The Potential of SHAP and Machine Learning for Personalized Explanations of Influencing Factors in Myopic Treatment for Children
<p>Data preprocessing workflow.</p> "> Figure 2
<p>Modeling scheme.</p> "> Figure 3
<p>SHAP summary and feature importance plot of each base IOP subgroup. (<b>a</b>) SHAP summary plot of base IOP <math display="inline"><semantics> <mrow> <mo>≤</mo> <mn>14</mn> </mrow> </semantics></math> subgroup. (<b>b</b>) SHAP feature importance plot of base IOP <math display="inline"><semantics> <mrow> <mo>≤</mo> <mn>14</mn> </mrow> </semantics></math> subgroup. (<b>c</b>) SHAP summary plot of base IOP <math display="inline"><semantics> <mrow> <mo>></mo> <mn>14</mn> </mrow> </semantics></math> subgroup. (<b>d</b>) SHAP feature importance plot of base IOP <math display="inline"><semantics> <mrow> <mo>></mo> <mn>14</mn> </mrow> </semantics></math> subgroup.</p> "> Figure 4
<p>Three examples of individual case (panels (<b>a</b>–<b>c</b>)) explanations in base IOP <math display="inline"><semantics> <mrow> <mo>≤</mo> <mn>14</mn> </mrow> </semantics></math> subgroup. <math display="inline"><semantics> <mrow> <mi>f</mi> <mfenced separators="|"> <mrow> <mi>x</mi> </mrow> </mfenced> </mrow> </semantics></math>: model prediction outcome. <math display="inline"><semantics> <mrow> <mi>E</mi> <mfenced open="[" close="]" separators="|"> <mrow> <mi>f</mi> <mfenced separators="|"> <mrow> <mi>x</mi> </mrow> </mfenced> </mrow> </mfenced> </mrow> </semantics></math>: expected value.</p> "> Figure 5
<p>Three examples of individual case (panels (<b>a</b>–<b>c</b>)) explanations in base IOP <math display="inline"><semantics> <mrow> <mo>></mo> <mn>14</mn> </mrow> </semantics></math> subgroup. <math display="inline"><semantics> <mrow> <mi>f</mi> <mfenced separators="|"> <mrow> <mi>x</mi> </mrow> </mfenced> </mrow> </semantics></math>: model prediction outcome. <math display="inline"><semantics> <mrow> <mi>E</mi> <mfenced open="[" close="]" separators="|"> <mrow> <mi>f</mi> <mfenced separators="|"> <mrow> <mi>x</mi> </mrow> </mfenced> </mrow> </mfenced> </mrow> </semantics></math>: expected value.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Protocol
2.2. Variable Definition and Data Description
2.3. SHapley Additive exPlanations (SHAP)
2.4. ML Methods
2.5. Modeling Scheme
3. Results
3.1. ML Model Results
3.2. Feature Importance from SHAP in Each Subgroup
3.3. Demonstrations of Individual Case Explanation with SHAP for Each Subgroup
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Tena, M.Á.; Martinez-Perez, C.; Villa-Collar, C.; González-Pérez, M.; González-Abad, A.; Grupo de Investigación Alain Afflelou; Alvarez-Peregrina, C. Prevalence and Estimation of the Evolution of Myopia in Spanish Children. J. Clin. Med. 2024, 13, 1800. [Google Scholar] [CrossRef] [PubMed]
- Eppenberger, L.S.; Jaggi, G.P.; Todorova, M.G.; Messerli, J.; Sturm, V. Following prevalence of myopia in a large Swiss military cohort over the last decade: Where is the European “myopia boom”? Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 3039–3046. [Google Scholar] [CrossRef] [PubMed]
- Mutti, D.O.; Sinnott, L.T.; Cotter, S.A.; Jones-Jordan, L.A.; Kleinstein, R.N.; Manny, R.E.; Twelker, J.D.; Zadnik, K. Predicting the onset of myopia in children by age, sex, and ethnicity: Results from the CLEERE Study. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2024, 101, 179–186. [Google Scholar] [CrossRef]
- Du, L.F.; He, F.; Tan, H.X.; Gao, N.; Song, W.Q.; Luo, Y.X. Comparisons of Three Methods for Myopia Control in Adolescents. J. Ophthalmol. 2022, 2022, 9920002. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, P.; Jiang, B.; Meng, Y.; Qie, S.; Yan, Z. The efficacy and safety of 0.01% atropine alone or combined with orthokeratology for children with myopia: A meta-analysis. PLoS ONE 2023, 18, e0282286. [Google Scholar] [CrossRef]
