Left Ventricular Hypertrabeculation (LVHT) in Athletes: A Negligible Finding?
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jenni, R.; Oechslin, E.N.; van der Loo, B. Isolated ventricular non-compaction of the myocardium in adults. Heart 2007, 93, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Towbin, J.A.; Thiene, G.; Antzelevitch, C.; Corrado, D.; Arnett, D.; Moss, A.J.; Seidman, C.E.; Young, J.B.; American Heart Association; et al. Contemporary definitions and classification of the cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006, 113, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies: Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kühl, U.; Maisch, B.; McKenna, W.J.; et al. Classification of the cardiomyopathies: A position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur. Heart J. 2008, 29, 270–276. [Google Scholar] [CrossRef]
- Faber, J.W.; D’Silva, A.; Christoffels, V.M.; Jensen, B. Lack of morphometric evidence for ventricular compaction in humans. J. Cardiol. 2021, 78, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.H.; Jensen, B.; Mohun, T.J.; Petersen, S.E.; Aung, N.; Zemrak, F.; Planken, R.N.; MacIver, D.H. Key questions relating to left ventricular noncompaction cardiomyopathy: Is the emperor still wearing any clothes? Can. J. Cardiol. 2017, 33, 747–757. [Google Scholar] [CrossRef]
- Gati, S.; Chandra, N.; Bennett, R.L.; Reed, M.; Kervio, G.; Panoulas, V.F.; Ghani, S.; Sheikh, N.; Zaidi, A.; Wilson, M.; et al. Increased left ventricular trabeculation in highly trained athletes: Do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart 2013, 99, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Coris, E.E.; Moran, B.K.; De Cuba, R.; Farrar, T.; Curtis, A.B. Left Ventricular Non-Compaction in Athletes: To Play or Not to Play. Sports Med. 2016, 46, 1249–1259. [Google Scholar] [CrossRef]
- Petersen, S.E.; Petersen, S.E.; Jensen, B.; Jensen, B.; Aung, N.; Aung, N.; Friedrich, M.G.; Friedrich, M.G.; McMahon, C.J.; McMahon, C.J.; et al. Excessive Trabeculation of the Left Ventricle: JACC: Cardiovascular Imaging Expert Panel Paper. J. Am. Coll. Cardiovasc. Imaging 2023, 16, 408–425. [Google Scholar] [CrossRef]
- D’Silva, A.; Sharma, S. Differentiating athlete’s heart from left ventricular non-compaction cardiomyopathy. In The ESC Textbook of Sports Cardiology; Pelliccia, A., Heidbuchel, H., Corrado, D., Borjesson, M., Sharma, S., Eds.; Oxford University Press: Oxford, UK, 2019; pp. 210–217. [Google Scholar]
- Caselli, S.; Ferreira, D.; Kanawati, E.; Di Paolo, F.; Pisicchio, C.; Jost, C.A.; Spataro, A.; Jenni, R.; Pelliccia, A. Prominent left ventricular trabeculations in competitive athletes: A proposal for risk stratification and management. Int. J. Cardiol. 2016, 223, 590–595. [Google Scholar] [CrossRef]
- Butler, J.; Khan, M.S. Association between left ventricular noncompaction and vigorous physical activity. J. Am. Coll. Cardiol. 2020, 76, 1466–1467. [Google Scholar] [CrossRef] [PubMed]
- Woodbridge, S.P.; Aung, N.; Paiva, J.M.; Sanghvi, M.M.; Zemrak, F.; Fung, K.; Petersen, S.E. Physical activity and left ventricular trabeculation in the UK Biobank community-based cohort study. Heart 2019, 105, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.-P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.E.; Selvanayagam, J.B.; Wiesmann, F.; Robson, M.D.; Francis, J.M.; Anderson, R.H.; Watkins, H.; Neubauer, S. Left ventricular non-compaction: Insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 2005, 46, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, J.L. Left Ventricular Noncompaction Cardiomyopathy: New Clues in a Not So New Disease? J. Am. Heart Assoc. 2021, 10, e018815. [Google Scholar] [CrossRef] [PubMed]
- Ganga, H.V.; Thompson, P.D. Sports Participation in non-compaction cardiomyopathy: A systematic review. Br. J. Sports Med. 2014, 48, 1466–1471. [Google Scholar] [CrossRef]
