Integrated Insights into Metabolic and Bariatric Surgery: Improving Life Quality and Reducing Mortality in Obesity
<p>Algorithm of the selection methodology for the bibliographical sources evaluated and cited in this paper.</p> "> Figure 2
<p>Schematic description of the three most commonly used bariatric procedures. LSG, laparascopic sleeve gastrectomy; RYGB, Roux-en-Y gastric bypass; OAGB, one anastomosis gastric bypass.</p> "> Figure 3
<p>Organ systems targeted by MBS and the associated physiologic changes.</p> "> Figure 4
<p>Risks and benefits of MBS.</p> ">
Abstract
:1. Introduction
2. Research Methodology
3. Pathophysiological Foundation of Obesity
4. Description and Types of MBS
4.1. The Restrictive–Malabsorptive Roux-en-Y Gastric Bypass (RYGB)
4.2. Laparoscopic Sleeve Gastrectomy (LSG)
4.3. One Anastomosis Gastric Bypass (OAGB)
4.4. Comparing the Three Procedures—Maintaining the Weight Lost and the Impact on Associated Diseases
5. Factors Influencing Surgical Decision Making
5.1. BMI
5.2. Age Extremes
6. Physiological Changes to the Digestive System Following MBS
6.1. Factors Potentially Influencing Intake, Digestion, and Absorption
6.2. Prevalent Gastrointestinal Symptoms: Preventive Strategies and Interventions
7. The Impact of MBS on Comorbidities of Obesity
7.1. Postoperative Benefits of MBS over Diabetes
7.2. Postoperative Hypertension Management
7.3. Postoperative Dyslipidemia Management
7.4. The Management of Obstructive Sleep Apnea Post MBS
7.5. The Management of Osteoarthritis
7.6. The Impact on Fertility
7.7. Urinary Incontinence
8. Risks Associated with MBS
8.1. Early Complications of MBS
8.1.1. Intestinal Obstruction and Stenosis
8.1.2. Gastrointestinal Bleeding and Perforation
8.1.3. Postoperative Gastrointestinal Leaks
8.1.4. Thromboembolism
8.2. Late Complications of MBS
8.2.1. Cholelithiasis
8.2.2. Nephrolithiasis
8.2.3. Bone Loss and Fracture Risk
8.2.4. Steatorrhea
9. Weight Regains After MBS
10. Psychological Implications and Body Image After MBS
10.1. Psychological Alterations After MBS
10.2. Body Image After BS
11. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Courcoulas, A.P.; Yanovski, S.Z.; Bonds, D.; Eggerman, T.L.; Horlick, M.; Staten, M.A.; Arterburn, D.E. Long-Term Outcomes of Bariatric Surgery: A National Institutes of Health Symposium. JAMA Surg. 2014, 149, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Gulinac, M.; Miteva, D.G.; Peshevska-Sekulovska, M.; Novakov, I.P.; Antovic, S.; Peruhova, M.; Snegarova, V.; Kabakchieva, P.; Assyov, Y.; Vasilev, G.; et al. Long-Term Effectiveness, Outcomes and Complications of Bariatric Surgery. World J. Clin. Cases 2023, 11, 4504–4512. [Google Scholar] [CrossRef] [PubMed]
- Frigolet, M.E.; Dong-Hoon, K.; Canizales-Quinteros, S.; Gutiérrez-Aguilar, R. Obesity, Adipose Tissue, and Bariatric Surgery. Bol. Med. Hosp. Infant. Mex. 2020, 77, 3–14. [Google Scholar] [PubMed]
- Finks, J.F.; Dimick, J.B. An Updated National Institutes of Health Consensus Panel on Bariatric Surgery. JAMA Surg. 2014, 149, 1329–1330. [Google Scholar] [CrossRef]
- De Luca, M.; Shikora, S.; Eisenberg, D.; Angrisani, L.; Parmar, C.; Alqahtani, A.; Aminian, A.; Aarts, E.; Brown, W.A.; Cohen, R.V.; et al. Scientific Evidence for the Updated Guidelines on Indications for Metabolic and Bariatric Surgery (IFSO/ASMBS). Surg. Obes. Relat. Dis. 2024, 20, 991–1025. [Google Scholar] [CrossRef]
- Behl, T.; Chadha, S.; Sachdeva, M.; Sehgal, A.; Kumar, A.; Dhruv; Venkatachalam, T.; Hafeez, A.; Aleya, L.; Arora, S.; et al. Understanding the Possible Role of Endocannabinoid System in Obesity. Prostaglandins Other Lipid Mediat. 2021, 152, 106520. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 14 January 2024).
