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Abstract: We engaged with health sector stakeholders and public health professionals
within the health system through a participatory modeling approach to support policy-
making in the early COVID-19 pandemic in Saskatchewan, Canada. The objective was
to use simulation modeling to guide the implementation of public health measures and
short-term hospital capacity planning to mitigate the disease burden from March to June
2020. We developed a hybrid simulation model combining System Dynamics (SD), discrete-
event simulation (DES), and agent-based modeling (ABM). SD models the population-
level transmission of COVID-19, ABM simulates individual-level disease progression and
contact tracing intervention, and DES captures COVID-19-related hospital patient flow.
We examined the impact of mixed mitigation strategies—physical distancing, testing,
conventional and digital contact tracing—on COVID-19 transmission and hospital capacity
for a worst-case scenario. Modeling results showed that enhanced contact tracing with
mass testing in the early pandemic could significantly reduce transmission, mortality, and
the peak census of hospital beds and intensive care beds. Using a participatory modeling
approach, we not only directly informed policy-making on contact tracing interventions and
hospital surge capacity planning for COVID-19 but also helped validate the effectiveness
of the interventions adopted by the provincial government. We conclude with a discussion
on lessons learned and the novelty of our hybrid approach.

Keywords: COVID-19; pandemic preparedness; hybrid simulation; participatory modeling;
contact tracing; hospital capacity planning; agent-based modeling; discrete-event simulation;
system dynamics

1. Introduction
The COVID-19 pandemic has caused over five million deaths and has placed un-

precedented pressure on healthcare systems worldwide. Especially early in the pandemic,
decision-makers were compelled to make rapid decisions to mitigate COVID-19 transmis-
sion and prevent hospital capacity crises in the face of limited empirical scientific evidence
and a lack of effective treatments. To support their decision-making process, many govern-
ments used mathematical models along with other epidemiological methods to monitor
the epidemic trend and assess the potential impact of various mitigation interventions [1,2].
An essential component of early pandemic preparedness involved estimating the need for
hospital beds and healthcare resources under various intervention measures. In Canada,
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provinces and territories, each with their own authority over health, have adopted different
public health strategies in response to the pandemic, tailored to their unique demographic,
geographical, and epidemiological characteristics [3].

Saskatchewan was particularly successful in flattening the epidemiologic curve in the
first wave of the pandemic until June 2020 due to its swift response and implementation
of various public health measures [3]. In the earliest stages of the COVID-19 pandemic
in March 2020, when no effective treatments or vaccines were available, the only options
available for reducing COVID-19 transmission and easing the burden on the hospital
system were classical non-pharmaceutical public health interventions, such as physical
distancing, testing, case isolation, quarantine, and contact tracing. During this initial phase
of the pandemic, public health measures in Saskatchewan were informed by a participatory
hybrid simulation approach.

This study has two primary objectives: (1) to describe the participatory modeling
processes used to engage stakeholders and ensure model buy-in, which directly resulted in
the use of models for policy-making and pandemic response under a government mandate;
and (2) to develop a novel hybrid simulation approach to model COVID-19 transmission
and hospital resource needs, and to inform public health policies and hospital capacity
planning in Saskatchewan during the early phase of the pandemic from March to June 2020.
The significance of this study lies in the dual focus on both the modeling processes and the
simulation model. The participatory modeling processes ensured the model’s relevance,
credibility, and direct impact on decision-making; while the hybrid simulation approach
allowed for representation of different aspects of the problem and addressing different
levels of practical decision needs by combining multiple simulation methods. Although
simulation modeling has been widely used in infectious disease research [1,2,4–7], the
actual use of simulation models in decision-making for health policy in the realm of
infectious disease remains low, and is rarely reported or operationalized [1,4,8–12]. Using a
participatory hybrid simulation approach, our study seeks to bridge this gap by engaging
stakeholders throughout the modeling processes, which in turn improves the application
of simulation findings in real-world decision-making contexts.

This paper is organized as follows: Section 2.1 provides a brief review of participatory
modeling approaches and explains the participatory modeling approach used in this study.
Section 2.2 describes the implemented participatory modeling processes. Section 2.3 details
the structure of the hybrid COVID-19 simulation model. Model validation and intervention
scenarios are presented in Sections 2.4 and 2.5, respectively. We assessed the likely effects
of various combined scenarios of physical distancing, testing, conventional contact tracing,
and digital contact tracing under stakeholders’ guidance. Section 3 presents the simulation
results. Specifically, Section 3.3 details how the model findings have influenced decision-
making and policy responses. Finally, we discuss the challenges encountered and highlight
key lessons for future pandemic preparedness in Section 4.

2. Materials and Methods
2.1. Participatory Modeling to the COVID-19 Pandemic
2.1.1. Our Approach to Participatory Modeling: Purpose and Stakeholder Roles

Participatory modeling approaches refer to a diverse set of methods designed to
engage stakeholders in the modeling processes to generate, translate, and improve the
use of knowledge [13–22]. They have been developed and applied in various fields,
such as environmental planning [15,16], water management [13,14], and health service
research [17–21]. They can be integrated with various simulation modeling methods such as
System Dynamics modeling [20,23,24] and discrete-event simulation [25–28]. The purpose
of participatory modeling processes can vary depending on the specific approach. Though
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participatory modeling approaches have been mostly used as a tool to facilitate shared
or community-based learning, they could also be used to inform policy-making, support
public health policy developments, and mobilize actions [13,17,18,21,22,29–31]. Depending
on the intended purpose, the categories of stakeholders to be considered for inclusion and
the stages of the modeling process with stakeholder engagement may vary [15,25,32,33].

The participatory modeling processes used in this study were adapted from a pre-
viously developed four-stage participatory approach used for policy-making within the
Saskatchewan context, and the details of this participatory modeling approach have been
described elsewhere [34]. The most notable characteristic of our participatory modeling ap-
proach is the active engagement of knowledge users in the modeling processes. Knowledge
users are stakeholders who can identify a problem, are positioned to use the model findings,
and have the authority to implement the research recommendations [35,36]. Knowledge
users play critical roles in co-defining the problem and guiding scenario analyses in the
modeling processes. This explicit focus aligns with the main purpose of our participa-
tory modeling approach—using simulation models as decision support tools to generate
actionable insights that directly support planning and policy decisions. In contrast, the
involvement of knowledge users is often not explicitly stated in traditional participatory
modeling approaches or community-based participatory approaches [35]. Our participatory
modeling approach also engaged other stakeholders, such as epidemiologists and domain
experts, who played key roles in the model parameterization and model validation stages.

