The Development and Validation of a Nomogram for Predicting Sepsis Risk in Diabetic Patients with Urinary Tract Infection
<p>Flowchart of screening.</p> "> Figure 2
<p>(<b>A</b>) illustrates the relationship between the variable coefficients and log(lambda) values. Each line corresponds to a different variable. As log(lambda) increases, the coefficients of the variables trend towards zero. (<b>B</b>) shows the relationship between Binomial Deviance and log(lambda). We plotted vertical lines at the optimal values using λ.min (left dashed line) and λ.1se (right dashed line, 1−SE standard). In this study, we selected the λ value according to the 1−SE criterion.</p> "> Figure 3
<p>A nomogram based on lymphocytes, blood glucose, temperature, age, urine RBC cat, urine WBC cat, hematocrit, WBCs, and SOFA. * represents 0.01 < <span class="html-italic">p</span> < 0.05, ** represents <span class="html-italic">p</span> 0.001–0.01, and *** represents <span class="html-italic">p</span> < 0.001. An example of the application of the nomogram is shown above. The corresponding score of each variable is represented by a red dot. When the total score is 266 points, the probability of a DPUTI developing sepsis is 0.655.</p> "> Figure 4
<p>Performance of the predictive models for sepsis risk. (<b>A</b>,<b>B</b>) ROC curves of the nomogram, SOFA score, and APACHE Ⅱ score for predicting the likelihood of sepsis in DPUTIs. (<b>A</b>) is the training cohort; (<b>B</b>) is the test cohort. The dashed lines in (<b>A</b>,<b>B</b>) represent the baseline.</p> "> Figure 5
<p>The calibration curves for the training cohort (<b>A</b>) and the validation cohort (<b>B</b>) indicated that the nomogram predictions were consistent with the actual observed outcomes. The Hosmer–Lemeshow test results suggested no statistical significance (both <span class="html-italic">p</span> > 0.05).</p> "> Figure 6
<p>Decision curve analysis (DCA). DCA of the nomogram, SOFA score, and APACHE II score predicts the sepsis risk in DPUTIs. The pink dotted line represents the “treat−none” strategy, while the blue dashed line represents the “treat−all” strategy. (<b>A</b>) The training cohort; (<b>B</b>) the validation cohort.</p> "> Figure A1
<p>Missing percent of each variable.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Study Population
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Statistical Characteristics
3.2. LASSO and Logistic Regression Results
3.3. Building a Nomogram
3.4. Validation of the Nomogram
- AUC value: Figure 4 showed that the AUC values of the nomogram in the training cohort and the validation cohort were 0.747 (95%CI = 0.720–0.773) and 0.778 (95%CI = 0.740–0.816), respectively, which were higher than those of the SOFA and APACHE Ⅱ scores. In the training cohort, the optimal cutoff value of the nomogram was 0.698, and the sensitivity and specificity were 0.596 and 0.790, respectively. In the validation cohort, the optimal cutoff value was 0.688, the sensitivity was 0.640, and the specificity was 0.838. The corresponding AUC values, optimal cutoff values, sensitivity, and specificity of the SOFA and APACHE II scores in the training and validation cohorts are provided in Appendix C.
- Comparison of NRI: Compared with the SOFA score, the NRI of the nomogram was 0.225 (95%CI = 0.170–0.280) in the training cohort and 0.205 (95%CI = 0.117–0.293) in the validation cohort. Compared with the APACHE Ⅱ score, the NRI of the nomogram was 0.265 (95%CI = 0.207–0.324) in the training cohort and 0.281 (95%CI = 0.184–0.378) in the validation cohort. See Table 3 for details.
