansen C. Radial Turbine Design for Solar Chimney Power Plants. Energies. 2021; 14(3):674. https://doi.org/10.3390/en14030674
Chicago/Turabian StyleCaicedo, Paul, David Wood, and Craig Johansen. 2021. "Radial Turbine Design for Solar Chimney Power Plants" Energies 14, no. 3: 674. https://doi.org/10.3390/en14030674
APA StyleCaicedo, P., Wood, D., & Johansen, C. (2021). Radial Turbine Design for Solar Chimney Power Plants. Energies, 14(3), 674. https://doi.org/10.3390/en14030674