Enzymatic Preparation of Carrageenan Oligosaccharides and Evaluation of the Effects on Growth Performance, Serum Biochemical Parameters and Non-Specific Immunity of Crucian carp
<p>SDS-PAGE analysis of purified CgkA.</p> "> Figure 2
<p>Biochemical characterization of CgkA: (<b>A</b>) the optimal pH of CgkA; (<b>B</b>) the pH stability of CgkA; (<b>C</b>) the optimal temperature and thermal stability of CgkA; (<b>D</b>) the thermal degeneration of CgkA.</p> "> Figure 3
<p>The TLC and ESI-MS analysis of the degradation products of CgkA: (<b>A</b>) the TLC analysis of oligosaccharides produced by CgkA, Lane M1, the galactose standard; Lane M2, the carrageenan disaccharide; (<b>B</b>) the ESI-MS analysis of oligosaccharides produced by CgkA.</p> "> Figure 4
<p>The overall structure, key catalytic residues analysis and action pattern of CgkA: (<b>A</b>) the overall structure of CgkA; (<b>B</b>) the sequence alignment of CgkA and ZgCgkA<sub>GH16</sub>; (<b>C</b>) the catalytic residues in active center of CgkA; (<b>D</b>) the action pattern of CgkA.</p> "> Figure 5
<p>The serum biochemical index in Crucian Carp fed different levels of dietary carrageenan oligosaccharides: (<b>A</b>) the TP level; (<b>B</b>) the TG level; (<b>C</b>) the CHO level; and (<b>D</b>) the HDL-C level. Note: TP, Total protein; TG, Total triglyceride; CHO, Total cholesterol; HDL-C, High density lipoprotein cholesterol. Different small letters showed significant difference (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>The non-specific immune index in Crucian Carp fed different levels of dietary carrageenan oligosaccharides: (<b>A</b>) the MDA level; (<b>B</b>) the SOD activity; (<b>C</b>) the CAT activity; (<b>D</b>) the LYM activity. Note: MDA, Malondialdehyde; SOD, Superoxide dismutase; CAT, Catalase; LYM, Lysozyme. Different small letters showed significant difference (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cloning and Sequence Analysis of CgkA Gene
2.2. Heterologous Expression, Purification of Recombinant CgkA
2.3. Biochemical Characterization of the Recombinant Enzyme
2.4. Enzymatic Hydrolysis of Carrageenan and Analysis of Enzymatic Hydrolysate
2.5. Homology Modeling and Molecular Docking of CgkA
2.6. Growth Performance
2.7. Serum Biochemical Parameters Analysis
2.8. Serum Immune Parameters Analysis
3. Materials and Methods
3.1. Strains and Culture Conditions
3.2. Gene Cloning and Sequence Analysis
3.3. Expression and Purification of CgkA
3.4. Biochemical Characterization of CgkA
3.5. Enzymatic Hydrolysis of Carrageenan and Analysis of Products
3.6. Diet Preparation
3.7. Fish Culture and Feeding Trial
3.8. Sampling
3.9. Chemical Analysis
3.10. Biochemical and Non-Specific Immune Parameters
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Wang, Z.-W.; Wang, Y.; Gui, J.-F. Crucian Carp and Gibel Carp Culture. In Aquaculture in China; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 149–157. [Google Scholar] [CrossRef]
- Gui, L.; Zhang, Q.-Y. Disease Prevention and Control. In Aquaculture in China; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 577–598. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, L.; Liu, J.; Li, Z.; Xie, S.; De Silva, S.S. Freshwater aquaculture in PR China: Trends and prospects. Rev. Aquac. 2015, 7, 283–302. [Google Scholar] [CrossRef]