- Vaidya, V.R.; Lyle, M.; Miranda, W.R.; Farwati, M.; Isath, A.; Patlolla, S.H.; Hodge, D.O.; Asirvatham, S.J.; Kapa, S.; Deshmukh, A.J.; et al. Long-Term Survival of Patients With Left Ventricular Noncompaction. J. Am. Heart Assoc. 2021, 10, e015563. [Google Scholar] [CrossRef] [PubMed]
- Baswaraj, D.; Flaker, G. Syncope in Athletes: A Prelude to Sudden Cardiac Death? Mo. Med. 2024, 121, 52–59. [Google Scholar] [PubMed] [PubMed Central]
- Di Gioia, G.; Crispino, S.P.; Monosilio, S.; Maestrini, V.; Nenna, A.; Spinelli, A.; Lemme, E.; Squeo, M.R.; Pelliccia, A. Left Ventricular Trabeculation: Arrhythmogenic and Clinical Significance in Elite Athletes. J. Am. Soc. Echocardiogr. 2024, 37, 577–586. [Google Scholar] [CrossRef] [PubMed]
- D’Silva, A.; Captur, G.; Bhuva, A.N.; Jones, S.; Bastiaenen, R.; Abdel-Gadir, A.; Gati, S.; van Zalen, J.; Willis, J.; Malhotra, A.; et al. Recreational marathon running does not cause exercise-induced left ventricular hypertrabeculation. Int. J. Cardiol. 2020, 315, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Bentatou, Z.; Finas, M.; Habert, P.; Kober, F.; Guye, M.; Bricq, S.; Lalande, A.; Frandon, J.; Dacher, J.; Dubourg, B.; et al. Distribution of left ventricular trabeculation across age and gender in 140 healthy Caucasian subjects on MR imaging. Diagn. Interv. Imaging 2018, 99, 689–698. [Google Scholar] [CrossRef]
- Dawson, D.K.; Maceira, A.M.; Raj, V.J.; Graham, C.; Pennell, D.J.; Kilner, P.J. Regional thicknesses and thickening of compacted and trabeculated myocardial layers of the normal left ventricle studied by cardiovascular magnetic resonance. Circ. Cardiovasc. Imaging 2011, 4, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Chin, T.K.; Perloff, J.K.; Williams, R.G.; Jue, K.; Mohrmann, R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 1990, 82, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Captur, G.; Muthurangu, V.; Cook, C.; Flett, A.S.; Wilson, R.; Barison, A.; Sado, D.M.; Anderson, S.; McKenna, W.J.; Mohun, T.J.; et al. Quantification of left ventricular trabeculae using fractal analysis. J. Cardiovasc. Magn. Reson. 2013, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Jenni, R.; Oechslin, E.; Schneider, J.; Jost, C.A.; Kaufmann, P.A. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: A step towards classification as a distinct cardiomyopathy. Heart 2001, 86, 666–671. [Google Scholar] [CrossRef]
- Abela, M.; D’silva, A. Left Ventricular Trabeculations in Athletes: Epiphenomenon or Phenotype of Disease? Curr. Treat. Options Cardiovasc. Med. 2018, 20, 100. [Google Scholar] [CrossRef]
- van de Schoor, F.R.; Aengevaeren, V.L.; Hopman, M.T.; Oxborough, D.L.; George, K.P.; Thompson, P.D.; Eijsvogels, T.M. Myocardial fibrosis in athletes. Mayo Clin. Proc. 2016, 91, 1617–1631. [Google Scholar] [CrossRef]
- Androulakis, E.; Swoboda, P.P. The role of cardiovascular magnetic resonance in sports cardiology; current utility and future perspectives. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 86. [Google Scholar] [CrossRef] [PubMed]
- Małek, A.; Barczuk-Falęcka, M.; Werys, K.; Czajkowska, A.; Mróz, A.; Witek, K.; Burrage, M.; Bakalarski, W.; Nowicki, D.; Roik, D.; et al. Cardiovascular magnetic resonance with parametric mapping in long-term ultra-marathon runners. Eur. J. Radiol. 2019, 117, 89–94. [Google Scholar] [CrossRef]
- Wilson, M.; O’Hanlon, R.; Prasad, S.; Deighan, A.; MacMillan, P.; Oxborough, D.; Godfrey, R.; Smith, G.; Maceira, A.; Sharma, S.; et al. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J. Appl. Physiol. 2011, 110, 1622–1626. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klopotowski, M.; Kukula, K.; Malek, L.A.; Spiewak, M.; Polanska-Skrzypczyk, M.; Jamiolkowski, J.; Dabrowski, M.; Baranowski, R.; Klisiewicz, A.; Kusmierczyk, M.; et al. The value of cardiac magnetic resonance and distribution of late gadolinium enhancement for risk stratification of sudden cardiac death in patients with hypertrophic cardiomyopathy. J. Cardiol. 2015, 68, 49–56. [Google Scholar] [CrossRef] [PubMed]