- Comparison of IDI: Compared with the SOFA score, the IDI of the nomogram was 0.067 (95%CI = 0.053–0.081) in the training cohort and 0.036 (95%CI = 0.009–0.063) in the validation cohort. Compared with the APACHE Ⅱ score, the IDI of the nomogram was 0.100 (95%CI = 0.084–0.117) in the training cohort and 0.085 (95%CI = 0.055–0.114) in the validation cohort. See Table 3 for details.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Variables | Non-Sepsis | Sepsis | t/χ2/Z | p-Value |
---|---|---|---|---|
n | 476 | 918 | ||
Age (years) | 69.85 ± 14.47 | 72.20 ± 12.66 | −3.010 | 0.003 |
Sex, n (%) | 3.770 | 0.052 | ||
Female | 290 (60.92) | 508 (55.34) | ||
Male | 186 (39.08) | 410 (44.66) | ||
Race, n (%) | 10.000 | 0.018 | ||
White | 263 (55.25) | 575 (62.64) | ||
Black | 91 (19.12) | 160 (17.43) | ||
Other | 122 (25.63) | 183 (19.94) | ||
BMI (kg/m2) | 30.56 ± 8.65 | 30.79 ± 8.48 | −0.485 | 0.628 |
Vital signs | ||||
Heart rate (bpm) | 88.02 ± 19.24 | 91.00 ± 20.43 | −2.680 | 0.007 |
Mean arterial pressure (mmHg) | 83.71 ± 17.98 | 81.43 ± 19.28 | 2.190 | 0.029 |
Respiratory rate (insp/min) | 19.09 ± 5.98 | 19.83 ± 6.08 | −2.190 | 0.029 |
Temperature (°C) | 36.64 ± 0.66 | 36.75 ± 0.83 | −2.670 | 0.008 |
Laboratory indicators | ||||
WBCs (K/μL) | 9.20 (6.80; 12.10) | 11.00 (7.50; 15.50) | 174,010 | <0.001 |
Neutrophils (%) | 75.30 (67.90; 82.80) | 80.30 (71.00; 86.90) | 176,106 | <0.001 |
Lymphocytes (%) | 15.30 (9.00; 21.80) | 10.00 (5.70; 17.40) | 276,569 | <0.001 |
Hematocrit (%) | 33.10 ± 6.05 | 31.42 ± 6.06 | 4.900 | <0.001 |
Platelets (K/μL) | 212.50 (158.00; 279.00) | 201.00 (139.00; 277.00) | 233,955 | 0.030 |
RDW (%) | 15.13 ± 2.52 | 15.90 ± 2.41 | −5.500 | <0.001 |
Blood glucose (mg/dL) | 145.50 (110.00; 199.50) | 163.00 (118.00; 232.00) | 194,258 | <0.001 |
BUN (mg/dL) | 23.00 (15.00; 38.00) | 31.00 (19.00; 52.00) | 168,204 | <0.001 |
Creatinine (mg/dL) | 1.00 (0.80; 1.50) | 1.40 (1.00; 2.30) | 160,764 | <0.001 |
Bilirubin total (mg/dL) | 0.40 (0.30; 0.70) | 0.50 (0.30; 0.90) | 197,485 | 0.003 |
Urine RBCs (#/hpf) | 3.00 (1.00; 15.00) | 7.00 (1.00; 35.00) | 179,752 | <0.001 |
Urine WBCs (#/hpf) | 14.00 (2.00; 64.00) | 47.00 (8.00; 182.00) | 166,186 | <0.001 |
Urine PH | 6.00 (5.50; 6.50) | 6.00 (5.50; 6.50) | 227,836 | 0.180 |
Urine ketone, n (%) | 0.863 | 0.353 | ||
Negative | 367 (77.10) | 729 (79.41) | ||
Positive | 109 (22.90) | 189 (20.59) | ||
Urine protein, n (%) | 12.900 | <0.001 | ||
Negative | 164 (34.45) | 231 (25.16) | ||
Positive | 312 (65.55) | 687 (74.84) | ||
Urine RBC cat, n (%) | 27.100 | <0.001 | ||
No | 228 (47.90) | 307 (33.44) | ||
Yes | 248 (52.10) | 611 (66.56) | ||
Urine WBC cat, n (%) | 25.400 | <0.001 | ||
No | 173 (36.34) | 215 (23.42) | ||
Yes | 303 (63.66) | 703 (76.58) | ||
Comorbid disease, n (%) | ||||
Hypertension, n (%) | 0.230 | 0.631 | ||
No | 88 (18.49) | 181 (19.72) | ||
Yes | 388 (81.51) | 737 (80.28) | ||
Congestive heart failure, n (%) | 1.160 | 0.281 | ||
No | 277 (58.19) | 505 (55.01) | ||
Yes | 199 (41.81) | 413 (44.99) | ||
Chronic pulmonary disease, n (%) | 1.300 | 0.255 | ||