- Peso-Echarri, P.; Frontela-Saseta, C.; Santaella-Pascual, M.; García-Alcázar, A.; Abdel, I.; Ros-Berruezo, G.; Martínez-Graciá, C. Sodium alginate as feed additive in cultured sea bream (Sparus aurata): Does it modify the quality of the flesh? Food Chem. 2012, 135, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Rajan, D.K.; Ganesan, A.R.; Divya, D.; Johansen, J.; Zhang, S. Chitin, chitosan and chitooligosaccharides as potential growth promoters and immunostimulants in aquaculture: A comprehensive review. Int. J. Biol. Macromol. 2023, 251, 126285. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, Y.; Feng, L.; Jiang, W.-D.; Kuang, S.-Y.; Jiang, J.; Li, S.-H.; Tang, L.; Zhou, X.-Q. Effects of dietary arginine supplementation on growth performance, flesh quality, muscle antioxidant capacity and antioxidant-related signalling molecule expression in young grass carp (Ctenopharyngodon idella). Food Chem. 2015, 167, 91–99. [Google Scholar] [CrossRef]
- Feng, L.; Li, W.; Liu, Y.; Jiang, W.-D.; Kuang, S.-Y.; Jiang, J.; Tang, L.; Wu, P.; Tang, W.-N.; Zhang, Y.-A.; et al. Dietary phenylalanine-improved intestinal barrier health in young grass carp (Ctenopharyngodon idella) is associated with increased immune status and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes and related signalling molecules. Fish Shellfish Immunol. 2015, 45, 495–509. [Google Scholar] [CrossRef]
- Liu, M.; Guo, W.; Wu, F.; Qu, Q.; Tan, Q.; Gong, W. Dietary supplementation of sodium butyrate may benefit growth performance and intestinal function in juvenile grass carp (Ctenopharyngodon idellus). Aquac. Res. 2017, 48, 4102–4111. [Google Scholar] [CrossRef]
- Liu, L.W.; Liang, X.F.; Li, J.; Yuan, X.C.; Fang, J.G. Effects of supplemental phytic acid on the apparent digestibility and utilization of dietary amino acids and minerals in juvenile grass carp (Ctenopharyngodon idellus). Aquac. Nutr. 2018, 24, 850–857. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Wu, S. The growth performance and non-specific immunity of juvenile grass carp (Ctenopharyngodon idella) affected by dietary alginate oligosaccharide. 3 Biotech 2021, 11, 46. [Google Scholar] [CrossRef]
- Guo, Z.; Wei, Y.; Zhang, Y.; Xu, Y.; Zheng, L.; Zhu, B.; Yao, Z. Carrageenan oligosaccharides: A comprehensive review of preparation, isolation, purification, structure, biological activities and applications. Algal Res. 2022, 61, 102593. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, B.; Wu, Y.; Liu, Y.; Gu, X.; Zhang, H.; Wang, C.; Cao, H.; Huang, L.; Wang, Z. Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods. Food Chem. 2015, 178, 311–318. [Google Scholar] [CrossRef]
- Yuan, H.; Song, J.; Li, X.; Li, N.; Dai, J. Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides. Cancer Lett. 2006, 243, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Mao, X.; Tang, S. κ/β-Carrageenan oligosaccharides promoting polarization of LPS-activated macrophage and their potential in diabetes wound healing. Mater. Sci. Eng. C 2021, 121, 111830. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.-A.; Xu, L.; Wu, H.-G. Immunomodulatory Function of κ-Carrageenan Oligosaccharides Acting on LPS-Activated Microglial Cells. Neurochem. Res. 2014, 39, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, P.; Yu, G.-L.; Li, C.-X.; Hao, C.; Qi, X.; Zhang, L.-J.; Guan, H.-S. Preparation and anti-influenza A virus activity of κ-carrageenan oligosaccharide and its sulphated derivatives. Food Chem. 2012, 133, 880–888. [Google Scholar] [CrossRef]