2.1.2. Study Context and Background

Participatory modeling processes allow the joint creation of a model with modelers,
stakeholders, experts and patients to represent a shared understanding of the problem
to build consensus or inform decision-making [13,17,18,21,22,30,31,34]. Notably, prior to
the COVID-19 pandemic, the Saskatchewan Health Authority and Ministry of Health
had already used participatory modeling approach to make informed decisions in areas
such as reducing emergency department (ED) wait times [34,37], planning a new ED, and
projecting acute care bed needs for a new hospital. These earlier efforts demonstrated the
value of the participatory modeling approach and fostered trust in the simulation methods
and in the expertise of the modeling team among stakeholders [34]. Therefore, when
the first positive COVID-19 case was detected on 12 March 2020, public health officials
and stakeholders sought technical support to understand the epidemiological spread of
COVID-19 infection and explore potential mitigation measures. We quickly formed a
modeling support team leveraging the trust and collaborative relationships established
through earlier participatory modeling work. The modeling team was later seconded to
the Saskatchewan Health Authority. The modeling support team conducted participatory
modeling processes with public health officials, stakeholders, and epidemiologists to
improve the translation of simulation model results into informed decision-making.

2.2. Participatory Modeling Processes

We adapted our participatory modeling approach from previous work to address the
needs for rapid decision-making in Saskatchewan for the COVID-19 pandemic [34]. Key
activities in the earlier participatory modeling process [34]—establishing initial buy-in via
proof-of-concept modeling, assembling the modeling team, problem conceptualization,
model implementation, model validation, and model use—were simplified and re-used to
guide the effort.

1. Establish initial buy-in via proof-of-concept modeling: We started developing proof-of-
concept epidemiological models of COVID-19 transmission in late January 2020 to
simulate the outbreak in China. The first version of the hybrid model presented
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in this study was completed in early February, before any COVID-19 cases were
detected in Canada. This initial work was carried out by the academic modeling
team led by N.O. [2]. The early work allowed us to quickly adapt the model to the
Canadian context as the pandemic progressed. In addition, our team’s prior success
in using participatory modeling for healthcare policy decisions in Saskatchewan [34]
had built a solid foundation for collaboration, as many stakeholders were already
familiar with dynamic modeling approaches and had worked with the modelers
before. These two factors enabled us to act quickly. By 16 March 2020—just four
days after the first confirmed COVID-19 case in Saskatchewan—we delivered our first
presentation to stakeholders in the Saskatchewan Health Authority. We introduced
the modeling approaches and presented early findings from the proof-of-concept
COVID-19 modeling work. This meeting was crucial for gaining initial buy-in for
using simulation modeling to guide rapid pandemic response. Drawing from experi-
ence in earlier participatory modeling work, we presented the modeling approaches
in a less technical way and explained how these models could be used as a tool to
simulate “what-if” intervention scenarios and make projections on epidemic curves
under different assumptions to support decision-making. We clarified that the models
were developed for making projections but not predictions. This distinction helped
stakeholders understand the scope and purpose of these simulation models and
avoided potential misinterpretation or misuse of the model results. This is crucial in
the early stages when there were so many unknowns about COVID-19 transmission.
The presentation included projections of epidemic curves under various intervention
scenarios, including preliminary results of how enhanced contact tracing could help
flatten the curve using an earlier version of the hybrid model presented in this study.
Given that Saskatchewan was still in a very early stage of the COVID-19 pandemic,
we highlighted both challenges and immediate actions that could be taken to mitigate
the transmission. The initial modeling work drew significant interest among the
stakeholders, leading to a follow-up presentation to the senior executive leadership
team in Saskatchewan Health Authority on 19 March 2020.

2. Assembling the modeling support team: The quick response and use of proof-of-concept
COVID-19 models helped secure buy-in with the stakeholders. By the end of March
2020, the academic modeling team was seconded to the Saskatchewan Health Au-
thority with the mandate to provide modeling support for the province’s pandemic
response. The team was co-led by J.B. and N.O., with infectious disease modelers
(including Y.T. and W.M.), data analysts, and additional analytical support from
Saskatchewan Health Authority and Ministry of Health. Notably, three members
of the team (Y.T., N.O., and J.B.) were also key members in earlier participatory
modeling work [34], who had worked closely with stakeholders throughout the par-
ticipatory modeling processes. The team lead (J.B.), who previously acted as the
project champion and physician lead in earlier participatory modeling efforts [34],
was the senior medical information officer for the health authority when this study
was conducted. She played a key role in advocating for modeling approaches and in-
terpreting modeling concepts and results in languages friendly to the stakeholders to
facilitate knowledge translation. The team was in direct and frequent communication
with decision-makers and public health officials.

3. Problem conceptualization: The primary objective of the modeling team was to support
the decision-makers in addressing the urgent decision-making needs. It is worth not-
ing that the team developed several COVID-19 transmission models, using different
modeling approaches, to address different objectives and policy questions [2]. The hy-
brid COVID-19 model presented in this study focused on addressing questions related
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to non-pharmaceutical public health interventions and hospital capacity planning in
the early pandemic: (1) How many infections and deaths are expected under different
intervention scenarios and model assumptions? (2) What are the estimated acute
care resource needs? (3) What are the effects of non-pharmaceutical public health
interventions (e.g., contact tracing, physical distancing, quarantine, and isolation) on
those outcomes?

4. Model implementation, model validation, and model use: The initial proof-of-concept
hybrid model was continuously refined in response to policy requests posed by stake-
holders. The model’s inputs and assumptions were reviewed and updated through a
collaborative and iterative process. This included analyses of provincial epidemiologi-
cal surveillance data, weekly scans of scientific evidence conducted by national and
provincial research teams, and ongoing consultation with epidemiologists to update
and review model inputs and results. This iterative process ensured that the hybrid
model incorporated best estimates based on emerging evidence and new surveillance
data. As the hybrid model was regularly adapted to reflect new evidence and evolving
policy needs, we also conducted regular model validation through model verification,
face validation, and cross-validation. Through routine meetings, the team leads pre-
sented model results in response to policy questions posed by decision-makers and
medical health officers, while also addressing uncertainties and underlying model
assumptions. The modeling results were also communicated to the general public
through press briefings by the Saskatchewan Health Authority and the Ministry of
Health on 28 April 2020 [38].

