A DC Microgrid System for Powering Remote Areas †
<p>The proposed DC microgrid system.</p> "> Figure 2
<p>(<b>a</b>) Block diagram of a power conditioner system (PCS). (<b>b</b>) Converters topology employed in PCS.</p> "> Figure 3
<p>Flowchart of the PCS management unit.</p> "> Figure 4
<p>Multi-point DC microgrid configuration.</p> "> Figure 5
<p>Power flow in multi-point DC microgrid system.</p> "> Figure 6
<p>Solar tower: An implementation of PCS.</p> "> Figure 7
<p>PCS field evaluation with distant loads.</p> "> Figure 8
<p>Inverter evaluation: (<b>a</b>) Efficiency vs. load, (<b>b</b>) voltage and current THD vs. load, and (<b>c</b>) battery and inverter voltage vs. load.</p> "> Figure 8 Cont.
<p>Inverter evaluation: (<b>a</b>) Efficiency vs. load, (<b>b</b>) voltage and current THD vs. load, and (<b>c</b>) battery and inverter voltage vs. load.</p> "> Figure 9
<p>Field testing results: (<b>a</b>) Voltage drop on cable, and (<b>b</b>) losses on cable.</p> "> Figure 10
<p>Battery charging and discharging process with varying load current.</p> ">
Abstract
:1. Introduction
2. A Modular, Independent, and Expandable DC Microgrid System
2.1. Power Conditioner System
2.2. Implementation of the Proposed DC Microgrid System in Isolated Remote Areas
3. Functional and Performance Evaluation of the Proposed DC Microgrid System
3.1. Evaluation Methodology
3.2. Evaluation Results
3.2.1. Lab Testing
3.2.2. Field Testing
4. LCOE and Investment Analysis
- I = initial investment cost,
- M = O&M cost,
- F = fuel cost,
- E = energy produced by the plant,
- r = discount rate,
- t = time,
- NPVCost = net present value from the total cost spent in the plant’s lifetime, and
- NPVProduce = net present value of the total energy generated by the plant during its lifetime.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AC | Alternating Current |
DC | Direct Current |
GWp | gigawatt-peak |
ESS | Energy Storage System |
kWh | kilowatt-hour |
kWp | kilowatt-peak |
LCOE | Levelized Cost of Energy |
O&M | Operation and Maintenance |
PCS | Power Conditioner System |
PV | Photovoltaic |
RES | Renewable Energy Sources |
SoC | State of Charge |
THD | Total Harmonic Distortion |
References
- Kementrian Energi dan Sumber Daya Mineral. Available online: https://www.esdm.go.id/id/media-center/arsip-berita/tumbuh-3-persen-per-tahun-rasio-elektrifikasi-triwulan-iii-capai-9886-persen (accessed on 20 December 2020).
- Direktorat Jenderal Energi Baru, Terbarukan, dan Konservasi Energi. Statistik EBTKE 2016; Direktorat Jenderal Energi Baru, Terbarukan, dan Konservasi Energi: Jakarta, Indonesia, 2016. [Google Scholar]
- Hassan, M.U.; Saha, S.; Haque, M. A framework for the performance evaluation of household rooftop solar battery systems. Int. J. Electr. Power Energy Syst. 2021, 125, 106446. [Google Scholar] [CrossRef]
- Alam, M.J.E.; Muttaqi, K.M.; Sutanto, D. A Three-Phase Power Flow Approach for Integrated 3-Wire MV and 4-Wire Multigrounded LV Networks with Rooftop Solar PV. IEEE Trans. Power Syst. 2012, 28, 1728–1737. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.-W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Planas, E.; Andreu, J.; Gárate, J.I.; De Alegría, I.M.; Ibarra, E. AC and DC technology in microgrids: A review. Renew. Sustain. Energy Rev. 2015, 43, 726–749. [Google Scholar] [CrossRef]
- Rodriguez-Diaz, E.; Vasquez, J.C.; Guerrero, J.M. Intelligent DC Homes in Future Sustainable Energy Systems: When efficiency and intelligence work together. IEEE Consum. Electron. Mag. 2016, 5, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Patterson, B.T. DC, Come Home: DC Microgrids and the Birth of the “Enernet”. IEEE Power Energy Mag. 2012, 10, 60–69. [Google Scholar] [CrossRef]
