Pathophysiology and Prevention of Manual-Ventilation-Induced Lung Injury (MVILI)
<p>Mechanisms of MVILI. Manual hyperventilation increases intrathoracic pressure leading to adverse hemodynamic changes, including decreased venous return (VR), cardiac output (CO), and coronary perfusion pressure (CPP). Additionally, increased inspiratory pressures can open the lower esophageal sphincter, causing gastric insufflation, regurgitation, and aspiration. Vigorous manual ventilation may also lead to acute barotrauma (pneumothorax, pneumomediastinum, pneumoperitoneum, and subcutaneous emphysema) and possibly a sub-barotraumatic, inflammation-driven injury lung injury. Graphic design by David Wright.</p> "> Figure 2
<p>Tidal-volume feedback devices. Authors’ rendering of the TVD based on [<a href="#B67-pathophysiology-31-00042" class="html-bibr">67</a>]. Cropped and edited images of the Amflow<sup>®</sup> [<a href="#B68-pathophysiology-31-00042" class="html-bibr">68</a>], RTVFD (a, tidal volume; b, inspiration time; c, peak pressure) [<a href="#B69-pathophysiology-31-00042" class="html-bibr">69</a>], VFD [<a href="#B70-pathophysiology-31-00042" class="html-bibr">70</a>], and BENGI [<a href="#B71-pathophysiology-31-00042" class="html-bibr">71</a>] reproduced under Creative Commons Attribution Non-Commercial License 4.0.</p> ">
Abstract
:1. Introduction
2. Manual Ventilation
3. Manual Hyperventilation
4. Manual-Ventilation-Induced Lung Injury (MVILI)
4.1. Adverse Hemodynamic Changes
4.2. Gastric Regurgitation and Aspiration
4.3. Barotrauma
4.4. Sub-Barotraumatic and Secondary Inflammation-Driven Injury
4.5. Current Knowledge Gaps
5. Therapies for MVILI Reduction
5.1. Bag Size and Design Optimization
5.2. Pressure Manometry Monitoring
5.3. Tidal-Volume Feedback
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khoury, A.; Hugonnot, S.; Cossus, J.; De Luca, A.; Desmettre, T.; Sall, F.S.; Capellier, G. From Mouth-to-Mouth to Bag-Valve-Mask Ventilation: Evolution and Characteristics of Actual Devices—A Review of the Literature. BioMed Res. Int. 2014, 2014, 762053. [Google Scholar] [CrossRef] [PubMed]
- Ricard, J.-D. Manual ventilation and risk of barotrauma: Primum non nocere. Respir. Care 2005, 50, 338–339. [Google Scholar] [PubMed]
- Davies, J.D.; Costa, B.K.; Asciutto, A.J. Approaches to Manual VentilationDiscussion. Respir. Care 2014, 59, 810–824. [Google Scholar] [CrossRef] [PubMed]
- Panchal, A.R.; Bartos, J.A.; Cabañas, J.G.; Donnino, M.W.; Drennan, I.R.; Hirsch, K.G.; Kudenchuk, P.J.; Kurz, M.C.; Lavonas, E.J.; Morley, P.T.; et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S366–S468. [Google Scholar] [CrossRef] [PubMed]
- Soar, J.; Böttiger, B.W.; Carli, P.; Couper, K.; Deakin, C.D.; Djärv, T.; Lott, C.; Olasveengen, T.; Paal, P.; Pellis, T.; et al. European Resuscitation Council Guidelines 2021: Adult advanced life support. Resuscitation 2021, 161, 115–151. [Google Scholar] [CrossRef]
- Topjian, A.A.; Raymond, T.T.; Atkins, D.; Chan, M.; Duff, J.P.; Jr, B.L.J.; Lasa, J.J.; Lavonas, E.J.; Levy, A.; Mahgoub, M.; et al. Part 4: Pediatric Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S469–S523. [Google Scholar] [CrossRef]