- Yam, J.C.; Zhang, X.J.; Zhang, Y.; Yip, B.H.K.; Tang, F.; Wong, E.S.; Bui, C.H.T.; Kam, K.W.; Ng, M.P.H.; Ko, S.T.; et al. Effect of Low-Concentration Atropine Eyedrops vs Placebo on Myopia Incidence in Children: The LAMP2 Randomized Clinical Trial. JAMA 2023, 329, 472–481. [Google Scholar] [CrossRef]
- Chia, A.; Ngo, C.; Choudry, N.; Yamakawa, Y.; Tan, D. Atropine Ophthalmic Solution to Reduce Myopia Progression in Pediatric Subjects: The Randomized, Double-Blind Multicenter Phase II APPLE Study. Asia-Pac. J. Ophthalmol. 2023, 12, 370–376. [Google Scholar] [CrossRef]
- Kuo, H.Y.; Ke, C.H.; Chen, S.T.; Sun, H.Y. The Impact of Clinical Atropine Use in Taiwanese Schoolchildren: Changes in Physiological Characteristics and Visual Functions. Children 2021, 8, 1054. [Google Scholar] [CrossRef]
- Cyphers, B.; Huang, J.; Walline, J.J. Symptoms and ocular findings associated with administration of 0.01% atropine in young adults. Clin. Exp. Optom. 2023, 106, 311–321. [Google Scholar] [CrossRef]
- Li, Y.; Yip, M.; Ning, Y.; Chung, J.; Toh, A.; Leow, C.; Liu, N.; Ting, D.; Schmetterer, L.; Saw, S.M.; et al. Topical Atropine for Childhood Myopia Control: The Atropine Treatment Long-Term Assessment Study. JAMA Ophthalmol. 2024, 142, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Cui, C.; Yu, S.A.; Liang, L.L.; Ma, J.X.; Fu, A.C. Effect of 0.02% and 0.01% atropine on ocular biometrics: A two-year clinical trial. Front. Pediatr. 2023, 11, 1095495. [Google Scholar] [CrossRef] [PubMed]
- Rengstorff, R.H.; Doughty, C.B. Mydriatic and cycloplegic drugs: A review of ocular and systemic complications. Am. J. Optom. Physiol. Opt. 1982, 59, 162–177. [Google Scholar] [CrossRef] [PubMed]
- Guier, C.P. Elevated intraocular pressure and myopic shift linked to topiramate use. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2007, 84, 1070–1073. [Google Scholar] [CrossRef]
- Sihota, R.; Tuli, D.; Dada, T.; Gupta, V.; Sachdeva, M.M. Distribution and determinants of intraocular pressure in a normal pediatric population. J. Pediatr. Ophthalmol. Strabismus 2006, 43, 14–37. [Google Scholar] [CrossRef]
- Yu, T.C.; Wu, T.E.; Wang, Y.S.; Cheng, S.F.; Liou, S.W. A STROBE-compliant case-control study: Effects of cumulative doses of topical atropine on intraocular pressure and myopia progression. Medicine 2020, 99, e22745. [Google Scholar] [CrossRef]
- Wu, T.E.; Chen, H.A.; Jhou, M.J.; Chen, Y.N.; Chang, T.J.; Lu, C.J. Evaluating the Effect of Topical Atropine Use for Myopia Control on Intraocular Pressure by Using Machine Learning. J. Clin. Med. 2020, 10, 111. [Google Scholar] [CrossRef]
- Wu, T.E.; Chen, J.W.; Liu, T.C.; Yu, C.H.; Jhou, M.J.; Lu, C.J. Identifying and Exploring the Impact Factors for Intraocular Pressure Prediction in Myopic Children with Atropine Control Utilizing Multivariate Adaptive Regression Splines. J. Pers. Med. 2024, 14, 125. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Sun, J.; Sun, C.K.; Tang, Y.X.; Liu, T.C.; Lu, C.J. Application of SHAP for Explainable Machine Learning on Age-Based Subgrouping Mammography Questionnaire Data for Positive Mammography Prediction and Risk Factor Identification. Healthcare 2023, 11, 2000. [Google Scholar] [CrossRef]
- Li, J.; Dai, Y.; Mu, Z.; Wang, Z.; Meng, J.; Meng, T.; Wang, J. Choice of refractive surgery types for myopia assisted by machine learning based on doctors’ surgical selection data. BMC Med. Inform. Decis. Mak. 2024, 24, 41. [Google Scholar] [CrossRef]
- Breeze, F.; Hossain, R.R.; Mayo, M.; McKelvie, J. Predicting ophthalmic clinic non-attendance using machine learning: Development and validation of models using nationwide data. Clin. Exp. Ophthalmol. 2023, 51, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: Abingdon, UK, 1984. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar]
- Tsay, S.F.; Chang, C.Y.; Shueh Hung, S.; Su, J.Y.; Kuo, C.Y.; Mu, P.F. Pain prediction model based on machine learning and SHAP values for elders with dementia in Taiwan. Int. J. Med. Inform. 2024, 188, 105475. [Google Scholar] [CrossRef]