- Boutari, C.; Mantzoros, C.S. A 2022 Update on the Epidemiology of Obesity and a Call to Action: As Its Twin COVID-19 Pandemic Appears to Be Receding, the Obesity and Dysmetabolism Pandemic Continues to Rage On. Metabolism 2022, 133, 155217. [Google Scholar] [CrossRef]
- Barbu, C.G.; Teleman, M.D.; Albu, A.I.; Sirbu, A.E.; Martin, S.C.; Bancescu, A.; Fica, S.V. Obesity and Eating Behaviors in School Children and Adolescents -Data from a Cross Sectional Study from Bucharest, Romania. BMC Public Health 2015, 15, 206. [Google Scholar] [CrossRef]
- Popa, A.; Fratila, O.; Rus, M.; Aron, R.; Vesa, C.; Pantis, C.; Diaconu, C.; Bratu, O.; Bungau, S.; Nemeth, S. Risk Factors for Adiposity in the Urban Population and Influence on the Prevalence of Overweight and Obesity. Exp. Ther. Med. 2020, 20, 129–133. [Google Scholar] [CrossRef]
- Miron, V.D.; Bar, G.; Filimon, C.; Gaidamut, V.A.; Craiu, M. Monitoring of Excess Body Weight in Children in the Emergency Department of a Tertiary Pediatric Hospital in Bucharest, Romania. Maedica 2021, 16, 389–393. [Google Scholar] [CrossRef]
- Behl, T.; Kumar, S.; Singh, S.; Bhatia, S.; Albarrati, A.; Albratty, M.; Meraya, A.M.; Najmi, A.; Bungau, S. Reviving the Mutual Impact of SARS-CoV-2 and Obesity on Patients: From Morbidity to Mortality. Biomed. Pharmacother. 2022, 151, 113178. [Google Scholar] [CrossRef] [PubMed]
- Zaha, D.; Vesa, C.; Uivarosan, D.; Bratu, O.; Fratila, O.; Tit, D.; Pantis, C.; Diaconu, C.; Bungau, S. Influence of Inflammation and Adipocyte Biochemical Markers on the Components of Metabolic Syndrome. Exp. Ther. Med. 2020, 20, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Sarwer, D.B.; Steffen, K.J. Quality of Life, Body Image and Sexual Functioning in Bariatric Surgery Patients. Eur. Eat. Disord. Rev. 2015, 23, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-K.; Berry, D.C. Impact of Weight Stigma on Physiological and Psychological Health Outcomes for Overweight and Obese Adults: A Systematic Review. J. Adv. Nurs. 2018, 74, 1030–1042. [Google Scholar] [CrossRef] [PubMed]
- Spahlholz, J.; Baer, N.; König, H.-H.; Riedel-Heller, S.G.; Luck-Sikorski, C. Obesity and Discrimination—A Systematic Review and Meta-Analysis of Observational Studies. Obes. Rev. 2016, 17, 43–55. [Google Scholar] [CrossRef]
- Sierżantowicz, R.; Ładny, J.R.; Lewko, J. Quality of Life after Bariatric Surgery-A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 9078. [Google Scholar] [CrossRef]
- Whitlock, G.; Lewington, S.; Sherliker, P.; Clarke, R.; Emberson, J.; Halsey, J.; Qizilbash, N.; Collins, R.; Peto, R. Body-Mass Index and Cause-Specific Mortality in 900,000 Adults: Collaborative Analyses of 57 Prospective Studies. Lancet 2009, 373, 1083–1096. [Google Scholar]
- Lobstein, T.; Jackson-Leach, R.; Powis, J.; Brinsden, H.; Gray, M. World Obesity Atlas. 2023. Available online: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2023 (accessed on 11 November 2024).