5. Progress until June 2020: The hybrid model presented in this study was actively used
until June 2020, playing a key role in informing public health decisions during the
early stages of the pandemic. As decision-making shifted towards planning for
gradual reopening, addressing the subsequent waves, understanding new variants,
and preparing for vaccination rollout at the end of the year, the focus of modeling
efforts evolved. Other simulation models were developed by the modeling support
team and were continuously used to inform public health policies throughout these
transitions [2].

2.3. The Hybrid Simulation Model

The use of simulation models for studying the spread of emerging infectious diseases
and designing interventions to inform the public health response has become increasingly
important [1,10,39]. System Dynamics (SD) and agent-based modeling (ABM) are two
commonly used simulation approaches to model the dynamics of disease spread, such as
the spread of COVID-19 [1]. Although single methods like SD or ABM are effective for
projecting the number of new cases, they often cannot help with operational challenges
associated with healthcare systems such as acute care beds and resource needs. Using
SD alone cannot adequately represent individual-level behaviors or individualized health
interventions. Since each modeling method has its limitations, it is very rare for one single
method to capture all aspects of the problems and provide support to decisions at various
levels of complexity [39,40]. This highlights the need for hybrid simulation by combining
different modeling approaches given its strong practical appeal to better represent the
studied system and problem [39,40].

In this study, we developed and used a hybrid model of COVID-19 transmission to
inform mitigation strategies and short-term hospital capacity planning in Saskatchewan,
Canada. Our hybrid simulation approach combines SD, ABM, and discrete-event simu-
lation (DES), leveraging strengths of each method. The hybrid model consists of three
integrated sub-models: an age-structured SD stock and flow model to simulate COVID-19
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transmission at the population level, an agent-based model to capture COVID-19 disease
progression and conventional contact tracing at the individual level, and a DES to model
COVID-19-related hospital patient flow. Our hybrid simulation approach ensures that both
aggregate-level transmission dynamics (via SD) and individual-level contact tracing (via
ABM) are represented, while DES allows for simulation of hospital patient flow, offering
additional insights into resource utilization, such as acute care beds and intensive care
beds. Our hybrid approach met the objectives of understanding COVID-19 transmission,
evaluating mitigation measures, and planning for acute care capacity.

Figure 1 shows the model structure of the hybrid model. The following sections pro-
vide a detailed description of each sub-model in the hybrid model. Model parameters were
derived from published studies or analyses of provincial epidemiological surveillance data
(as seen in Table 1). The hybrid model was developed using AnyLogic 8.8.4 Professional
Edition [41]. Although the hybrid model presented in this paper is not identical to the one
used in March 2020, it closely resembles it and is a more recent version of the model. Each
sub-model is described in detail in the following sections.

Table 1. Model parameters and baseline values used in the hybrid simulation model.

Parameter Name Baseline
Value

Plausible
Range

Source a

Parameters used in System Dynamics Sub-model of COVID-19 Transmission
Mean latent period (l), day 3.7 (2–5.5) [42–45]
Basic reproduction number (R0) 2.3 (1.8–3.2) [43,46,47]
Contacts per case per day (C) 10 (5–19) [48–50]
Average duration of quarantine (γ), day 14 (10–14) [51]
Reduction in exposure risk due to quarantine (θ) 0.64 (0.64–0.9) [52]
Reduction in infectivity for diagnosed isolated cases 0.64 (0.64–0.9) [52]
Reduction in infectivity for undiagnosed isolated symptomatic individuals 0.1 (0.05–0.1) Assumed
Reduction in infectivity for undiagnosed isolated asymptomatic individuals 0.05 (0.05–0.1) Assumed
Proportion of contacts instantly quarantined or isolated (ρ) 0.2 b (0.1–0.3) Assumed
Physical distancing level relative to pre-pandemic level (σ) 0.75 (0.6–0.95) [53]

Parameters used in Agent-based Sub-model of COVID-19 Disease Progression
Duration of infectiousness before symptom onset, day 2 (1–2.9) [45,54,55]
Duration of infectiousness for mild or asymptomatic cases after pre-asym, day 6.8 (4–9.5) [43,56]
Duration of infectiousness from symptom onset for severe cases, day 5.9 (3.2–7) [43,54,56]
Duration from symptom onset to hospital admission for severe cases, day 4 (3–12) [57,58]
Proportion of pre-symptomatic individuals who never develop symptoms 0.3 (0.17–0.4) [59–61]

Parameters used in Discrete-event Simulation Sub-model of COVID-19 Related Hospital Patient Flow
Average length of stay for non-ICU inpatients c, day 8 (4.1–14) [62,63]
Average pre-ICU length of stay for ICU inpatients, day 3 (0–3) [57,62]
Average ICU length of stay for ICU inpatients c, day 8 (4–12) [57,62]
Average post-ICU length of stay for ICU inpatients, day 3 (0-3) [57,62]
Case fatality rate—ICU inpatients 0.49 (0.22–0.5) [64]
Case fatality rate—non-ICU inpatients 0.05 (0.05–0.1) [57,63]
Proportion of ICU inpatients requiring ventilation 0.71 (0.42–0.71) [62]
Proportion of symptomatic cases requiring hospitalization by age group – d (0.01–0.27) [65]
Proportion of hospitalized cases requiring ICU admission by age group – d (0.05–0.71) [65]

ICU: intensive care units. a Reviewed and updated on a weekly basis based on ongoing scans of new evidence
and epidemiological data. b The baseline value mimics the mandatory self-quarantine policy implemented
for international travelers and their contacts in Saskatchewan in March 2020 in Saskatchewan. c Lognormal
distributions were fitted and used for length of stay. d Seen in Table A1 in Appendix A.
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Figure 1. Hybrid model structure for simulating COVID-19 transmission, disease progression, and
COVID-19-related hospital patient flow.

2.3.1. System Dynamics Sub-Model of COVID-19 Transmission

This SD sub-model simulates COVID-19 transmission in the Saskatchewan population.
The stock and flow diagram of this sub-model is illustrated in Figure 1. In the stock and
flow diagram, rectangles represent “stocks”, which depict disease state and isolation status.
Arrows denote “flows”, which characterize transitions between these stocks over time
throughout the COVID-19 transmission process. The following stocks are used in the
model, with each stratified into 21 distinct 5-year age groups a:

• Susceptible Individuals (Sa): individuals who are susceptible to COVID-19 infection
and not in quarantine.