- Van de Voorde, P.; Turner, N.M.; Djakow, J.; de Lucas, N.; Martinez-Mejias, A.; Biarent, D.; Bingham, R.; Brissaud, O.; Hoffmann, F.; Johannesdottir, G.B.; et al. European Resuscitation Council Guidelines 2021: Paediatric Life Support. Resuscitation 2021, 161, 327–387. [Google Scholar] [CrossRef]
- Aziz, K.; Lee, H.C.; Escobedo, M.B.; Hoover, A.V.; Kamath-Rayne, B.D.; Kapadia, V.S.; Magid, D.J.; Niermeyer, S.; Schmölzer, G.M.; Szyld, E.; et al. Part 5: Neonatal Resuscitation: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S524–S550. [Google Scholar] [CrossRef]
- Madar, J.; Roehr, C.C.; Ainsworth, S.; Ersdal, H.; Morley, C.; Rüdiger, M.; Skåre, C.; Szczapa, T.; Pas, A.T.; Trevisanuto, D.; et al. European Resuscitation Council Guidelines 2021: Newborn resuscitation and support of transition of infants at birth. Resuscitation 2021, 161, 291–326. [Google Scholar] [CrossRef]
- Nielsen, A.M.; Isbye, D.L.; Lippert, F.K.; Rasmussen, L.S. Basic life support and automated external defibrillator skills among ambulance personnel: A manikin study performed in a rural low-volume ambulance setting. Scand. J. Trauma Resusc. Emerg. Med. 2012, 20, 34–37. [Google Scholar] [CrossRef]
- Khoury, A.; Sall, F.S.; De Luca, A.; Pugin, A.; Pili-Floury, S.; Pazart, L.; Capellier, G. Evaluation of Bag-Valve-Mask Ventilation in Manikin Studies: What Are the Current Limitations? BioMed Res. Int. 2016, 2016, 4521767. [Google Scholar] [CrossRef] [PubMed]
- Niebauer, J.M.; White, M.L.; Zinkan, J.L.; Youngblood, A.Q.; Tofil, N.M. Hyperventilation in Pediatric Resuscitation: Performance in Simulated Pediatric Medical Emergencies. Pediatrics 2011, 128, e1195–e1200. [Google Scholar] [CrossRef] [PubMed]
- Zweiker, D.; Schwaberger, H.; Urlesberger, B.; Mileder, L.P.; Baik-Schneditz, N.; Pichler, G.; Schmölzer, G.M.; Schwaberger, B. Does the Number of Fingers on the Bag Influence Volume Delivery? A Randomized Model Study of Bag-Valve-Mask Ventilation in Infants. Children 2018, 5, 132. [Google Scholar] [CrossRef]
- Martin, J.A.; Hamilton, B.E.; Osterman, M.J.K.; Driscoll, A.K. Births: Final Data for 2019. Natl. Vital. Stat. Rep. 2021, 70, 1–51. [Google Scholar] [PubMed]
- Condò, V.; Cipriani, S.; Colnaghi, M.; Bellù, R.; Zanini, R.; Bulfoni, C.; Parazzini, F.; Mosca, F. Neonatal respiratory distress syndrome: Are risk factors the same in preterm and term infants? J. Matern. Neonatal Med. 2017, 30, 1267–1272. [Google Scholar] [CrossRef]
- Aufderheide, T.P.; Sigurdsson, G.; Pirrallo, R.G.; Yannopoulos, D.; McKnite, S.; von Briesen, C.; Sparks, C.W.; Conrad, C.J.; Provo, T.A.; Lurie, K.G. Hyperventilation-Induced Hypotension During Cardiopulmonary Resuscitation. Circulation 2004, 109, 1960–1965. [Google Scholar] [CrossRef]
- Aufderheide, T.P.; Lurie, K.G. Death by hyperventilation: A common and life-threatening problem during cardiopulmonary resuscitation. Crit. Care Med. 2004, 32, S345–S351. [Google Scholar] [CrossRef]
- O’neill, J.F.; Deakin, C.D. Do we hyperventilate cardiac arrest patients? Resuscitation 2007, 73, 82–85. [Google Scholar] [CrossRef]
- Theres, H.; Binkau, J.; Laule, M.; Heinze, R.; Hundertmark, J.; Blobner, M.; Erhardt, W.; Baumann, G.; Stangl, K. Phase-related changes in right ventricular cardiac output under volume-controlled mechanical ventilation with positive end-expiratory pressure. Crit. Care Med. 1999, 27, 953–958. [Google Scholar] [CrossRef]