- Gadde, K.M.; Martin, C.K.; Berthoud, H.-R.; Heymsfield, S.B. Obesity: Pathophysiology and Management. J. Am. Coll. Cardiol. 2018, 71, 69–84. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017, 376, 1492. [Google Scholar] [CrossRef]
- Schwartz, M.W.; Seeley, R.J.; Zeltser, L.M.; Drewnowski, A.; Ravussin, E.; Redman, L.M.; Leibel, R.L. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr. Rev. 2017, 38, 267–296. [Google Scholar] [CrossRef]
- Hall, K.D.; Guo, J. Obesity Energetics: Body Weight Regulation and the Effects of Diet Composition. Gastroenterology 2017, 152, 1718–1727.e3. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; López, M.; Rahmouni, K. The Cellular and Molecular Bases of Leptin and Ghrelin Resistance in Obesity. Nat. Rev. Endocrinol. 2017, 13, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, E.; Daskalakis, M.; Kampa, M.; Peppe, A.; Papadakis, J.A.; Melissas, J. Alterations in Gut Hormones after Laparoscopic Sleeve Gastrectomy: A Prospective Clinical and Laboratory Investigational Study. Ann. Surg. 2013, 257, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, I.S.; O’Rahilly, S. 20 Years of Leptin: Human Disorders of Leptin Action. J. Endocrinol. 2014, 223, T63–T70. [Google Scholar] [CrossRef]
- Woolcott, O.O.; Seuring, T. Temporal Trends in Obesity Defined by the Relative Fat Mass (RFM) Index among Adults in the United States from 1999 to 2020: A Population-Based Study. BMJ Open 2023, 13, e071295. [Google Scholar] [CrossRef]
- Kinlen, D.; Cody, D.; O’Shea, D. Complications of Obesity. QJM 2018, 111, 437–443. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The Global Obesity Pandemic: Shaped by Global Drivers and Local Environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef]
- Park, C.W.; Torquati, A. Physiology of Weight Loss Surgery. Surg. Clin. N. Am. 2011, 91, 1149–1161, vii. [Google Scholar] [CrossRef]
- Benaiges, D.; Goday, A.; Pedro-Botet, J.; Más, A.; Chillarón, J.J.; Flores-Le Roux, J.A. Bariatric Surgery: To Whom and When? Minerva Endocrinol. 2015, 40, 119–128. [Google Scholar]
- Campos, G.M.; Rabl, C.; Peeva, S.; Ciovica, R.; Rao, M.; Schwarz, J.-M.; Havel, P.; Schambelan, M.; Mulligan, K. Improvement in Peripheral Glucose Uptake after Gastric Bypass Surgery Is Observed Only after Substantial Weight Loss Has Occurred and Correlates with the Magnitude of Weight Lost. J. Gastrointest. Surg. 2010, 14, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.A.; Liem, R.; Al-Sabah, S.; Anvari, M.; Boza, C.; Cohen, R.V.; Ghaferi, A.; Våge, V.; Himpens, J.; Kow, L.; et al. Metabolic Bariatric Surgery Across the IFSO Chapters: Key Insights on the Baseline Patient Demographics, Procedure Types, and Mortality from the Eighth IFSO Global Registry Report. Obes. Surg. 2024, 34, 1764–1777. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, H.; Oien, D.M. Metabolic/Bariatric Surgery Worldwide 2008. Obes. Surg. 2009, 19, 1605–1611. [Google Scholar] [CrossRef] [PubMed]
- Elder, K.A.; Wolfe, B.M. Bariatric Surgery: A Review of Procedures and Outcomes. Gastroenterology 2007, 132, 2253–2271. [Google Scholar] [CrossRef] [PubMed]
- Felsenreich, D.M.; Bichler, C.; Langer, F.B.; Gachabayov, M.; Prager, G. Sleeve Gastrectomy: Surgical Technique, Outcomes, and Complications. Surg. Technol. Int. 2020, 36, 63–69. [Google Scholar]
- Tish, S.; Corcelles, R. The Art of Sleeve Gastrectomy. J. Clin. Med. 2024, 13, 1954. [Google Scholar] [CrossRef]
- Roux-En-Y Gastric Bypass. Available online: https://asmbs.org/condition_procedures/roux-en-y-gastric-bypass/ (accessed on 9 December 2024).