No | 343 (72.06) | 633 (68.95) | ||
Yes | 133 (27.94) | 285 (31.05) | ||
Liver disease, n (%) | 10.400 | 0.001 | ||
No | 427 (89.71) | 763 (83.12) | ||
Yes | 49 (10.29) | 155 (16.88) | ||
Renal disease, n (%) | 6.440 | 0.011 | ||
No | 313 (65.76) | 538 (58.61) | ||
Yes | 163 (34.24) | 380 (41.39) | ||
Cerebrovascular disease, n (%) | 1.510 | 0.219 | ||
No | 374 (78.57) | 748 (81.48) | ||
Yes | 102 (21.43) | 170 (18.52) | ||
Paraplegia, n (%) | 0.130 | 0.719 | ||
No | 446 (93.70) | 866 (94.34) | ||
Yes | 30 (6.30) | 52 (5.66) | ||
Urinary obstruction, n (%) | 7.160 | 0.007 | ||
No | 469 (98.53) | 878 (95.64) | ||
Yes | 7 (1.47) | 40 (4.36) | ||
Fluid electrolyte disorders, n (%) | 33.200 | <0.001 | ||
No | 246 (51.68) | 326 (35.51) | ||
Yes | 230 (48.32) | 592 (64.49) | ||
Cancer, n (%) | 1.170 | 0.279 | ||
No | 427 (89.71) | 804 (87.58) | ||
Yes | 49 (10.29) | 114 (12.42) | ||
Kidney calculus, n (%) | 5.160 | 0.023 | ||
No | 474 (99.58) | 898 (97.82) | ||
Yes | 2 (0.42) | 20 (2.18) | ||
Disease severity score (points) | ||||
APACHE Ⅱ | 20.00 (16.00; 25.00) | 24.00 (20.00; 29.00) | 151332 | <0.001 |
SOFA | 4.00 (2.00; 6.00) | 6.00 (4.00; 8.00) | 132,494 | <0.001 |
Appendix C
Cohort | Nomogram and Disease Severity Score | ||
---|---|---|---|
Nomogram | SOFA | APACHE Ⅱ | |
Training cohort | |||
AUC | 0.747 (0.720–0.773) | 0.697 (0.668–0.726) | 0.654 (0.623–0.684) |
Cutoff value | 0.698 | 4.5 | 21.5 |
Sensitivity | 0.596 | 0.647 | 0.657 |
Specificity | 0.790 | 0.618 | 0.576 |
Testing cohort | |||
AUC | 0.778 (0.740–0.816) | 0.751 (0.710–0.792) | 0.712 (0.668–0.756) |
Cutoff value | 0.688 | 5.5 | 22.5 |
Sensitivity | 0.640 | 0.587 | 0.656 |
Specificity | 0.838 | 0.775 | 0.676 |
References
- Salari, N.; Karami, M.M.; Bokaee, S.; Chaleshgar, M.; Shohaimi, S.; Akbari, H.; Mohammadi, M. The prevalence of urinary tract infections in type 2 diabetic patients: A systematic review and meta-analysis. Eur. J. Med. Res. 2022, 27, 20. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.J.; Prescott, H.C. Sepsis and septic shock. N. Engl. J. Med. 2024, 391, 2133–2146. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- De Waele, J.J.; Girardis, M.; Martin-Loeches, I. Source control in the management of sepsis and septic shock. Intensive Care Med. 2022, 48, 1799–1802. [Google Scholar] [CrossRef]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Petrosillo, N.; Granata, G.; Boyle, B.; Doyle, M.M.; Pinchera, B.; Taglietti, F. Preventing sepsis development in complicated urinary tract infections. Expert Rev. Anti Infect. Ther. 2020, 18, 47–61. [Google Scholar] [CrossRef]
- Paudel, S.; John, P.P.; Poorbaghi, S.L.; Randis, T.M.; Kulkarni, R. Systematic Review of Literature Examining Bacterial Urinary Tract Infections in Diabetes. J. Diabetes Res. 2022, 2022, 3588297. [Google Scholar] [CrossRef]
- Abel, E.D.; Gloyn, A.L.; Evans-Molina, C.; Joseph, J.J.; Misra, S.; Pajvani, U.B.; Simcox, J.; Susztak, K.; Drucker, D.J. Diabetes mellitus—Progress and opportunities in the evolving epidemic. Cell 2024, 187, 3789–3820. [Google Scholar] [CrossRef]