• Quarantined Susceptible Individuals (Qa): susceptible individuals who are quarantined.
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• Non-isolated Exposed Individuals (EIso,a): latently infected individuals who are
not isolated.

• Isolated Exposed Individuals (EIso,a): latently infected individuals who are isolated.
• Non-isolated Infectious Presymptomatic Individuals (IPreSymIso,a): non-isolated in-

fectious individuals who have not yet shown any symptoms of COVID-19 infection.
• Isolated Infectious Presymptomatic Individuals (IPreSymIso,a): infectious presymp-

tomatic individuals who are isolated.

The stratification into 21 distinct 5-year age groups aligns with aggregate population
data provided by Statistics Canada and the Saskatchewan Ministry of Health. Age group
a = 1 represents individuals aged 0–4 years, a = 2 represents those aged 5–9 years, and
so forth, with a = 21 representing individuals aged 100 years and older (as detailed in
Table A1 in Appendix A).

We include age-specific mixing patterns for the Saskatchewan population by introduc-
ing preferential interactions between different age groups [49]. Let Pα,a denote the relative
case-contact mixing preference between age group α and a. We define the mixing matrix
Mα,a as:

Mα,a =
Pα,a

Na
N

∑21
a=1 Pα,a

Na
N

, (1)

where N represents the total population, and Na represents the population size of age group
a. Mα,a is population-distribution-weighted, and indicates the fraction of contacts that an
infectious case from age group α has with individuals from age group a. When Pα,a = 1,
we get random mixing with Mα,a =

Na
N . Mα,a is normalized such that ∑21

a=1 Mα,a = 1 for all
α, reflecting the complete probability distribution of contacts for a case.

We define a set of differential equations to represent the transmission dynamics.
Equation (2) captures the change in the number of susceptible individuals (Sa) in age group
a over time:

dSa

dt
= −βCσ

(
21

∑
α=1

Mα,a Iα

)
Sa

Na
− (1 − β)Cσ

(
21

∑
α=1

Mα,a Iα

)
Sa

Na
ρ +

Qa

γ
− CTSQ,a. (2)

Susceptible individuals exit this stock via flows if they are infected, quarantined, or
contact-traced (also seen in Figure 1). Quarantined susceptible individuals (Qa) return to
Sa stock after quarantine. β is the probability of transmission per discordant contact—the
probability of infection given contact between a susceptible individual and an infectious
individual. It is a derived value in the model, based on R0, C (contacts per case per day),
and the duration of infectiousness parameters. Iα is the total number of effective infectious
individuals in age group α. The term effective refers to the adjustment on the total number
of infectious individuals to account for the reduced capacity to transmit the disease due to
isolation or diagnosis (via testing), compared to those who remain unisolated and untested.
The physical distancing level parameter (σ) ranges from 0 to 1, where σ = 0 indicates
complete physical distancing (no contact), and σ = 1 represents the same level of physical
distancing as that in pre-pandemic.

Equation (3) captures how the quarantined susceptible individuals in Qa stock changes
over time. Individuals leave the stock when they complete their quarantine or when they
are infected. At the same time, susceptible individuals enter the Qa stock if they are
contact-traced or quarantined:

dQa

dt
= (1 − β)Cσ

(
21

∑
α=1

Mα,a Iα

)
Sa

Na
ρ − βCσ(1 − θ)

(
21

∑
α=1

Mα,a Iα

)
Qa

Na
− Qa

γ
+ CTSQ,a. (3)
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Equations (4) and (5) track the changes of the number of infected individuals who are
in the latent period over time:

dEIso,a

dt
= βCσ

(
21

∑
α=1

Mα,a Iα

)
Sa

Na
(1 − ρ)−

EIso,a

l
− CTEI,a, (4)

dEIso,a

dt
= βCσ

(
21

∑
α=1

Mα,a Iα

)
Sa

Na
ρ + βCσ(1 − θ)

(
21

∑
α=1

Mα,a Iα

)
Qa

Na
− dEIso,a

l
+ CTEI,a. (5)

Equations (6) and (7) model the changes in the stocks of pre-symptomatic infectious in-
dividuals. Infected individuals move to these two stocks after completing the latent period:

dIPreSymIso,a

dt
=

EIso,a

l
− FIso,a, (6)

dIPreSymIso,a

dt
=

dEIso,a

l
− FIso,a. (7)

The interaction between the SD sub-model and the ABM sub-model occurs through
two primary mechanisms. The first involves the flows in Figure 1 labeled CTSQ,a and CTEI,a,
which are triggered by conventional contact tracing in the ABM sub-model. The second
mechanism dynamically generates agents based on the stock values of IPreSymIso,a and
IPreSymIso,a. Agents are created when the respective flows accumulate enough individuals
to constitute an entire agent; that is, when ∑21

a=1 IPreSymIso,a ≥ 1 or ∑21
a=1 IPreSymIso,a ≥ 1.

Following the creation of an agent in a specific age group, the corresponding stock for that
age group decreases by 1, reflecting that this quantity is now accounted for as a specific
agent. This process continues until the stock value in any age group drops to less than 1.
If the total stock value across all age groups remains above 1 after the initial round of
agent creation, additional agents are generated, where the age group associated with a
given agent is drawn from a custom distribution based on IPreSymIso,a or IPreSymIso,a.
The creation of agents continues until ∑21

a=1 IPreSymIso,a < 1 or ∑21
a=1 IPreSymIso,a < 1.