- Kumar, D.; Zare, F.; Ghosh, A. DC Microgrid Technology: System Architectures, AC Grid Interfaces, Grounding Schemes, Power Quality, Communication Networks, Applications, and Standardizations Aspects. IEEE Access 2017, 5, 12230–12256. [Google Scholar] [CrossRef]
- Schumacher, D.; Beik, O.; Emadi, A. Standalone Integrated Power Electronics Systems: Applications for Off-Grid Rural Locations. IEEE Electrif. Mag. 2018, 6, 73–82. [Google Scholar] [CrossRef]
- Nasir, M.; Khan, H.A.; Zaffar, N.A.; Vasquez, J.C.; Guerrero, M. Scalable solar dc microgrid: On the Path to Revolutionizing the Electrification Architecture of Developing Communities. IEEE Electrif. Mag. 2018, 6, 63–72. [Google Scholar] [CrossRef]
- Jhunjhunwala, A.; Kaur, P. Solar Energy, dc Distribution, and Microgrids: Ensuring Quality Power in Rural India. IEEE Electrif. Mag. 2018, 6, 32–39. [Google Scholar] [CrossRef]
- Madduri, P.A.; Poon, J.; Rosa, J.; Podolsky, M.; Brewer, E.; Sanders, S.R. Scalable DC Microgrids for Rural Electrification in Emerging Regions. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1195–1205. [Google Scholar] [CrossRef]
- Li, D.; Ho, C.N.M. A Module-Based Plug-n-Play DC Microgrid with Fully Decentralized Control for IEEE Empower a Billion Lives Competition. IEEE Trans. Power Electron. 2020, 36, 1764–1776. [Google Scholar] [CrossRef]
- Nasir, M.; Jin, Z.; Khan, H.A.; Zaffar, N.A.; Vasquez, J.C.; Guerrero, J.M. A Decentralized Control Architecture Applied to DC Nanogrid Clusters for Rural Electrification in Developing Regions. IEEE Trans. Power Electron. 2019, 34, 1773–1785. [Google Scholar] [CrossRef] [Green Version]
- Dastgeer, F.; Gelani, H.E.; Anees, H.M.; Paracha, Z.J.; Kalam, A. Analyses of efficiency/energy-savings of DC power distribution systems/microgrids: Past, present and future. Int. J. Electr. Power Energy Syst. 2019, 104, 89–100. [Google Scholar] [CrossRef]
- Dragicevic, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues. IEEE Trans. Power Electron. 2016, 31, 3528–3549. [Google Scholar] [CrossRef] [Green Version]
- Neto, P.J.D.S.; Barros, T.A.; Silveira, J.P.; Filho, E.R.; Vasquez, J.C.; Guerrero, J.M. Power management techniques for grid-connected DC microgrids: A comparative evaluation. Appl. Energy 2020, 269, 115057. [Google Scholar] [CrossRef]
- Mi, Y.; Guo, J.; Yu, S.; Cai, P.; Ji, L.; Wang, Y.; Yue, D.; Fu, Y.; Jin, C. A Power Sharing Strategy for Islanded DC Microgrid with Unmatched Line Impedance and Local Load. Electr. Power Syst. Res. 2021, 192, 106983. [Google Scholar] [CrossRef]
- Adam, G.P.; Vrana, T.K.; Li, R.; Li, P.; Burt, G.; Finney, S. Review of technologies for DC grids—Power conversion, flow control and protection. IET Power Electron. 2019, 12, 1851–1867. [Google Scholar] [CrossRef] [Green Version]
- Cornea, O.; Andreescu, G.-D.; Muntean, N.; Hulea, D. Bidirectional Power Flow Control in a DC Microgrid Through a Switched-Capacitor Cell Hybrid DC–DC Converter. IEEE Trans. Ind. Electron. 2017, 64, 3012–3022. [Google Scholar] [CrossRef]
- Vuyyuru, U.; Maiti, S.; Chakraborty, C. Active Power Flow Control between DC Microgrids. IEEE Trans. Smart Grid 2019, 10, 5712–5723. [Google Scholar] [CrossRef]
- Rathore, A.K.; Patil, D.R.; Srinivasan, D. A Non-Isolated Bidirectional Soft Switching Current fed LCL Resonant DC/DC Converter to Interface Energy Storage in DC Microgrid. IEEE Trans. Ind. Appl. 2015, 52, 1. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Wang, L.; Lo, T.-M.; Prokhorov, A.V. Integration of Wind Power and Wave Power Generation Systems Using a DC Microgrid. IEEE Trans. Ind. Appl. 2015, 51, 2753–2761. [Google Scholar] [CrossRef]