- Zhu, M.; Ge, L.; Lyu, Y.; Zi, Y.; Li, X.; Li, D.; Mu, C. Preparation, characterization and antibacterial activity of oxidized κ-carrageenan. Carbohydr. Polym. 2017, 174, 1051–1058. [Google Scholar] [CrossRef]
- Zhu, B.; Ni, F.; Ning, L.; Yao, Z.; Du, Y. Cloning and biochemical characterization of a novel κ-carrageenase from newly isolated marine bacterium Pedobacter hainanensis NJ-02. Int. J. Biol. Macromol. 2018, 108, 1331–1338. [Google Scholar] [CrossRef]
- Viborg, A.H.; Terrapon, N.; Lombard, V.; Michel, G.; Czjzek, M.; Henrissat, B.; Brumer, H. A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). J. Biol. Chem. 2019, 294, 15973–15986. [Google Scholar] [CrossRef]
- Barbeyron, T.; Gerard, A.; Potin, P.; Henrissat, B.; Kloareg, B. The kappa-carrageenase of the marine bacterium Cytophaga drobachiensis. Structural and phylogenetic relationships within family-16 glycoside hydrolases. Mol. Biol. Evol. 1998, 15, 528–537. [Google Scholar] [CrossRef]
- Song, W.; Zhuang, X.; Tan, Y.; Qi, Q.; Lu, X. The type IX secretion system: Insights into its function and connection to glycosylation in Cytophaga hutchinsonii. Eng. Microbiol. 2022, 2, 100038. [Google Scholar] [CrossRef]
- Matard-Mann, M.; Bernard, T.; Leroux, C.; Barbeyron, T.; Larocque, R.; Préchoux, A.; Jeudy, A.; Jam, M.; Nyvall Collén, P.; Michel, G.; et al. Structural insights into marine carbohydrate degradation by family GH16 κ-carrageenases. J. Biol. Chem. 2017, 292, 19919–19934. [Google Scholar] [CrossRef]
- Liu, Z.; Li, G.; Mo, Z.; Mou, H. Molecular cloning, characterization, and heterologous expression of a new κ-carrageenase gene from marine bacterium Zobellia sp. ZM-2. Appl. Microbiol. Biotechnol. 2013, 97, 10057–10067. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, S.; Yang, X.; Yu, W.; Han, F. Cloning and characterization of a new κ-carrageenase gene from marine bacterium Pseudoalteromonas sp. QY203. J. Ocean Univ. China 2015, 14, 1082–1086. [Google Scholar] [CrossRef]
- Barbeyron, T.; Henrissat, B.; Kloareg, B. The gene encoding the kappa-carrageenase of Alteromonas carrageenovora is related to β-1,3-1,4-glucanases. Gene 1994, 139, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Uchimura, K.; Koide, O.; Deguchi, S.; Horikoshi, K. Genetic and Biochemical Characterization of the Pseudoalteromonas tetraodonis Alkaline κ-Carrageenase. Biosci. Biotechnol. Biochem. 2012, 76, 506–511. [Google Scholar] [CrossRef]
- Wang, L.; Li, S.; Zhang, S.; Li, J.; Yu, W.; Gong, Q. A new κ-carrageenase CgkS from marine bacterium Shewanella sp. Kz7. J. Ocean Univ. China 2015, 14, 759–763. [Google Scholar] [CrossRef]
- Liu, G.-L.; Li, Y.; Chi, Z.; Chi, Z.-M. Purification and characterization of κ-carrageenase from the marine bacterium Pseudoalteromonas porphyrae for hydrolysis of κ-carrageenan. Process Biochem. 2011, 46, 265–271. [Google Scholar] [CrossRef]