2.3.2. Agent-Based Sub-Model of COVID-19 Disease Progression and Contact Tracing

The agent-based sub-model was structured to capture disease progression and con-
tact tracing at the individual level (seen in Figure 1). Through interaction with the SD
sub-model, individuals are instantiated as agents once they become infectious, with the
potential to spread the COVID-19 infection. We keep track of the isolation status of each
agent. Each agent has a “COVID-19 Progression” statechart, which characterizes the
state of that individual with respect to the natural history of COVID-19 infection. The
agent starts in the “Infectious Pre-Asymptomatic” state in the statechart and then enters into
one of three mutually exclusive composite states based on disease severity: “Persistent
Asymptomatic”—individuals who remain asymptomatic throughout the course of infec-
tion, “Mild” – individuals with mild symptoms that do not require hospital care, and
“Severe”—individuals with severe symptoms that require hospitalization. Within each of
the three composite states—higher-level states that contain other substates—we modeled
the test-isolate-trace-quarantine intervention. After entering one of the composite states
(e.g., “Mild”), the initial inner state is “Untested”. The agent may stay “Untested” throughout
the course of its infection without being diagnosed, or the agent may undergo testing and
isolation ending in either the “Tested and Isolated without CT” state, or the “Tested and Isolated
with CT” state, depending on whether that individual has been contact-traced. In the end,
the agent transitions into the “Recovery or Death” final state. In line with the evidence
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available at the time, we assumed that recovered individuals remained immune and would
not be re-infected in the 1-year simulation period.

Each agent also has an age-structured System Dynamics sub-model tracking the time
course of contacts for an individual in its age group at the aggregate level. This component
is a deterministic stock-and-flow model simulating how a single agent in a given age group
transmits the infection to its contacts during its infectious period. These contacts could
also be infected by other infectious agents in the population during the same period. This
component continuously tracks the following types of contacts for an infectious agent via
stocks: (1) exposed contacts or infectious contacts who are not isolated (represented by
the stocks CEIso,a and In f ectiousAgentsIso,a), allowing for isolation through conventional
contact tracing, and (2) susceptible contacts who have interacted with the infectious agent
but are neither infected nor quarantined (represented by the stock CSa), who can potentially
be placed in quarantine via contact tracing. We used the same parameters in the SD sub-
model to simulate the transmission of an infectious agent.

Depending on the contact tracing probability, test delay, and the fraction of contacts
traced, when an agent is contact-traced at a given time t, a proportion of the quantity in
the stock CEIso,a is instantaneously moved from EIso,a to EIso,a via the flows CTEI,a in the
SD sub-model of COVID-19 transmission. Simultaneously, a proportion of the quantity in
CSa is moved from the Sa stock to the Qa stock via the flow CTSQ,a. These two transitions
serve to isolate individuals identified through conventional contact tracing. Additionally, a
proportion of individuals in the In f ectiousAgentsIso,a stock are also isolated by randomly
selecting unisolated infectious agents in the ABM sub-model and changing their status
to “isolated”.

2.3.3. Discrete-Event Simulation Sub-Model for COVID-19 Related Hospital Care

The DES sub-model simulates the flow of severe COVID-19 cases through a generic
hospital system. It interacts with the “COVID-19 progression” statechart in the ABM
sub-model; agents in the “Severe” composite state, following a delay for care-seeking, are
injected into this DES sub-model as entities requiring hospital care. Severe COVID-19
patients first enter a queue for acute care admission. A decision node then determines
whether the inpatient requires admission to the intensive care unit (ICU). The hospital
length of stay (LOS) for patients requiring intensive care is divided into three parts: pre-ICU
LOS, ICU LOS, and post-ICU LOS. For ICU LOS, the model distinguishes between patients
who need ventilators and those who do not. The DES sub-model includes three types of
resources: acute care beds, ICU beds, and ventilators. These resources are assumed to be
unlimited; however, their utilization is analyzed to assess acute care resource needs and
inform healthcare resource planning for COVID-19.

2.4. Model Validation

We conducted various types of model validation. This included verification, face
validation, external validation, and cross validation [66]. For model verification, we regu-
larly examined the equations and implementation in code through peer review. Despite
strong interest in the COVID-19 models after the initial presentation given to the provin-
cial leadership team in mid-March 2020, a set of questions were raised regarding model
transparency and validity. To address these questions, we conducted face validation with
epidemiologists, analysts, researchers, and modelers. For example, on 28 March 2020,
we held a model challenge session to review the model structure, parameter values, and
assumptions with regional leaders, epidemiologists and stakeholders who were interested
in the model details. A variety of questions were raised for clarification and discussion
during this meeting, including but limited to: (1) whether the sources of evidence used for
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model inputs were the most recent and applicable to the Saskatchewan population; (2) how
asymptomatic cases were represented in the model; (3) whether the model accounted for
limited testing capacity; and (4) how significantly the number of contacts per case per day
impacted the model’s outcomes and contact tracing. In response to the questions raised,
changes were made to the model structure, and sensitivity analyses were conducted. Face
validation helped improve the model, enhance its credibility with experts, and increase
the acceptance of model results. We also communicated with experts and stakeholders
transparently about the uncertainties and unknowns.

The basic reproduction number (R0) is an important parameter for projecting the epi-
demic trend, and it also had great uncertainty in the early pandemic and could vary across
regions and countries due to difference in population density and social behaviors [67]. To
address this, we reviewed R0 estimates from the literature and independently estimated
R0 for Saskatchewan using maximum likelihood estimation method based on 1-month
COVID-19 case data [68,69]. In addition to estimating R0, we further calibrated this param-
eter within the model by comparing the model projections against the real COVID-19 data
in Saskatchewan from 12 March to 12 April 2020. We used the Mean Squared Error (MSE)
metric for assessing the goodness-of-fit of the model. MSE quantifies the average squared
difference between the observed data and the model’s simulated values, with lower values
indicating a closer fit: MSE = 1

n ∑n
i=1(real_datai − simulated_datai)

2, where n represents
the total number of data points. By cross-validating estimates of R0 from various sources
and using different methods, we were able to gain confidence in its uncertainty ranges,
which enabled us to conduct sensitivity analyses on R0 with greater rigor.

We also conducted cross validation—“examining different models that address the
same problem and comparing their results” [66], based on requests from stakeholders.
The modeling team had developed several COVID-19 transmission models in the early
pandemic, we also received modeling results from models developed by Public Health
Agency of Canada (PHAC). We examined the differences among the results from various
models and their causes in terms of assumption and model inputs. Undertaking this
process not only helped us gain insights into such differences but also built trust in our
hybrid model with the stakeholders.