- Pizza, F.; Lucido, F.S.; D’Antonio, D.; Tolone, S.; Gambardella, C.; Dell’Isola, C.; Docimo, L.; Marvaso, A. Biliopancreatic Limb Length in One Anastomosis Gastric Bypass: Which Is the Best? Obes. Surg. 2020, 30, 3685–3694. [Google Scholar] [CrossRef]
- Onzi, T.R.; Salgado Júnior, W.; Bastos, E.L.D.S.; Dantas, A.C.B.; Silva, L.B.; de Oliveira Neto, A.A.; Tristão, L.S.; Dos Santos, C.L.; Bernardo, W.M.; Chavez, M.P. Efficacy and Safety of One Anastomosis Gastric Bypass in Surgical Treatment of Obesity: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Arq. Bras. Cir. Dig. 2024, 37, e1814. [Google Scholar] [CrossRef]
- Bult, M.J.F.; van Dalen, T.; Muller, A.F. Surgical Treatment of Obesity. Eur. J. Endocrinol. 2008, 158, 135–145. [Google Scholar] [CrossRef]
- Aderinto, N.; Olatunji, G.; Kokori, E.; Olaniyi, P.; Isarinade, T.; Yusuf, I.A. Recent Advances in Bariatric Surgery: A Narrative Review of Weight Loss Procedures. Ann. Med. Surg. 2023, 85, 6091–6104. [Google Scholar] [CrossRef]
- Lutz, T.A.; Bueter, M. The Physiology Underlying Roux-En-Y Gastric Bypass: A Status Report. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R1275–R1291. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, M.; Reddy, M.; Kosta, S.; Mathur, W.; Fobi, M. Laparoscopic Sleeve Gastrectomy versus Laparoscopic Gastric Bypass: A Retrospective Cohort Study. Int. J. Surg. 2019, 67, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Popescu, A.-L.; Ioniţa-Radu, F.; Jinga, M.; Gavrilă, A.-I.; Săvulescu, F.-A.; Fierbinţeanu-Braticevici, C. Laparoscopic Sleeve Gastrectomy and Gastroesophageal Reflux. Rom. J. Intern. Med. 2018, 56, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Burton, P.R.; Brown, W.; Laurie, C.; Richards, M.; Afkari, S.; Yap, K.; Korin, A.; Hebbard, G.; O’Brien, P.E. The Effect of Laparoscopic Adjustable Gastric Bands on Esophageal Motility and the Gastroesophageal Junction: Analysis Using High-Resolution Video Manometry. Obes. Surg. 2009, 19, 905–914. [Google Scholar] [CrossRef]
- Burton, P.R.; Yap, K.; Brown, W.A.; Laurie, C.; O’Donnell, M.; Hebbard, G.; Kalff, V.; O’Brien, P.E. Changes in Satiety, Supra- and Infraband Transit, and Gastric Emptying Following Laparoscopic Adjustable Gastric Banding: A Prospective Follow-up Study. Obes. Surg. 2011, 21, 217–223. [Google Scholar] [CrossRef]
- Rutledge, R.; Kular, K.; Manchanda, N. The Mini-Gastric Bypass Original Technique. Int. J. Surg. 2019, 61, 38–41. [Google Scholar] [CrossRef]
- Lee, S.K.; Heo, Y.; Park, J.M.; Kim, Y.J.; Kim, S.M.; Park, D.J.; Han, S.M.; Shim, K.W.; Lee, Y.J.; Lee, J.Y.; et al. Roux-En-Y Gastric Bypass vs. Sleeve Gastrectomy vs. Gastric Banding: The First Multicenter Retrospective Comparative Cohort Study in Obese Korean Patients. Yonsei Med. J. 2016, 57, 956–962. [Google Scholar] [CrossRef]