- Cournand, A.; Motley, H.L.; Werko, L.; Richards, D.W. Physiological Studies of the Effects of Intermittent Positive Pressure Breathing on Cardiac Output in Man. Am. J. Physiol. Content 1947, 152, 162–174. [Google Scholar] [CrossRef]
- Paradis, N.A.; Martin, G.B.; Rivers, E.P.; Goetting, M.G.; Appleton, T.J.; Feingold, M.; Nowak, R.M. Coronary Perfusion Pressure and the Return of Spontaneous Circulation in Human Cardiopulmonary Resuscitation. JAMA 1990, 263, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Ruben, H.; Knudsen, E.J.; Carugati, G. Gastric Inflation in Relation to Airway Pressure. Acta Anaesthesiol. Scand. 1961, 5, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Bowman, F.P.; Menegazzi, J.J.; Check, B.D.; Duckett, T.M. Lower Esophageal Sphincter Pressure During Prolonged Cardiac Arrest and Resuscitation. Ann. Emerg. Med. 1995, 26, 216–219. [Google Scholar] [CrossRef]
- Gabrielli, A.; Wenzel, V.; Layon, A.J.; von Goedecke, A.; Verne, N.G.; Idris, A.H. Lower Esophageal Sphincter Pressure Measurement during Cardiac Arrest in Humans: Potential Implications for Ventilation of the Unprotected Airway. Anesthesiology 2005, 103, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Stone, B.; Chantler, P.; Baskett, P. The incidence of regurgitation during cardiopulmonary resuscitation: A comparison between the bag valve mask and laryngeal mask airway. Resuscitation 1998, 38, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, V.; Idris, A.H.; Banner, M.J.; Kubilis, P.S.; Williams, J.L. Influence of tidal volume on the distribution of gas between the lungs and stomach in the nonintubated patient receiving positive-pressure ventilation. Crit. Care Med. 1998, 26, 364–368. [Google Scholar] [CrossRef]
- Fitz-Clarke, J.R. Fast or Slow Rescue Ventilations: A Predictive Model of Gastric Inflation. Respir. Care 2018, 63, 502–509. [Google Scholar] [CrossRef]
- Munford, B.J.; Wishaw, K.J. Critical Incidents with Nonrebreathing Valves. Anesth. Intensive Care 1990, 18, 560–563. [Google Scholar] [CrossRef]
- Cooper, R.M.; Grgas, S. Fatal Barotrauma Resulting from Misuse of a Resuscitation Bag. Anesthesiology 2000, 93, 892–893. [Google Scholar] [CrossRef]
- Rodriguez, A.L.; Sánchez, L.L.; Julia, J.A. Pneumoperitoneum Associated with Manual Ventilation Using a Bag—Valve Device. Acad. Emerg. Med. 1995, 2, 944. [Google Scholar] [CrossRef]
- Kim, J.B.; Jung, H.-J.; Lee, J.M.; Im, K.S.; Kim, D.J. Barotrauma developed during intra-hospital transfer—A case report. Korean J. Anesthesiol. 2010, 59, S218–S221. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Joo, Y.Y.; Oh, Y.S.; Seo, Y.R.; Joo, H.S.; Kim, S.C.; Rhee, C.K. Barotrauma after Manual Ventilation in a Patient with Life-Threatening Massive Hemoptysis. Korean J. Crit. Care Med. 2015, 30, 308–312. [Google Scholar] [CrossRef]
- Slutsky, A.S.; Ranieri, V.M. Ventilator-Induced Lung Injury. N. Engl. J. Med. 2013, 369, 2126–2136. [Google Scholar] [CrossRef]
- Deboisblanc, B.P. Black Hawk, Please Come Down: Reflections on a hospital’s struggle to survive in the wake of Hurricane Katrina. Am. J. Respir. Crit. Care Med. 2005, 172, 1239–1240. [Google Scholar] [CrossRef]
- Branson, R.D.; Johannigman, J.A.; Daugherty, E.L.; Rubinson, L. Surge capacity mechanical ventilation. Respir. Care 2008, 53, 78. [Google Scholar]