2.5. Intervention Scenarios

We considered the following interventions to mitigate the spread of infection: physical
distancing, case detection and isolation, conventional contact tracing with quarantine, and
digital contact tracing with quarantine. Physical distancing reduces the contact rate per
day (C) for the entire population. Case detection and isolation work together to reduce
the effective transmissibility of the confirmed cases, with testing serving as the primary
method for detecting (or diagnosing) cases. Conventional contact tracing builds on the case
detection and isolation intervention: once an infected individual is diagnosed and isolated,
their contacts who may have been exposed are identified and placed in quarantine (or
isolation if contacts are infectious). Quarantine was assumed to reduce the risk of infection.
Isolation alone (without testing) was assumed to slightly reduce the infectivity of infectious
individuals. We also accounted for the delay associated with testing and contact tracing,
from symptom onset to case isolation and contact tracing. This delay reflects the time taken
by individuals to seek care and the speed at which they are tested and traced. We also
considered digital contact tracing as a “what-if” intervention in response to stakeholders’
interest. Especially with the prevailing use of mobile phones, digital contact tracing could
potentially be done through a mobile phone app, allowing contacts to be notified instantly
and placed in quarantine. Details of the parameter configurations for each intervention are
presented in Table 2. Some characteristics of those parameter assumptions bear note. In the
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baseline scenario, we assumed a degree of physical distancing, testing and case isolation,
and conventional contact tracing. The baseline value for “contacts instantly quarantined or
isolated (ρ)” does not represent digital contact tracing but instead reflects the mandatory
self-quarantine policy implemented for international travelers and their contacts in March
2020 in Saskatchewan [51]. Travel-related cases were a primary source of infection in the
early pandemic, so we assumed that a proportion of potentially exposed individuals (ρ)
were immediately self-quarantined or self-isolated in compliance with public health orders.
For the conventional contact tracing intervention, we varied the use of mass testing or faster
testing with contact tracing, adjusting the proportion of cases being traced from 30% in the
baseline to 90% in 30% intervals. “Contacts traced with instant quarantine or isolation (%)”
is the fraction of contacts successfully traced and immediately quarantined for a confirmed
case. We set its baseline value at 60%. For digital contact tracing, we assumed that a higher
proportion of contacts—ranging from 40% to 60%—are instantly traced and quarantined
upon exposure.

We initiated the transmission in our hybrid model using daily data on travel-related
COVID-19 cases in Saskatchewan, collected from 12 March to 12 April 2020. There are
128 travel-related COVID-19 cases in this period. As various travel restrictions were imple-
mented in the early pandemic, we assumed that the number of travel-related COVID-19
cases would drop to zero after 12 April 2020. We ran 30 iterations of each simulated sce-
nario, with a model run time of 10 min per iteration. We ran the model for 1 year starting
from 2 March 2020. The simulation runs were executed on a Lenovo ThinkStation P330
with Intel® Core™ i7-9700T processor (Intel Corporation, Santa Clara, CA, USA) and 64 GB
of memory under Windows 11 Pro (Version 23H2).

Table 2. Configured parameters for simulated intervention scenarios.

Category
Target

Population
Configured Parameters

Simulated Intervention Scenarios 1

Baseline Enhanced CT Enhanced CT with Fast Testing Enhanced CT with Mass Testing Digital CT

Physical

Distancing

General

population

Physical distancing start date 3/18/2020

Physical distancing level relative to pre-pandemic (σ), % 75

Case

Detection,

Isolation,

and

Contact

Tracing

Persistent

asymptomatic

cases

Time to test/isolation post-incubation, day 4 3

Case tested and isolated, % 60 90

Confirmed cases traced, % 30 60, 90 60, 90 60, 90

Contacts traced with instant quarantine or isolation, % 60

Mild cases

Time to test/isolation after symptom onset, day 3 2

Case tested and isolated, % 70 90

Confirmed cases traced, % 30 60, 90 60, 90 60, 90

Contacts traced with instant quarantine or isolation, % 60

Severe cases

Time to test/isolation after symptom onset, day 3 2

Case tested and isolated, % 100

Confirmed cases traced, % 30 60, 90 60, 90 60, 90

Contacts traced with instant quarantine or isolation, % 60

- Conventional contact tracing start date 3/12/2020

Digital

Contact Tracing

Potentially

exposed

Digital contact tracing start date - 3/30/2020

Contacts instantly quarantined or isolated (ρ), % 20 40, 60

CT: contact tracing. 1 Cells without values indicate that baseline values are used.

3. Results
3.1. Model Validation

By varying the basic reproduction number (R0) between 1.75 and 2.6, we found that
an R0 of 1.8 best matched the observed COVID-19 data for the 1-month validation period
(12 March to 12 April 2020). Using the maximum likelihood estimation method [68,69], we
independently estimated R0 for Saskatchewan to be 1.84, with a 95% confidence interval
of 1.46 to 2.3. The calibration result (R0 = 1.8) and the independently estimated value



Int. J. Environ. Res. Public Health 2025, 22, 39 13 of 23

(R0 = 1.84) using a different approach closely aligned. We presented the simulated results
for different R0 compared to the observed COVID-19 data in Figure 2.

Figure 2. Comparison of model outputs with observed COVID-19 data in Saskatchewan. MSE: Mean
Squared Error.

We communicated our estimates and uncertainty range of R0 with stakeholders and
domain experts. In response to the stakeholder needs and for the purpose of pandemic
preparedness, particularly contingency planning for a “worst-case” scenario, we used
a R0 of 2.3 for our baseline scenario (also seen in Table 1). This value, representing the
upper bound of the 95% confidence interval, reflects a more conservative estimate that
aligns with stakeholders’ interest for contingency planning. In addition, given the limited
testing capacity in the early pandemic, the actual COVID-19 cases might have been under-
reported or subject to reporting delays, potential leading to underestimates of the true R0.
Furthermore, a number of mitigation measures were implemented during this 1-month
period, which also could contribute to an underestimated R0. Therefore, using a higher
R0 ensures that preparedness efforts are adequate, even if the actual epidemic trend is less
severe than the worst-case assumption. In pandemic preparedness, the goal is to plan for
the worst case, but not predicting the most likely scenario.

For cross-validation, we compared our 1-year projections with those from an inde-
pendently developed COVID-19 model by the PHAC. The PHAC model projected an
infection rate of 25% to 50% and 3000 to 6000 deaths for Saskatchewan under a “flatten the
curve” scenario that included social distancing, case detection, contact tracing, and quaran-
tine. In comparison, our baseline scenario with R0 = 2.3 projected a 30.7% infection rate
(371,809 cases) and 3271 deaths, falling within PHAC’s range but toward the lower end.