- Khambhaty, Y.; Mody, K.H.; Jha, B.; Gohel, V. Statistical optimization of medium components for κ-carrageenase production by Pseudomonas elongata. Enzym. Microb. Technol. 2007, 40, 813–822. [Google Scholar] [CrossRef]
- Ma, Y.-X.; Dong, S.-L.; Jiang, X.-L.; Li, J.; Mou, H.-J. Purification and Characterization of κ-Carrageensse from Marine Bacterium Mutant Strain Pseudoaltermonas sp. AJ5-13 and its Degraded Products. J. Food Biochem. 2010, 34, 661–678. [Google Scholar] [CrossRef]
- Cui, H.; Peng, Y.; Zhao, B.; Liu, Y.; Chen, F.; Wu, H.; Yao, Z. Cloning, identification and characterization of a novel κ-carrageenase from marine bacterium Cellulophaga lytica strain N5-2. Int. J. Biol. Macromol. 2017, 105, 509–515. [Google Scholar] [CrossRef]
- Sun, F.; Ma, Y.; Wang, Y.; Liu, Q. Purification and characterization of novel κ-carrageenase from marine Tamlana sp. HC4. Chin. J. Oceanol. Limnol. 2010, 28, 1139–1145. [Google Scholar] [CrossRef]
- Zhu, B.; Ni, F.; Sun, Y.; Zhu, X.; Yin, H.; Yao, Z.; Du, Y. Insight into carrageenases: Major review of sources, category, property, purification method, structure, and applications. Crit. Rev. Biotechnol. 2018, 38, 1261–1276. [Google Scholar] [CrossRef] [PubMed]
- Michel, G.; Chantalat, L.; Duee, E.; Barbeyron, T.; Henrissat, B.; Kloareg, B.; Dideberg, O. The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: A novel insight in the evolution of Clan-B glycoside hydrolases. Structure 2001, 9, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Keitel, T.; Simon, O.; Borriss, R.; Heinemann, U. Molecular and active-site structure of a Bacillus 1,3-1,4-beta-glucanase. Proc. Natl. Acad. Sci. USA 1993, 90, 5287–5291. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, W.; Ran, C.; He, S.; Yang, Y.; Zhou, Z. Effects of dietary scFOS and lactobacilli on survival, growth, and disease resistance of hybrid tilapia. Aquaculture 2017, 470, 50–55. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, Y.; Liu, W.; Xu, L.; Yang, Y.; Zhou, Z. Effects of chito-oligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapia Oreochromis niloticus ♀ × Oreochromis aureus ♂. Fish Shellfish Immunol. 2014, 40, 267–274. [Google Scholar] [CrossRef]
- Razeghi Mansour, M.; Akrami, R.; Ghobadi, S.H.; Amani Denji, K.; Ezatrahimi, N.; Gharaei, A. Effect of dietary mannan oligosaccharide (MOS) on growth performance, survival, body composition, and some hematological parameters in giant sturgeon juvenile (Huso huso Linnaeus, 1754). Fish Physiol. Biochem. 2012, 38, 829–835. [Google Scholar] [CrossRef]
- Grisdale-Helland, B.; Helland, S.J.; Gatlin, D.M. The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture 2008, 283, 163–167. [Google Scholar] [CrossRef]
- Wang, T.; Wu, H.-X.; Li, W.-J.; Xu, R.; Qiao, F.; Du, Z.-Y.; Zhang, M.-L. Effects of dietary mannan oligosaccharides (MOS) supplementation on metabolism, inflammatory response and gut microbiota of juvenile Nile tilapia (Oreochromis niloticus) fed with high carbohydrate diet. Fish Shellfish Immunol. 2022, 130, 550–559. [Google Scholar] [CrossRef]
- Salem, M.; Gaber, M.M.; Zaki, M.A.-d.; Nour, A.A. Effects of dietary mannan oligosaccharides on growth, body composition and intestine of the sea bass (Dicentrarchus labrax L.). Aquac. Res. 2016, 47, 3516–3525. [Google Scholar] [CrossRef]