- Blackburn, M.B.; Hudson, I.L.; Rodriguez, C.; Wienandt, N.; Ryan, K.L. Acute overventilation does not cause lung damage in moderately hemorrhaged swine. J. Appl. Physiol. 2021, 130, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Bogossian, E.G.; Peluso, L.; Creteur, J.; Taccone, F.S. Hyperventilation in Adult TBI Patients: How to Approach It? Front. Neurol. 2021, 11, 580859. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Q.; Wang, E. Hyperventilation in neurological patients: From physiology to outcome evidence. Curr. Opin. Anaesthesiol. 2019, 32, 568–573. [Google Scholar] [CrossRef]
- Nair, J.; Lakshminrusimha, S. Update on PPHN: Mechanisms and treatment. Semin. Perinatol. 2014, 38, 78–91. [Google Scholar] [CrossRef]
- Blanch, L.; Villagra, A.; Sales, B.; Montanya, J.; Lucangelo, U.; Luján, M.; García-Esquirol, O.; Chacón, E.; Estruga, A.; Oliva, J.C.; et al. Asynchronies during mechanical ventilation are associated with mortality. Intensiv. Care Med. 2015, 41, 633–641. [Google Scholar] [CrossRef]
- The Asynchronies in the Intensive Care Unit (ASYNICU) Group; De Haro, C.; Ochagavia, A.; López-Aguilar, J.; Fernandez-Gonzalo, S.; Navarra-Ventura, G.; Magrans, R.; Montanyà, J.; Blanch, L. Patient-ventilator asynchronies during mechanical ventilation: Current knowledge and research priorities. Intensive Care Med. Exp. 2019, 7, 43. [Google Scholar] [CrossRef]
- Saddawi-Konefka, D.; Hung, S.L.; Kacmarek, R.M.; Jiang, Y. Optimizing Mask Ventilation: Literature Review and Development of a Conceptual Framework. Respir. Care 2015, 60, 1834–1840. [Google Scholar] [CrossRef] [PubMed]
- Sivco, C.S.; Cherian, V.T. What Every Anesthesiologist Should Know About the Manual Resuscitation Bag. A&A Pract. 2018, 11, 288–291. [Google Scholar] [CrossRef]
- Roy, S.; Bunting, L.; Stahl, S.; Textor, D. Inline Positive End-Expiratory Pressure Valves: The Essential Component of Individualized Split Ventilator Circuits. Crit. Care Explor. 2020, 2, e0198. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, V.; Idris, A.H.; Banner, M.J.; Fuerst, R.S.; Tucker, K.J. The Composition of Gas Given by Mouth-to-Mouth Ventilation During CPR. Chest 1994, 106, 1806–1810. [Google Scholar] [CrossRef] [PubMed]
- Fothergill, J. XI. Observations on a case published in the last volume of the medical essays, &c. of recovering a man dead in appearance, by distending the lungs with air. Printed at Edinburgh, 1744; by John Fothergill, Licent. Coll. Med. Lond. Philos. Trans. R. Soc. Lond. 1744, 43, 275–281. [Google Scholar] [CrossRef]
- AMBU, Ambu® SPUR® II Datasheet, (n.d.). Available online: https://www.ambuusa.com/emergency-care-and-training/resuscitators/product/ambu-spur-ii (accessed on 14 January 2021).
- Laerdal, The BAG II Manual Single-Use Self-Inflating Resuscitator User Guide, (n.d.). Available online: https://cdn.laerdal.com/downloads/f4968/the_bag_ii (accessed on 23 December 2021).
- Intersurgical, Bag-Valve-Mask Resuscitators Information Sheet, (n.d.). Available online: https://www.intersurgical.com/content/files/72303/1893681232 (accessed on 23 December 2021).
- AirLife, AirflowTM Manual Resuscitator, (n.d.). Available online: https://connect.myairlife.com/resource/airflow-manual-resuscitator-literature-sheet/ (accessed on 23 December 2021).