- Hine, J.L.; de Lusignan, S.; Burleigh, D.; Pathirannehelage, S.; McGovern, A.; Gatenby, P.; Jones, S.; Jiang, D.; Williams, J.; Elliot, A.J.; et al. Association between glycaemic control and common infections in people with Type 2 diabetes: A cohort study. Diabet. Med. 2017, 34, 551–557. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Q.; Lan, J.; Hong, Y.; Huang, X.; Yang, B. Risk factors and prediction model of urosepsis in patients with diabetes after percutaneous nephrolithotomy. BMC Urol. 2021, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Awedew, A.F.; Han, H.; Berice, B.N.; Dodge, M.; Schneider, R.D.; Abbasi-Kangevari, M.; Al-Aly, Z.; Almidani, O.; Alvand, S.; Arabloo, J.; et al. GBD 2021 Urolithiasis Collaborators. The global, regional, and national burden of urolithiasis in 204 countries and territories, 2000–2021: A systematic analysis for the Global Burden of Disease Study 2021. EClinicalMedicine 2024, 78, 102924. [Google Scholar] [CrossRef] [PubMed]
- Korbel, L.; Spencer, J.D. Diabetes mellitus and infection: An evaluation of hospital utilization and management costs in the United States. J. Diabetes Complicat. 2015, 29, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Jia, W. Diabetes in China: Epidemiology and Genetic Risk Factors and Their Clinical Utility in Personalized Medication. Diabetes 2018, 67, 3–11. [Google Scholar] [CrossRef]
- Confederat, L.-G.; Condurache, M.-I.; Alexa, R.-E.; Dragostin, O.-M. Particularities of Urinary Tract Infections in Diabetic Patients: A Concise Review. Medicina 2023, 59, 1747. [Google Scholar] [CrossRef]
- Schwarzfuchs, D.; Rabaev, E.; Sagy, I.; Zimhony-Nissim, N.; Lipnitzki, I.; Musa, H.; Jotkowitz, A.; Brandstaetter, E.; Barski, L. Clinical and Epidemiological Characteristics of Diabetic Ketoacidosis in Older Adults. J. Am. Geriatr. Soc. 2020, 68, 1256–1261. [Google Scholar] [CrossRef]
- Burekovic, A.; Dizdarevic-Bostandzic, A.; Godinjak, A. Poorly regulated blood glucose in diabetic patients-predictor of acute infections. Med. Arch. 2014, 68, 163–166. [Google Scholar] [CrossRef]
- Monobe, K.; Noso, S.; Babaya, N.; Hiromine, Y.; Taketomo, Y.; Niwano, F.; Yoshida, S.; Yasutake, S.; Minohara, T.; Kawabata, Y.; et al. Clinical and genetic determinants of urinary glucose excretion in patients with diabetes mellitus. J. Diabetes Investig. 2021, 12, 728–737. [Google Scholar] [CrossRef]
- Tang, J.; Wang, X.; Chen, S.; Chang, T.; Gu, Y.; Zhang, F.; Hou, J.; Luo, Y.; Li, M.; Huang, J.; et al. Disruption of glucose homeostasis by bacterial infection orchestrates host innate immunity through NAD+/NADH balance. Cell Rep. 2024, 43, 114648. [Google Scholar] [CrossRef]
- Ishimaru, N.; Shimokawa, T.; Nakajima, T.; Kanzawa, Y.; Kinami, S. Bacteremia in patients with diabetic ketoacidosis: A cross-sectional study. Hosp. Pract. 2023, 51, 95–100. [Google Scholar] [CrossRef]
- Reyner, K.; Heffner, A.C.; Karvetski, C.H. Urinary obstruction is an important complicating factor in patients with septic shock due to urinary infection. Am. J. Emerg. Med. 2016, 34, 694–696. [Google Scholar] [CrossRef] [PubMed]