- La Gerche, A.; A Connelly, K.; Mooney, D.J.; I MacIsaac, A.; Prior, D.L. Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise. Heart 2008, 94, 860–866. [Google Scholar] [CrossRef]
- Grigoratos, C.; Pantano, A.; Meschisi, M.; Gaeta, R.; Ait-Ali, L.; Barison, A.; Todiere, G.; Festa, P.; Sinagra, G.; Aquaro, G.D. Clinical importance of late gadolinium enhancement at right ventricular insertion points in otherwise normal hearts. Int. J. Cardiovasc. Imaging 2020, 36, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Gil, K.E.; Mikrut, K.; Mazur, J.; Black, A.L.; Truong, V.T.; Smart, S.; Zareba, K.M. Risk stratification in patients with structurally normal hearts: Does fibrosis type matter? PLoS ONE 2023, 18, e0295519. [Google Scholar] [CrossRef] [PubMed]
- Mikami, Y.; Cornhill, A.; Dykstra, S.; Satriano, A.; Hansen, R.; Flewitt, J.; Seib, M.; Rivest, S.; Sandonato, R.; Lydell, C.P.; et al. Right ventricular insertion site fibrosis in a dilated cardiomyopathy referral population: Phenotypic associations and value for the prediction of heart failure admission or death. J. Cardiovasc. Magn. Reson. 2021, 23, 79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Munte, F.A.G.; Elen, E.; Lelya, O.; Rudiktyo, E.; Prakoso, R.; Lilyasari, O. Right ventricular fibrosis in adults with uncorrected secundum atrial septal defect and pulmonary hypertension: A cardiovascular magnetic resonance study with late gadolinium enhancement, native T1 and extracellular volume. Front. Cardiovasc. Med. 2024, 11, 1395382. [Google Scholar] [CrossRef]
- Eijsvogels, T.; George, K.; Shave, R.; Gaze, D.; Levine, B.D.; Hopman, M.T.; Thijssen, D.H. Effect of prolonged walking on cardiac troponin levels. Am. J. Cardiol. 2010, 105, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Scherr, J.; Braun, S.; Schuster, T.; Hartmann, C.; Moehlenkamp, S.; Wolfarth, B.; Pressler, A.; Halle, M. 72-h kinetics of high-sensitive troponin T and inflammatory markers after marathon. Med. Sci. Sports Exerc. 2011, 43, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Mair, J.; Lindahl, B.; Hammarsten, O.; Müller, C.; Giannitsis, E.; Huber, K.; Möckel, M.; Plebani, M.; Thygesen, K.; Jaffe, A.S. How is cardiac troponin released from injured myocardium? Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 553–560. [Google Scholar] [CrossRef]
- Aengevaeren, V.L.; Froeling, M.; Hooijmans, M.T.; Monte, J.R.; Berg-Faay, S.v.D.; Hopman, M.T.; Strijkers, G.J.; Nederveen, A.J.; Bakermans, A.; Eijsvogels, T.M. Myocardial injury and compromised cardiomyocyte integrity following a marathon run. J. Am. Coll. Cardiovasc. Imaging 2020, 13, 1445–1447. [Google Scholar] [CrossRef] [PubMed]
- Vroemen, W.H.; Mezger, S.T.; Masotti, S.; Clerico, A.; Bekers, O.; de Boer, D.; Mingels, A. Cardiac troponin T: Only small molecules in recreational runners after marathon completion. J. Appl. Lab. Med. 2019, 3, 909–911. [Google Scholar] [CrossRef] [PubMed]
- Omland, T.; Aakre, K.M. Cardiac troponin increase after endurance exercise. Circulation 2019, 140, 815–818. [Google Scholar] [CrossRef]
- Paluszkiewicz, J.; Milting, H.; Kałużna-Oleksy, M.; Pyda, M.; Janus, M.; Körperich, H.; Piran, M. Left Ventricular Non-Compaction Cardiomyopathy-Still More Questions than Answers. J. Clin. Med. 2022, 11, 4135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arbustini, E.; Favalli, V.; Narula, N.; Serio, A.; Grasso, M. Left Ventricular Noncompaction: A Distinct Genetic Cardiomyopathy? J. Am. Coll. Cardiol. 2016, 68, 949–966, Erratum in J. Am. Coll. Cardiol. 2016, 68, 1821. [Google Scholar] [CrossRef] [PubMed]