- Dimitroglou, A.; Merrifield, D.L.; Spring, P.; Sweetman, J.; Moate, R.; Davies, S.J. Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture 2010, 300, 182–188. [Google Scholar] [CrossRef]
- Zhang, Z.-L.; Cao, Y.-L.; Xu, J.-R.; Zhang, X.-X.; Li, J.-J.; Li, J.-T.; Zheng, P.-H.; Xian, J.-A.; Lu, Y.-P. Effects of dietary chitosan oligosaccharide on the growth, intestinal microbiota and immunity of juvenile red claw crayfish (Cherax quadricarinatus). Fish Shellfish Immunol. 2024, 145, 109288. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Yang, X.; Lin, G.; Fang, Y.; Ruan, Z.; Liu, M.; Liu, G.; Li, M.; Yang, D. Mannan oligosaccharide increases the growth performance, immunity and resistance capability against Vibro Parahemolyticus in juvenile abalone Haliotis discus hannai Ino. Fish Shellfish Immunol. 2019, 94, 654–660. [Google Scholar] [CrossRef]
- Li, X.J.; Piao, X.S.; Kim, S.W.; Liu, P.; Wang, L.; Shen, Y.B.; Jung, S.C.; Lee, H.S. Effects of Chito-Oligosaccharide Supplementation on Performance, Nutrient Digestibility, and Serum Composition in Broiler Chickens. Poult. Sci. 2007, 86, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Magnadóttir, B.; Crispin, M.; Royle, L.; Colominas, C.; Harvey, D.J.; Dwek, R.A.; Rudd, P.M. The carbohydrate moiety of serum IgM from Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol. 2002, 12, 209–227. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Vidakovic, A.; Hjertner, B.; Krikigianni, E.; Karnaouri, A.; Christakopoulos, P.; Rova, U.; Dicksved, J.; Baruah, K.; Lundh, T. Effects of dietary supplementation of lignocellulose-derived cello-oligosaccharides on growth performance, antioxidant capacity, immune response, and intestinal microbiota in rainbow trout (Oncorhynchus mykiss). Aquaculture 2024, 578, 740002. [Google Scholar] [CrossRef]
- Li, Z.; Yang, H.; Shangguan, J.; Chen, Q.; Li, W.; Lu, J. Growth performance, digestive enzyme activities and serum nonspecific immunity of the red tilapia (Oreochromis mossambicus × Oreochromis niloticus) fed diets supplemented with ultrafine powder of Enteromopha prolifera. J. Oceanol. Limnol. 2018, 36, 1843–1850. [Google Scholar] [CrossRef]
- Meng, X.; Wang, J.; Wan, W.; Xu, M.; Wang, T. Influence of low molecular weight chitooligosaccharides on growth performance and non-specific immune response in Nile tilapia Oreochromis niloticus. Aquac. Int. 2017, 25, 1265–1277. [Google Scholar] [CrossRef]
- Vega, C.C.; Reyes-Castro, L.A.; Rodríguez-González, G.L.; Bautista, C.J.; Vázquez-Martínez, M.; Larrea, F.; Chamorro-Cevallos, G.A.; Nathanielsz, P.W.; Zambrano, E. Resveratrol partially prevents oxidative stress and metabolic dysfunction in pregnant rats fed a low protein diet and their offspring. J. Physiol. 2016, 594, 1483–1499. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, S.; Cai, Y.; Wu, Y.; Tian, L.; Wang, S.; Jiang, L.; Guo, W.; Sun, Y.; Zhou, Y. Effects of dietary mannan oligosaccharide supplementation on growth performance, antioxidant capacity, non-specific immunity and immune-related gene expression of juvenile hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Aquaculture 2020, 523, 735195. [Google Scholar] [CrossRef]