- Grey, B.; Upton, M.; Joshi, L.T. Urinary tract infections: A review of the current diagnostics landscape. J. Med. Microbiol. 2023, 72, 001780. [Google Scholar] [CrossRef] [PubMed]
- Bonkat, G.; Bartoletti, R.; Bruyère, F.; Cai, T.; Geerlings, S.E.; Köves, B.; Kranz, J.; Schubert, S.; Pilatz, A.; Veeratterapillay, R.; et al. EAU Guidelines on urological infections. Eur. Assoc. Urol. 2024, 18, 22–26. [Google Scholar]
- Gardner, W.M.; Razo, C.; McHugh, T.A.; Hagins, H.; Vilchis-Tella, V.M.; Hennessy, C.; Taylor, H.J.; Perumal, N.; Fuller, K.; Cercy, K.M.; et al. GBD 2021 Anaemia Collaborators. Prevalence, years lived with disability, and trends in anaemia burden by severity and cause, 1990–2021: Findings from the Global Burden of Disease Study 2021. Lancet Haematol. 2023, 10, e713–e734. [Google Scholar] [CrossRef]
- Kuhn, V.; Diederich, L.; Keller, T.C.S., IV; Kramer, C.M.; Lückstädt, W.; Panknin, C.; Suvorava, T.; Isakson, B.E.; Kelm, M.; Cortese-Krott, M.M. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid. Redox Signal. 2017, 26, 718–742. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Villanueva-Congote, J.; Hinojosa-Gonzalez, D.; Segall, M.; Eisner, B.H. The relationship between neutrophil/lymphocyte ratio, platelet/neutrophil ratio, and risk of urosepsis in patients who present with ureteral stones and suspected urinary tract infection. World J. Urol. 2024, 42, 596. [Google Scholar] [CrossRef]
- Li, D.; Gai, W.; Zhang, J.; Cheng, W.; Cui, N.; Wang, H. Multisite Metagenomic Next-Generation Sequencing Improved Diagnostic Performance for Sepsis-Associated Lymphopenia Patients. Microbiol. Spectr. 2022, 10, e0353222. [Google Scholar] [CrossRef]
- Lee, M.J.; Bae, J.; Lee, J.H.; Park, Y.J.; Lee, H.A.R.; Mun, S.; Kim, Y.-S.; Yune, C.J.; Chung, T.N.; Kim, K. Serial Change of Endotoxin Tolerance in a Polymicrobial Sepsis Model. Int. J. Mol. Sci. 2022, 23, 6581. [Google Scholar] [CrossRef]
- Murakami, M.; Kamimura, D.; Hirano, T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019, 50, 812–831. [Google Scholar] [CrossRef] [PubMed]
- Anne, D.; Nicholas, M.M. Temperature Management in the ICU. Crit. Care Med. 2022, 50, 1138–1147. [Google Scholar]
- Amorim, J.A.; Coppotelli, G.; Rolo, A.P.; Palmeira, C.M.; Ross, J.M.; Sinclair, D.A. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 2022, 18, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Park, M.D.; Le-Berichel, J.; Hamon, P.; Wilk, C.M.; Belabed, M.; Yatim, N.; Saffon, A.; Boumelha, J.; Falcomatà, C.; Tepper, A.; et al. Hematopoietic aging promotes cancer by fueling IL-1⍺-driven emergency myelopoiesis. Science 2024, 386, eadn0327. [Google Scholar] [CrossRef]
- Wei, J.; Liang, R.; Liu, S.; Dong, W.; Gao, J.; Hua, T.; Xiao, W.; Li, H.; Zhu, H.; Hu, J.; et al. Nomogram predictive model for in-hospital mortality risk in elderly ICU patients with urosepsis. BMC Infect. Dis. 2024, 24, 442. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, S.; Jin, S.; Ye, T.; Pan, X. Sepsis risk in diabetic patients with urinary tract infection. PLoS ONE 2024, 19, e0303557. [Google Scholar] [CrossRef]