3.2. Simulation Results

In the early COVID-19 pandemic, the risk of mortality and the potential collapse
of the acute care system were two major concerns for decision-makers in Saskatchewan,
Canada. To address these concerns and help flatten the epidemic curve, we collaborated
with decision-makers through participatory modeling processes to evaluate a set of mixed
intervention scenarios, which could be implemented quickly. We explored numerous mixed
scenarios and present our key findings here. The key model outcomes include the total
number of true infections (the total number of infected individuals), cumulative confirmed
COVID-19 cases, and cumulative deaths over a 1-year period, as shown in Table 3.



Int. J. Environ. Res. Public Health 2025, 22, 39 14 of 23

Among the intervention scenarios with 60% contact tracing, enhanced contact tracing
with mass testing was most effective in reducing both true infections and cumulative
deaths, and compared favorably to enhanced contact tracing with faster testing. Although
faster testing allows for quicker case isolation and contact tracing, mass testing with
contact tracing has a greater overall impact on reducing transmission and mortality. In
addition, although the number of confirmed COVID-19 cases is higher with mass testing
compared to faster testing, this should be interpreted cautiously. The higher number of
confirmed COVID-19 cases reflects improved case detection and isolation, and should
not be interpreted as indicative of a worsened underlying epidemiological situation. By
combining contact tracing with mass testing, we can monitor the COVID-19 spread in the
population more accurately. Similar trends were observed for scenarios with 90% contact
tracing. Sensitivity analyses on R0 are presented in Figure A1 in Appendix A.

Table 3. COVID-19 Intervention Scenarios and Simulation Outcomes.

Simulated Intervention Scenario Scenario Name and Configuration True Infections 1 Confirmed COVID-19 Cases Cumulative Deaths

Baseline Baseline 371,809 252,504 3271

Enhanced Contact Tracing
Enhanced Contact Tracing (60%) 338,623 229,383 2969

Enhanced Contact Tracing (90%) 310,612 209,926 2686

Enhanced Contact Tracing with Fast Testing
Enhanced Contact Tracing (60%) with Fast Testing 288,638 195,246 2515

Enhanced Contact Tracing (90%) with Fast Testing 264,660 178,737 2275

Enhanced Contact Tracing with Mass Testing
Enhanced Contact Tracing (60%) with Mass Testing 255,134 227,211 2218

Enhanced Contact Tracing (90%) with Mass Testing 224,838 199,751 1927

Digital Contact Tracing
Digital Contact Tracing (40%) 303,211 204,862 2641

Digital Contact Tracing (60%) 253,343 170,485 2189

1 Saskatchewan has a population of 1.211 million.

Figure 3 reports the mean census of hospital beds, ICU beds, and ventilators (with 10th
to 90th percentiles across 30 iterations) per simulated scenario over the one-year period.
Enhanced contact tracing could significantly lower the peak mean census of acute care
resources, with the peak census occurring in August and September 2020. Our focus on the
census of hospital beds, ICU beds, and ventilators was guided by stakeholders’ inputs and
interests. As acute care resources are scarce, sudden surges in demand for these resources
could strain the healthcare system, resulting in higher mortality rates due to insufficient
capacity. The peak census and its timing represent the worst situation for resource demand.
Understanding and mitigating the peak census allows for better preparation to handle the
highest anticipated demand for acute care resources, thereby preventing the crisis.

Digital contact tracing has been deployed via apps in several countries, such as China,
Australia, and UK [70]. Provincial public health professionals were also interested in its
potential impact in Saskatchewan. We simulated two hypothetical scenarios to showcase
the impact of extremely rapid contact tracing on COVID-19 transmission, assuming a
proportion of contacts are immediately notified and isolated upon COVID-19 exposure.
This differs from conventional contact tracing, in which the COVID-19 cases need to be
confirmed before contact tracing can start. With digital contact tracing, we saw a significant
drop in true infections and cumulative deaths. However, with regard to digital contact
tracing, strong ethical concerns were raised about data privacy and protection, voluntary
adoption versus mandatory use, the uptake of such apps in the Saskatchewan population,
and the accuracy of the sensors in detecting contacts.
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Figure 3. Mean census of hospital beds, ICU beds, and ventilators for COVID-19 inpatients under
various scenarios, with peak values and 10th and 90th percentile ranges.

3.3. Policy Responses

This section describes the outcomes of using the participatory modeling processes
and the hybrid model—highlighting how the model informed mitigation measures imple-
mented in Saskatchewan and how stakeholders used the model results.

Within 1 week of the first COVID-19 cases being confirmed in Saskatchewan, the
leadership team and executive leadership team from the provincial health authority had
reviewed the preliminary modeling results of various intervention scenarios, and this
included simulation results of contact tracing using an earlier version of the hybrid model
presented in this paper. On 26 March 2020, the modeling team presented these modeling
results—including contact tracing scenarios—to the Saskatchewan Chief Medical Health
Officer, stakeholders, and public health professionals. We highlighted the effectiveness of
enhanced contact tracing with mass testing in mitigating the COVID-19 spread if imple-
mented early enough in Saskatchewan. We also noted that Singapore and South Korea
had achieved some early success through mass testing and contact tracing at that time.
On 28 March 2020, the Government of Saskatchewan released the “Testing and Contact
Tracing Plan” to the public,

“in addition to ongoing testing, the Ministry of Health will deploy additional staff to the
Saskatchewan Health Authority (SHA) to assist with contact tracing. This initiative is
aimed at critical identification to better ensure cases are detected and followed up on in a
timely manner, and to help prevent further transmission of COVID-19” [71,72].

On March 30, 2020, “the Saskatchewan Health Authority (SHA) already has up to
150 people involved in contact tracing. Over the coming days, 50 additional staff from
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across government will be moved into this key role. The need for additional resources will
be assessed as the situation evolves.... Testing locations will continue to be expanded as
demand warrants [73].

By the end of March 2020, the province had significantly ramped up testing, ranking
third in Canada for travel and non-travel-related testing [71].

Saskatchewan Health Authority also released preliminary COVID-19 modeling re-
sults to the public on 8 April 2020, reporting on a range of potential outcomes based on
assumptions, public policies, and compliance. These results were from another COVID-19
transmission model developed by the modeling support team. Later, on 28 April 2020,
updated health system planning was released to the public. This update included a revised
acute care surge planning scenario, which was based on simulation results from the hy-
brid model presented in this study, using an earlier version of the model with different
assumptions. The revised acute care planning scenario suggested a significant reduction in
COVID-19 transmission, signaling that Saskatchewan was in a better position to manage
the pandemic as a result of the interventions taken [38]. The province continued its efforts
to expand the testing capacity and speed up contact tracing [74].