- Ma, B.; Su, H.; Xu, Y.; Cui, A.; Jiang, Y.; Yan, H.; Feng, Y.; Gong, Y.; Feng, D. Effects of alginate oligosaccharide on growth performance, physiological indicators and intestinal morphology of Lateolabrax maculatus juvenile. South China Fish. Sci. 2024, 20, 76–84. [Google Scholar] [CrossRef]
- Aijun, L.; Xiangjun, L.; Xiaoqin, L.; Liping, W.; Hu, W.J.J.o.Z.U.A.; Sciences, L. Effect of mannan oligosaccharides on growth performance, intestinal structure and nonspecific immunity of tilapia, Oreochromis niloticus × O. aureus. J. Zhejiang Univ. (Agric. Life Sci.) 2009, 35, 329–336. [Google Scholar]
- Lin, S.; Mao, S.; Guan, Y.; Luo, L.; Luo, L.; Pan, Y. Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture 2012, 342–343, 36–41. [Google Scholar] [CrossRef]
- Yu, Y.M.; Wu, Z.X.; Chen, X.X.; Zhao, Y.; Zhang, P.; Zhou, J.M. Effect of Konjac Mannan Oligosaccharides on Non-Specific Immune Function and Growth of Pelteobagrus fulvidraco. J. Huazhong Agric. Univ. 2010, 29, 351–355. [Google Scholar]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Chen, M.; Xie, S.-W.; Chen, X.-Q.; Liu, Y.-J.; Tian, L.-X.; Niu, J. Effects of dietary xylooligosaccharide on growth performance, enzyme activity and immunity of juvenile grass carp, Ctenopharyngodon idellus. Aquac. Rep. 2020, 18, 100519. [Google Scholar] [CrossRef]
Growth Performance | Control | Diet 1 | Diet 2 | Diet 3 | Diet 4 |
---|---|---|---|---|---|
IBW (g) | 5.03 ± 0.02 a | 5.21 ± 0.02 a | 5.17 ± 0.02 a | 5.09 ± 0.01 a | 5.11 ± 0.03 a |
FBW (g) | 32.16 ± 0.36 a | 39.33 ± 0.79 b | 34.47 ± 0.58 a | 31.93 ± 0.47 ac | 28.28 ± 0.76 c |
WG (%) | 539.36 ± 35.33 a | 654.89 ± 28.65 b | 566.73 ± 31.56 a | 527.31 ± 12.45 a | 453.47 ± 19.33 c |
SR (%) | 65 | 75 | 100 | 100 | 100 |
SGR (%) | 2.60 ± 0.03 a | 2.68 ± 0.03 a | 2.60 ± 0.02 a | 2.57 ± 0.05 a | 2.49 ± 0.02 a |
CF (%) | 2.18 ± 0.02 a | 1.99 ± 0.03 a | 2.11 ± 0.06 a | 1.97 ± 0.08 a | 2.03 ± 0.05 a |
FCR | 1.97 ± 0.06 a | 1.98 ± 0.09 a | 2.06 ± 0.07 a | 1.89 ± 0.03 a | 1.92 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, L.; Guo, Z.; Zhu, B. Enzymatic Preparation of Carrageenan Oligosaccharides and Evaluation of the Effects on Growth Performance, Serum Biochemical Parameters and Non-Specific Immunity of Crucian carp. Mar. Drugs 2025, 23, 90. https://doi.org/10.3390/md23020090
Ning L, Guo Z, Zhu B. Enzymatic Preparation of Carrageenan Oligosaccharides and Evaluation of the Effects on Growth Performance, Serum Biochemical Parameters and Non-Specific Immunity of Crucian carp. Marine Drugs. 2025; 23(2):90. https://doi.org/10.3390/md23020090
Chicago/Turabian StyleNing, Limin, Zilong Guo, and Benwei Zhu. 2025. "Enzymatic Preparation of Carrageenan Oligosaccharides and Evaluation of the Effects on Growth Performance, Serum Biochemical Parameters and Non-Specific Immunity of Crucian carp" Marine Drugs 23, no. 2: 90. https://doi.org/10.3390/md23020090
APA StyleNing, L., Guo, Z., & Zhu, B. (2025). Enzymatic Preparation of Carrageenan Oligosaccharides and Evaluation of the Effects on Growth Performance, Serum Biochemical Parameters and Non-Specific Immunity of Crucian carp. Marine Drugs, 23(2), 90. https://doi.org/10.3390/md23020090