Variables | Training Cohort | Validation Cohort | t/χ2/Z | p-Value |
---|---|---|---|---|
n | 1394 | 596 | ||
Sepsis, n (%) | <0.001 | >0.999 | ||
No | 476 (34.15) | 204 (34.23) | ||
Yes | 918 (65.85) | 392 (65.77) | ||
Age (years) | 71.40 ± 13.35 | 71.24 ± 13.16 | 0.246 | 0.805 |
Sex, n (%) | 0.058 | 0.810 | ||
Female | 798 (57.25) | 337 (56.54) | ||
Male | 596 (42.75) | 259 (43.46) | ||
Race, n (%) | 0.352 | 0.950 | ||
White | 838 (60.11) | 361 (60.57) | ||
Black | 251 (18.01) | 101 (16.95) | ||
Other | 305 (21.88) | 134 (22.48) | ||
BMI (kg/m2) | 30.71 ± 8.54 | 30.01 ± 8.42 | 1.690 | 0.091 |
Vital signs | ||||
Heart rate (bpm) | 89.98 ± 20.07 | 90.15 ± 20.14 | −0.175 | 0.861 |
Mean arterial pressure (mmHg) | 82.21 ± 18.87 | 80.11 ± 18.10 | 2.350 | 0.019 |
Respiratory rate (insp/min) | 19.58 ± 6.05 | 19.48 ± 5.90 | 0.343 | 0.732 |
Temperature (°C) | 36.72 ± 0.78 | 36.70 ± 0.90 | 0.370 | 0.711 |
Laboratory indicators | ||||
WBCs (K/μL) | 10.30 (7.30; 14.40) | 10.25 (6.90; 14.25) | 429,904 | 0.217 |
Neutrophils (%) | 78.40 (69.80; 86) | 77.55 (67.90; 85.45) | 437,257 | 0.063 |
Lymphocytes (%) | 11.90 (6.60; 19.30) | 13.05 (7.05; 20.95) | 391,385 | 0.041 |
Hematocrit (%) | 31.99 ± 6.11 | 31.74 ± 6.43 | 0.824 | 0.410 |
Platelets (K/μL) | 206.00 (145.00; 278.00) | 199.00 (150.00; 275.50) | 418,576 | 0.788 |
RDW (%) | 15.63 ± 2.48 | 15.77 ± 2.58 | −1.100 | 0.272 |
Blood glucose (mg/dL) | 155.00 (115.00; 219.00) | 155.00 (118.50; 215.00) | 414,908 | 0.966 |
BUN (mg/dL) | 28.00 (17.00; 47.00) | 28.00 (17.00; 47.25) | 409,702 | 0.627 |
Creatinine (mg/dL) | 1.20 (0.90; 2.10) | 1.30 (0.90; 2.00) | 408,037 | 0.529 |
Bilirubin total (mg/dL) | 0.50 (0.30; 0.80) | 0.50 (0.30; 0.85) | 410,851 | 0.696 |
Urine RBCs (#/hpf) | 5.00 (1.00; 26.00) | 6.50 (1.00; 34.50) | 397,674 | 0.129 |
Urine WBCs (#/hpf) | 28.00 (4.00; 145.00) | 33.00 (6.00; 159.00) | 403,358 | 0.302 |
Urine PH | 6.00 (5.50; 6.50) | 6.00 (5.50; 6.50) | 424,412 | 0.433 |
Urine ketone, n (%) | 0.420 | 0.517 | ||
Negative | 1096 (78.62) | 477 (80.03) | ||
Positive | 298 (21.38) | 119 (19.97) | ||
Urine protein, n (%) | 0.405 | 0.525 | ||
Negative | 395 (28.34) | 178 (29.87) | ||
Positive | 999 (71.66) | 418 (70.13) | ||
Urine RBC cat, n (%) | 6.950 | 0.008 | ||
No | 535 (38.38) | 191 (32.05) | ||
Yes | 859 (61.62) | 405 (67.95) | ||
Urine WBC cat, n (%) | 2.690 | 0.101 | ||
No | 388 (27.83) | 144 (24.16) | ||
Yes | 1006 (72.17) | 452 (75.84) | ||
Comorbid disease, n (%) | ||||
Hypertension, n (%) | 0.303 | 0.582 | ||
No | 269 (19.30) | 108 (18.12) | ||
Yes | 1125 (80.70) | 488 (81.88) | ||
Congestive heart failure, n (%) | 0.169 | 0.681 | ||
No | 782 (56.10) | 341 (57.21) | ||
Yes | 612 (43.90) | 255 (42.79) | ||
Chronic pulmonary disease, n (%) | 3.030 | 0.082 | ||
No | 976 (70.01) | 441 (73.99) | ||
Yes | 418 (29.99) | 155 (26.01) | ||
Liver disease, n (%) | 1.530 | 0.216 | ||
No | 1190 (85.37) | 522 (87.58) | ||
Yes | 204 (14.63) | 74 (12.42) | ||