- Casas, G.; Limeres, J.; Oristrell, G.; Gutierrez-Garcia, L.; Andreini, D.; Borregan, M.; Larrañaga-Moreira, J.M.; Lopez-Sainz, A.; Codina-Solà, M.; Teixido-Tura, G.; et al. Clinical Risk Prediction in Patients With Left Ventricular Myocardial Noncompaction. J. Am. Coll. Cardiol. 2021, 78, 643–662. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, K.; Hershberger, R.E.; Day, S.M.; Klinedinst, N.J.; Landstrom, A.P.; Parikh, V.N.; Prakash, S.; Semsarian, C.; Sturm, A.C.; American Heart Association Council on Genomic and Precision Medicine; et al. Genetic Testing for Inherited Cardiovascular Diseases: A Scientific Statement from the American Heart Association. Circ. Genom. Precis. Med. 2020, 13, e000067. [Google Scholar] [CrossRef]
- Van Waning, J.I.; Moesker, J.; Heijsman, D.; Boersma, E.; Majoor-Krakauer, D. Systematic Review of Genotype-Phenotype Correlations in Noncompaction Cardiomyopathy. J. Am. Heart Assoc. 2019, 8, e012993. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morrison, B.N.M.; Zwaiman, I.B.; Isserow, S.M.; Taunton, J.; MacDonald, M.B.; Cater, C.B.; Velghe, J.; Hirsch, A.B.; Warburton, D.E.R.; McKinney, J. Masters Athlete Screening Study (MASS): Insights Into the Psychological Impact of Cardiovascular Preparticipation Screening. Am. J. Ther. 2021, 31, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Asif, I.M.; Price, D.E.; Ewing, A.; Rao, A.L.; Harmon, K.G.; Drezner, J.A. The impact of diagnosis: Measuring the psychological response to being diagnosed with serious or potentially lethal cardiac disease in young competitive athletes. Br. J. Sports Med. 2015, 50, 163–166. [Google Scholar] [CrossRef] [PubMed]
Laboratory Test | Results at Presentation | Follow-Up After 24 h | Follow-Up After 72 h | Reference Value (Male) |
---|---|---|---|---|
CK (U/L) | 545.0 | 679.0 | - | 25.0–195.0 |
CK-MB (μg/L) | 6.14 | - | - | <5.2 |
Myoglobin, (μg/L) | 455.9 | - | - | <155.0 |
Troponin I (ng/L) | 4456.4 | 2733.4 | - | ≤35.2 |
BNP (ng/L) | 173.8 | 66.6 | - | <100 */<35 ** |
D-dimers (µg/L) | 500.0 | - | - | <250.0 |
AST/GOT (U/L) | - | 376.0 | 95.0 | <40.0 |
ALT/GPT (U/L) | - | 428.0 | 368.0 | <40.0 |
Potassium (mmol/L) | 4.3 | 4.5 | 5.0 | 3.8–5.3 |
Sodium (mmol/L) | 140.0 | 140.0 | 141.0 | 134.0–145.0 |
Creatinine (μmol/L) | 121.0 | 98.0 | 99.0 | 62.0–115.0 |
Classification of LVHT |
---|
1. iLVHT: HT morphology in LV with normal systolic and diastolic function, size, and wall thickness. |
2. LVHT with LV dilation and dysfunction at onset, such as in the paradigmatic infantile CMP of Barth syndrome. |
3. LVHT in hearts fulfilling the diagnostic criteria for DCM, HCM, RCM, or ARVC. |
4. LVHT associated with congenital heart disease. |
5. Syndromes with LVHT, either sporadic or familial, in which the non-compaction morphology is one of the cardiac traits associated with both monogenic defects and chromosomal anomalies, i.e., complex syndromes with several multiorgan defects. |
6. Acquired and potentially reversible LVHT, which has been reported in athletes; it has also been reported in sickle cell anaemia, pregnancy, myopathies, and chronic renal failure. |
7. RV non-compaction, concomitant with that of the LV or present as a unique anatomic area of HT. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagminas, R.; Šerpytis, R.; Šerpytis, P.; Glaveckaitė, S. Left Ventricular Hypertrabeculation (LVHT) in Athletes: A Negligible Finding? Medicina 2025, 61, 32. https://doi.org/10.3390/medicina61010032
Jagminas R, Šerpytis R, Šerpytis P, Glaveckaitė S. Left Ventricular Hypertrabeculation (LVHT) in Athletes: A Negligible Finding? Medicina. 2025; 61(1):32. https://doi.org/10.3390/medicina61010032
Chicago/Turabian StyleJagminas, Rokas, Rokas Šerpytis, Pranas Šerpytis, and Sigita Glaveckaitė. 2025. "Left Ventricular Hypertrabeculation (LVHT) in Athletes: A Negligible Finding?" Medicina 61, no. 1: 32. https://doi.org/10.3390/medicina61010032
APA StyleJagminas, R., Šerpytis, R., Šerpytis, P., & Glaveckaitė, S. (2025). Left Ventricular Hypertrabeculation (LVHT) in Athletes: A Negligible Finding? Medicina, 61(1), 32. https://doi.org/10.3390/medicina61010032