- Cheng, T.; Lu, D.D.-C.; Qin, L. Non-Isolated Single-Inductor DC/DC Converter with Fully Reconfigurable Structure for Renewable Energy Applications. IEEE Trans. Circuits Syst. II Express Briefs 2017, 65, 351–355. [Google Scholar] [CrossRef]
- Sechilariu, M.; Locment, F.; Wang, B. Photovoltaic Electricity for Sustainable Building. Efficiency and Energy Cost Reduction for Isolated DC Microgrid. Energies 2015, 8, 7945–7967. [Google Scholar] [CrossRef] [Green Version]
- Strunz, K.; Abbasi, E.; Huu, D.N. DC Microgrid for Wind and Solar Power Integration. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 115–126. [Google Scholar] [CrossRef]
- Werth, A.; Andre, A.; Kawamoto, D.; Morita, T.; Tajima, S.; Tokoro, M.; Yanagidaira, D.; Tanaka, K. Peer-to-Peer Control System for DC Microgrids. IEEE Trans. Smart Grid 2016, 9, 3667–3675. [Google Scholar] [CrossRef]
- Choi, H.-J.; Jung, J.-H. Enhanced Power Line Communication Strategy for DC Microgrids Using Switching Frequency Modulation of Power Converters. IEEE Trans. Power Electron. 2017, 32, 4140–4144. [Google Scholar] [CrossRef]
- Papadimitriou, C.; Zountouridou, E.; Hatziargyriou, N. Review of hierarchical control in DC microgrids. Electr. Power Syst. Res. 2015, 122, 159–167. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Sinha, A.K.; Kishore, N.K. Control Techniques in AC, DC, and Hybrid AC–DC Microgrid: A Review. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 738–759. [Google Scholar] [CrossRef]
- Ardriani, T.; Sastya, P.D.; Arofat, A.H.; Dahono, P.A. A Novel Power Conditioner System for Isolated DC Microgrid System. In Proceedings of the 2018 Conference on Power Engineering and Renewable Energy (ICPERE), Solo, Indonesia, 29–31 October 2018; pp. 1–5. [Google Scholar]
Source Chopper | Storage Chopper | DC Grid Chopper | Inverter | |
---|---|---|---|---|
Rated Power | 3000 W | 3000 W | 1000 W | 3000 VA |
DC Link Voltage | DC 500 V | DC 500 V | DC 500 V | DC 500 V |
Input/Output Voltage | DC 250 V | DC 250 V | DC 370 V | AC 230 V |
Rated Current | DC 12 A | DC 12 A | DC 2.7 A | AC 13 A |
Other | MPPT Algorithm | Bidirectional power flow | Controlled DC Bus Voltage Range: DC 350–390 V Bidirectional power flow | Rated Frequency: 50 Hz (1-phase) |
SoC | Source Chopper * | Storage Chopper | DC Grid Chopper | Inverter |
---|---|---|---|---|
0–10% | ON or OFF | Charging | Charging | OFF |
10–30% | ON or OFF | Charging | Charging | ON |
30–70% | OFF | Charging | Charging | ON |
ON | Discharging | Discharging | ||
70–100% | ON or OFF | Discharging | Discharging | ON |
No. | Source | Description | Topology |
---|---|---|---|
1. | Ref [12] |
| |
2. | Ref [13] |
| |
3. | Ref [14] |
| |
4. | Ref [15] |
| |
5 | Proposed System |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardriani, T.; Dahono, P.A.; Rizqiawan, A.; Garnia, E.; Sastya, P.D.; Arofat, A.H.; Ridwan, M. A DC Microgrid System for Powering Remote Areas. Energies 2021, 14, 493. https://doi.org/10.3390/en14020493
Ardriani T, Dahono PA, Rizqiawan A, Garnia E, Sastya PD, Arofat AH, Ridwan M. A DC Microgrid System for Powering Remote Areas. Energies. 2021; 14(2):493. https://doi.org/10.3390/en14020493
Chicago/Turabian StyleArdriani, Tri, Pekik Argo Dahono, Arwindra Rizqiawan, Erna Garnia, Pungky Dwi Sastya, Ahmad Husnan Arofat, and Muhammad Ridwan. 2021. "A DC Microgrid System for Powering Remote Areas" Energies 14, no. 2: 493. https://doi.org/10.3390/en14020493
APA StyleArdriani, T., Dahono, P. A., Rizqiawan, A., Garnia, E., Sastya, P. D., Arofat, A. H., & Ridwan, M. (2021). A DC Microgrid System for Powering Remote Areas. Energies, 14(2), 493. https://doi.org/10.3390/en14020493