- Doerges, V.; Sauer, C.; Ocker, H.; Wenzel, V.; Schmucker, P. Smaller tidal volumes during cardiopulmonary resuscitation: Comparison of adult and paediatric self-inflatable bags with three different ventilatory devices. Resuscitation 1999, 43, 31–37. [Google Scholar] [CrossRef]
- Dafilou, B.; Schwester, D.; Ruhl, N.; Marques-Baptista, A. It’s In The Bag: Tidal Volumes in Adult and Pediatric Bag Valve Masks. J. Emerg. Med. 2020, 21, 722–726. [Google Scholar] [CrossRef]
- Wenzel, V.; Keller, C.; Idris, A.H.; Dörges, V.; Lindner, K.H.; Brimacombe, J.R. Effects of smaller tidal volumes during basic life support ventilation in patients with respiratory arrest: Good ventilation, less risk? Resuscitation 1999, 43, 25–29. [Google Scholar] [CrossRef]
- Hart, D.; Reardon, R.; Ward, C.; Miner, J. Face Mask Ventilation: A Comparison of Three Techniques. J. Emerg. Med. 2013, 44, 1028–1033. [Google Scholar] [CrossRef]
- Cho, Y.C.; Cho, S.W.; Chung, S.P.; Yu, K.; Kwon, O.Y.; Kim, S.W. How can a single rescuer adequately deliver tidal volume with a manual resuscitator? An improved device for delivering regular tidal volume. Emerg. Med. J. 2011, 28, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Merrell, J.G.; Scott, A.C.; Stambro, R.; Boukai, A.; Cooper, D.D. Improved simulated ventilation with a novel tidal volume and peak inspiratory pressure controlling bag valve mask: A pilot study. Resusc. Plus 2023, 13, 100350. [Google Scholar] [CrossRef] [PubMed]
- Grinnan, D.C.; Truwit, J.D. Clinical review: Respiratory mechanics in spontaneous and assisted ventilation. Crit. Care 2005, 9, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Zmora, E.; Merritt, T.A. Control of peak inspiratory pressure during manual ventilation. A controlled study. Am. J. Dis. Child. 1982, 136, 46–48. [Google Scholar] [CrossRef]
- Karsdon, J.; Stijnen, T.; Berger, H.M. The effect of a manometer on the mean airway pressure during hand ventilation, an in vitro study. Eur. J. Pediatr. 1989, 148, 574–576. [Google Scholar] [CrossRef]
- O’Donnell, C.P.F.; Davis, P.G.; Lau, R.; Dargaville, P.A.; Doyle, L.W.; Morley, C.J. Neonatal resuscitation 3: Manometer use in a model of face mask ventilation. Arch. Dis. Child.-Fetal Neonatal Ed. 2005, 90, F397–F400. [Google Scholar] [CrossRef]
- Gertler, R. Respiratory Mechanics. Anesthesiol. Clin. 2021, 39, 415–440. [Google Scholar] [CrossRef]
- Foglia, E.E.; Pas, A.B.T. Effective ventilation: The most critical intervention for successful delivery room resuscitation. Semin. Fetal Neonatal Med. 2018, 23, 340–346. [Google Scholar] [CrossRef]
- Kattwinkel, J.; Stewart, C.; Walsh, B.; Gurka, M.; Paget-Brown, A. Responding to Compliance Changes in a Lung Model During Manual Ventilation: Perhaps Volume, Rather Than Pressure, Should be Displayed. Pediatrics 2009, 123, e465–e470. [Google Scholar] [CrossRef]
- Kern, K.B.; Stickney, R.E.; Gallison, L.; Smith, R.E. Metronome improves compression and ventilation rates during CPR on a manikin in a randomized trial. Resuscitation 2010, 81, 206–210. [Google Scholar] [CrossRef]
- Lim, J.S.; Cho, Y.C.; Kwon, O.Y.; Chung, S.P.; Yu, K.; Kim, S.W. Precise minute ventilation delivery using a bag-valve mask and audible feedback. Am. J. Emerg. Med. 2012, 30, 1068–1071. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Beom, J.H.; You, J.S.; Cho, J.; Min, I.K.; Chung, H.S. Effect of flashlight guidance on manual ventilation performance in cardiopulmonary resuscitation: A randomized controlled simulation study. PLoS ONE 2018, 13, e0198907. [Google Scholar] [CrossRef]