4. Discussion
In contrast to many academic COVID-19 models developed during the pandemic in

hopes of attracting attention and adoption from health systems, we collaborated directly
with stakeholders and public health professionals within the healthcare system through par-
ticipatory modeling processes to develop and use a hybrid simulation model of COVID-19
transmission and undertake analyses that were tailored to the local context to support rapid
decision-making in the early COVID-19 pandemic in Saskatchewan, Canada.

Although dynamic modeling and simulation techniques have been used as a sys-
tematic approach to understand the dynamics of infectious diseases and other healthcare
challenges for decades, their adoption as central tools for real-world decision-making
remains limited [11,75–79]. Lack of stakeholder engagement in the life-cycle of a simulation
study is an important contributing factor to the low-level implementation of simulation
results in healthcare settings [12,80,81]. Participatory modeling has been proposed as a
way to engage stakeholders in the modeling process, supporting shared learning or the
decision-making processes [15,17,18,25,82,83]. In this simulation study, we incorporated
participatory modeling processes, drawing on experience and lessons from an earlier par-
ticipatory approach used within the same healthcare system [34]. This close partnership
with the stakeholders ensured that the hybrid model was inherently relevant for decision-
making. We believe that several key factors contributed to the successful adoption of the
hybrid model’s simulation results in informing rapid decision-making: (1) the high priority
of addressing the COVID-19 pandemic given its unprecedented scale; (2) rapid response of
the modeling team; (3) trust and experience gained from the earlier participatory modeling
efforts, which facilitated buy-in for the modeling approach, expertise of the modelers, and
the modeling results; (4) joint development of the hybrid model to meet the evolving policy
needs; (5) constant review and updating of model assumptions and key model inputs as
new evidence emerged; and (6) regular model validation to ensure the model’s credibility.

Effective contact tracing is a crucial public health measure to mitigate the spread of
infectious diseases [84–86], and it has been employed in many countries since the beginning
of the COVID-19 pandemic [87–89]. A lot of research has examined the effectiveness
of contact tracing in the context of COVID-19 pandemic [90–92]. Our findings on the
effectiveness of enhanced contact tracing with mass testing align with other studies, which
suggest that intensive contact tracing with mass testing is more effective in controlling
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COVID-19 spread than the test and trace method, and even more effective if combined
with social distancing measures [91,93,94].

Also bearing emphasis is the novelty of the hybrid simulation approach used in this
study, which combines SD, DES, and ABM. The use of a hybrid simulation approach helps
overcome the limitations of using a single simulation technique [40,95]. We chose SD
for quickly modeling COVID-19 transmission at the aggregate level, as using ABM for
infectious disease modeling often face challenges such as lack of data (e.g., social networks,
contact graph, mobility, risk and protective behavior, and individual characteristics), greater
model complexity, and computational burden. While modeling contact tracing is best
conducted at the individual-level, given the individual-based character of the contact
tracing process and the need to track the health status of single individuals and the time
course of contacts [85,96,97]. We used ABM to model contact tracing, which is usually the
first choice to formulate the contact tracing process in a simulation model. SD is not ideal
for modeling contact tracing, as the contact tracing process cannot be directly formulated
given the aggregate nature of the SD approach [97]. For hospital patient flow, we chose DES,
which allows us to model patient flow as a system of queues and workflows composed
of stochastic processes with dependency on acute care resources that may be constrained.
This was particularly relevant as hospital capacity planning was one primary concern in
the early pandemic. Using a hybrid simulation approach, we leveraged the advantages
of multiple simulation methods to address more complex issues and better capture the
real-world scenarios.

This study also has some limitations. We made various assumptions in the model. In
the early pandemic, it was particularly challenging to estimate the COVID-19 transmission
accurately due to uncertainty surrounding key model inputs such as the basic reproduction
number, proportion of persistent asymptomatic cases, and assumptions regarding human
risk and protective behaviors. Additionally, although we stratified the population by
age group and incorporated age-specific mixing patterns, within this work, we did not
account for location-specific mixing patterns (rural versus urban). We also did not consider
false positives in testing, which may have unintended implications for the mass testing
intervention. Furthermore, the model did not account for waning of immunity. We
communicated clearly with stakeholders about the model assumptions, key model inputs
used, and model limitations when presenting model results. This transparency was vital in
maintaining the credibility of the hybrid model in the face of a high degree of uncertainty
in the early pandemic. For future work, the model could be further expanded by enhancing
the patient flow component to capture service-level patient flow by hospital.

5. Conclusions
This study successfully engaged a broad range of stakeholders and public health

officials through participatory modeling processes in the early COVID-19 pandemic in
Saskatchewan, Canada. Using a hybrid model of COVID-19 transmission tailored to the
policy needs of the stakeholders, we directly informed and helped validate the public
health interventions implemented by the provincial government. Enhanced contact tracing
with mass testing was shown to significantly reduce COVID-19 transmission, mortality,
and the census of hospital and ICU beds.
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Appendix A

Table A1. Symptomatic cases requiring hospitalization and intensive care [65].

Age Group Age Group ID Symptomatic Cases Requiring Hospitalization, % Hospitalized Cases Requiring Intensive Care, %

0 to 4 years 1 0.1 5.0

5 to 9 years 2 0.1 5.0

10 to 14 years 3 0.3 5.0

15 to 19 years 4 0.3 5.0

20 to 24 years 5 1.2 5.0

25 to 29 years 6 1.2 5.0

30 to 34 years 7 3.2 6.3

35 to 39 years 8 3.2 6.3

40 to 44 years 9 4.9 6.3

45 to 49 years 10 4.9 6.3

50 to 54 years 11 10.2 12.2

55 to 59 years 12 10.2 12.2

60 to 64 years 13 16.6 27.4

65 to 69 years 14 16.6 27.4

70 to 74 years 15 24.3 43.2

75 to 79 years 16 24.3 43.2

80 to 84 years 17 27.3 43.2

85 to 89 years 18 27.3 70.9

90 to 94 years 19 27.3 70.9

95 to 99 years 20 27.3 70.9

100 years and over 21 27.3 70.9
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Figure A1. Sensitivity analyses on the basic reproduction number (R0).
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