- Lee, E.J.; Lee, D.; Kim, M.J.; Kim, K.; Han, J.C.; Kee, C. Different glaucoma progression rates by age groups in young myopic glaucoma patients. Sci Rep. 2024, 14, 2589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsuda, H.; Someko, H.; Kataoka, Y. Low-Concentration Atropine Eyedrops for Myopia in Children. JAMA 2023, 329, 1885–1886. [Google Scholar] [CrossRef]
- Zheng, N.N.; Tan, K.W. The synergistic efficacy and safety of combined low-concentration atropine and orthokeratology for slowing the progression of myopia: A meta-analysis. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 2022, 42, 1214–1226. [Google Scholar] [CrossRef]
- Lee, Y.R.; Hwang, J.; Kim, J.S. Increase of Intraocular Pressure after Application of 0. 125% Atropine Eye Drops in Children Using Ortho-K Contact Lenses. Case Rep. Ophthalmol. 2024, 15, 292–297. [Google Scholar] [CrossRef]
- Chang, C.J.; Yang, H.H.; Chang, C.A.; Wu, R.; Tsai, H.Y. The influence of orthokeratology on intraocular pressure measurements. Semin. Ophthalmol. 2013, 28, 210–215. [Google Scholar] [CrossRef]
- Ishida, Y.; Yanai, R.; Sagara, T.; Nishida, T.; Toshida, H.; Murakami, A. Decrease in intraocular pressure following orthokeratology measured with a noncontact tonometer. Jpn. J. Ophthalmol. 2011, 55, 190–195. [Google Scholar] [CrossRef]
Variable | Data Subgroups | |
---|---|---|
14 | 14 | |
N (%) | ||
X1: Sex | ||
1: Male | 329 (53%) | 310 (54%) |
2: Female | 290 (47%) | 262 (46%) |
Mean (SD) | ||
X2: Age | 10.28 (2.46) | 10.96 (2.50) |
X3: Total Duration (Months) | 19.10 (12.25) | 20.31 (12.33) |
X4: Total Cumulative Dosage (mg) | 116.47 (135.37) | 117.62 (137.40) |
X5: Previous Duration (Months) | 13.54 (12.46) | 14.61 (12.37) |
X6: Previous Cumulative Dosage (mg) | 78.17 (107.27) | 77.30 (112.09) |
X7: Recruit Duration (Months) | 5.53 (3.78) | 5.70 (3.72) |
X8: Recruit Cumulative Dosage (mg) | 38.30 (59.80) | 40.32 (63.54) |
Y: End IOP (mmHg) | 13.83 (2.49) | 16.41 (2.44) |
Subgroup | Model | RMSE | MAPE% | SMAPE% | RAE | RRSE |
---|---|---|---|---|---|---|
Mean (SD) | ||||||
Base IOP | MLR | 2.45 (0.16) | 14.18 (1.00) | 13.64 (0.85) | 1.00 (0.02) | 1.00 (0.02) |
Lasso | 2.44 (0.16) | 14.12 (1.00) | 13.59 (0.86) | 0.99 (0.02) | 1.00 (0.01) | |
CART | 2.47 (0.16) | 14.29 (0.98) | 13.76 (0.84) | 1.01 (0.03) | 1.01 (0.03) | |
XGB | 2.36 (0.15) | 13.36 (0.94) | 13.02 (0.81) | 0.96 (0.05) | 0.96 (0.04) | |
RF | 2.30 (0.15) | 13.14 (0.95) | 12.74 (0.81) | 0.93 (0.05) | 0.94 (0.04) | |
Base IOP | MLR | 2.45 (0.20) | 12.00 (0.92) | 11.69 (0.86) | 1.01 (0.02) | 1.01 (0.02) |
Lasso | 2.45 (0.20) | 12.02 (0.91) | 11.70 (0.84) | 1.01 (0.02) | 1.01 (0.01) | |
CART | 2.43 (0.19) | 11.92 (0.91) | 11.60 (0.85) | 1.00 (0.03) | 1.00 (0.03) | |
XGB | 2.39 (0.19) | 11.42 (0.79) | 11.27 (0.77) | 0.97 (0.04) | 0.98 (0.04) | |
RF | 2.37 (0.19) | 11.58 (0.89) | 11.30 (0.82) | 0.97 (0.05) | 0.97 (0.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-W.; Chen, H.-A.; Liu, T.-C.; Wu, T.-E.; Lu, C.-J. The Potential of SHAP and Machine Learning for Personalized Explanations of Influencing Factors in Myopic Treatment for Children. Medicina 2025, 61, 16. https://doi.org/10.3390/medicina61010016
Chen J-W, Chen H-A, Liu T-C, Wu T-E, Lu C-J. The Potential of SHAP and Machine Learning for Personalized Explanations of Influencing Factors in Myopic Treatment for Children. Medicina. 2025; 61(1):16. https://doi.org/10.3390/medicina61010016
Chicago/Turabian StyleChen, Jun-Wei, Hsin-An Chen, Tzu-Chi Liu, Tzu-En Wu, and Chi-Jie Lu. 2025. "The Potential of SHAP and Machine Learning for Personalized Explanations of Influencing Factors in Myopic Treatment for Children" Medicina 61, no. 1: 16. https://doi.org/10.3390/medicina61010016
APA StyleChen, J.-W., Chen, H.-A., Liu, T.-C., Wu, T.-E., & Lu, C.-J. (2025). The Potential of SHAP and Machine Learning for Personalized Explanations of Influencing Factors in Myopic Treatment for Children. Medicina, 61(1), 16. https://doi.org/10.3390/medicina61010016