- You, K.M.; Lee, C.; Kwon, W.Y.; Lee, J.C.; Suh, G.J.; Kim, K.S.; Park, M.J.; Kim, S. Real-time tidal volume feedback guides optimal ventilation during simulated CPR. Am. J. Emerg. Med. 2017, 35, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Park, S.O.; Lee, K.R.; Hong, D.Y.; Baek, K.J. Efficacy of Amflow®, a Real-Time-Portable Feedback Device for Delivering Appropriate Ventilation in Critically Ill Patients: A Randomised, Controlled, Cross-Over Simulation Study. Emerg. Med. Int. 2020, 2020, 5296519. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Yoon, S.Y.; Kim, J.; Kim, H.S.; Kim, K.; Yoon, H.; Hwang, S.Y.; Cha, W.C.; Kim, T. Effectiveness of a Real-Time Ventilation Feedback Device for Guiding Adequate Minute Ventilation: A Manikin Simulation Study. Medicina 2020, 56, 278. [Google Scholar] [CrossRef]
- Khoury, A.; De Luca, A.; Sall, F.S.; Pazart, L.; Capellier, G. Ventilation feedback device for manual ventilation in simulated respiratory arrest: A crossover manikin study. Scand. J. Trauma Resusc. Emerg. Med. 2019, 27, 93. [Google Scholar] [CrossRef]
- Maxey, B.S.; White, L.A.; Solitro, G.F.; Conrad, S.A.; Alexander, J.S. Experimental validation of a portable tidal volume indicator for bag valve mask ventilation. BMC Biomed. Eng. 2022, 4, 9. [Google Scholar] [CrossRef]
- White, L.A.; Maxey, B.S.; Solitro, G.F.; Conrad, S.A.; Davidson, K.P.; Alhaque, A.; Alexander, J.S. Enhanced Manual Ventilation with a Handheld Audiovisual Device—‘BENGI’—Insights from a Pilot Study in Special Operations Medicine. J. Spec. Oper. Med. 2024; in press. [Google Scholar]
AHA Recommendations | ERC Recommendations | |||
---|---|---|---|---|
Adult | VT | 500–600 mL or chest rise | 500–600 mL or chest rise | |
RR | −AA | 30:2 or 10 breaths/min | 30:2 or 10 breaths/min | |
+AA | 10 breaths/min | 10 breaths/min | ||
Pediatric | VT | No specific recommendation | 6–8 mL/kg, or chest rise | |
RR | −AA | 30:2 (1 rescuer) or 15:2 (≥2 rescuers) | 15:2 | |
+AA | 20–30 breaths/min | 25 (infants), 20 (1–8 yo), 15 (8–12) yo, or 10 (>12 yo) breaths/min | ||
Neonatal | PIP | Up to 30 (term) or 20–25 cm H2O (preterm) but occasionally higher if needed | 30 (term) or 25 cm H2O (preterm), or 5–8 mL/kg if being monitored | |
RR | −CC | 40–60 breaths/min | 30 breaths/min | |
+CC | 3:1 | 3:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, L.A.; Conrad, S.A.; Alexander, J.S. Pathophysiology and Prevention of Manual-Ventilation-Induced Lung Injury (MVILI). Pathophysiology 2024, 31, 583-595. https://doi.org/10.3390/pathophysiology31040042
White LA, Conrad SA, Alexander JS. Pathophysiology and Prevention of Manual-Ventilation-Induced Lung Injury (MVILI). Pathophysiology. 2024; 31(4):583-595. https://doi.org/10.3390/pathophysiology31040042
Chicago/Turabian StyleWhite, Luke A., Steven A. Conrad, and Jonathan Steven Alexander. 2024. "Pathophysiology and Prevention of Manual-Ventilation-Induced Lung Injury (MVILI)" Pathophysiology 31, no. 4: 583-595. https://doi.org/10.3390/pathophysiology31040042
APA StyleWhite, L. A., Conrad, S. A., & Alexander, J. S. (2024). Pathophysiology and Prevention of Manual-Ventilation-Induced Lung Injury (MVILI). Pathophysiology, 31(4), 583-595. https://doi.org/10.3390/pathophysiology31040042