Renal disease, n (%) | 0.084 | 0.772 | ||
No | 851 (61.05) | 359 (60.23) | ||
Yes | 543 (38.95) | 237 (39.77) | ||
Cerebrovascular disease, n (%) | 0.329 | 0.566 | ||
No | 1122 (80.49) | 487 (81.71) | ||
Yes | 272 (19.51) | 109 (18.29) | ||
Paraplegia, n (%) | 2.490 | 0.114 | ||
No | 1312 (94.12) | 572 (95.97) | ||
Yes | 82 (5.88) | 24 (4.03) | ||
Urinary obstruction, n (%) | 0.896 | 0.344 | ||
No | 1347 (96.63) | 570 (95.64) | ||
Yes | 47 (3.37) | 26 (4.36) | ||
Fluid electrolyte disorders, n (%) | <0.001 | >0.999 | ||
No | 572 (41.03) | 245 (41.11) | ||
Yes | 822 (58.97) | 351 (58.89) | ||
Cancer, n (%) | 0.637 | 0.425 | ||
No | 1231 (88.31) | 518 (86.91) | ||
Yes | 163 (11.69) | 78 (13.09) | ||
Kidney calculus, n (%) | 2.170 | 0.141 | ||
No | 1372 (98.42) | 580 (97.32) | ||
Yes | 22 (1.58) | 16 (2.68) | ||
Disease severity score (points) | ||||
APACHE Ⅱ | 23.00 (18.00; 28.00) | 23.00 (19.00; 28.00) | 406,805 | 0.463 |
SOFA | 5.00 (3.00; 7.00) | 5.00 (3.00; 8.00) | 404,092 | 0.333 |
Factors | OR | 95%CI | p-Value |
---|---|---|---|
SOFA (points) | 1.242 | 1.189, 1.300 | <0.001 |
Age (years) | 1.013 | 1.004, 1.023 | 0.006 |
Temperature (°C) | 1.300 | 1.098, 1.541 | 0.002 |
WBCs (K/μL) | 1.046 | 1.023, 1.070 | <0.001 |
Lymphocytes (%) | 0.980 | 0.968, 0.993 | 0.002 |
Hematocrit (%) | 0.961 | 0.942, 0.981 | <0.001 |
Blood glucose (mg/dL) | 1.002 | 1.000, 1.003 | 0.013 |
Urine RBC cat (Yes vs. No) | 1.316 | 1.007, 1.718 | 0.044 |
Urine WBC cat (Yes vs. No) | 1.402 | 1.052, 1.866 | 0.021 |
Score System | Nomogram NRI (95%CI) | Nomogram IDI (95%CI) | ||
---|---|---|---|---|
Training Cohort | Validation Cohort | Training Cohort | Validation Cohort | |
SOFA | 0.225 (0.170–0.280) | 0.205 (0.117–0.293) | 0.067 (0.053–0.081) | 0.036 (0.009–0.063) |
APACHE Ⅱ | 0.265 (0.207–0.324) | 0.281 (0.184–0.378) | 0.100 (0.084–0.117) | 0.085 (0.055–0.114) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, H.-Q.; Duan, X.-J.; Qu, W.; Shu, M.; Zhong, G.-Y.; Liang, L.-H.; Bin, D.-M.; Chen, Y.-M. The Development and Validation of a Nomogram for Predicting Sepsis Risk in Diabetic Patients with Urinary Tract Infection. Medicina 2025, 61, 225. https://doi.org/10.3390/medicina61020225
Tan H-Q, Duan X-J, Qu W, Shu M, Zhong G-Y, Liang L-H, Bin D-M, Chen Y-M. The Development and Validation of a Nomogram for Predicting Sepsis Risk in Diabetic Patients with Urinary Tract Infection. Medicina. 2025; 61(2):225. https://doi.org/10.3390/medicina61020225
Chicago/Turabian StyleTan, Hua-Qiao, Xiang-Jie Duan, Wan Qu, Mi Shu, Guang-Yao Zhong, Li-Hong Liang, Dong-Mei Bin, and Yu-Ming Chen. 2025. "The Development and Validation of a Nomogram for Predicting Sepsis Risk in Diabetic Patients with Urinary Tract Infection" Medicina 61, no. 2: 225. https://doi.org/10.3390/medicina61020225
APA StyleTan, H.-Q., Duan, X.-J., Qu, W., Shu, M., Zhong, G.-Y., Liang, L.-H., Bin, D.-M., & Chen, Y.-M. (2025). The Development and Validation of a Nomogram for Predicting Sepsis Risk in Diabetic Patients with Urinary Tract Infection. Medicina, 61(2), 225. https://doi.org/10.3390/medicina61020225