- Han, Y.; Jia, Y.; Wang, H.; Cao, L.; Zhao, Y. Comparative Analysis of Weight Loss and Resolution of Comorbidities between Laparoscopic Sleeve Gastrectomy and Roux-En-Y Gastric Bypass: A Systematic Review and Meta-Analysis Based on 18 Studies. Int. J. Surg. 2020, 76, 101–110. [Google Scholar] [CrossRef]
- Kular, K.S.; Manchanda, N.; Rutledge, R. A 6-Year Experience with 1,054 Mini-Gastric Bypasses-First Study from Indian Subcontinent. Obes. Surg. 2014, 24, 1430–1435. [Google Scholar] [CrossRef]
- Mahawar, K.K.; Himpens, J.; Shikora, S.A.; Chevallier, J.-M.; Lakdawala, M.; De Luca, M.; Weiner, R.; Khammas, A.; Kular, K.S.; Musella, M.; et al. The First Consensus Statement on One Anastomosis/Mini Gastric Bypass (OAGB/MGB) Using a Modified Delphi Approach. Obes. Surg. 2018, 28, 303–312. [Google Scholar] [CrossRef]
- Karagul, S.; Senol, S.; Karakose, O.; Uzunoglu, K.; Kayaalp, C. One Anastomosis Gastric Bypass versus Roux-En-Y Gastric Bypass: A Randomized Prospective Trial. Medicina 2024, 60, 256. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Wang, Y.; Ji, J.; Wang, W.; Wang, D. One Anastomosis Gastric Bypass Versus Sleeve Gastrectomy for Obesity: A Systemic Review and Meta-Analysis. J. Gastrointest. Surg. 2023, 27, 2226–2244. [Google Scholar] [CrossRef] [PubMed]
- Gildea, A.; Shukla, S.; Parretti, H.; Khan, O. Referral Criteria and Assessment for Bariatric Surgery: Summary of Updated NICE Guidance. BMJ 2023, 382, 1880. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Shikora, S.A.; Aarts, E.; Aminian, A.; Angrisani, L.; Cohen, R.V.; de Luca, M.; Faria, S.L.; Goodpaster, K.P.S.; Haddad, A.; et al. 2022 American Society of Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO) Indications for Metabolic and Bariatric Surgery. Obes. Surg. 2023, 33, 3–14. [Google Scholar] [CrossRef]
- Dimitrov, D.V.; Ivanov, V.; Atanasova, M. Advantages of Bariatric Medicine for Individualized Prevention and Treatments: Multidisciplinary Approach in Body Culture and Prevention of Obesity and Diabetes. EPMA J. 2011, 2, 271–276. [Google Scholar] [CrossRef]
- Al-Kurd, A.; Grinbaum, R.; Mordechay-Heyn, T.; Asli, S.; Abubeih, A.; Mizrahi, I.; Mazeh, H.; Beglaibter, N. Outcomes of Sleeve Gastrectomy in Septuagenarians. Obes. Surg. 2018, 28, 3895–3901. [Google Scholar] [CrossRef]
- Smith, M.E.; Bacal, D.; Bonham, A.J.; Varban, O.A.; Carlin, A.M.; Ghaferi, A.A.; Finks, J.F. Perioperative and 1-Year Outcomes of Bariatric Surgery in Septuagenarians: Implications for Patient Selection. Surg. Obes. Relat. Dis. 2019, 15, 1805–1811. [Google Scholar] [CrossRef]
- Olbers, T.; Beamish, A.J.; Gronowitz, E.; Flodmark, C.-E.; Dahlgren, J.; Bruze, G.; Ekbom, K.; Friberg, P.; Göthberg, G.; Järvholm, K.; et al. Laparoscopic Roux-En-Y Gastric Bypass in Adolescents with Severe Obesity (AMOS): A Prospective, 5-Year, Swedish Nationwide Study. Lancet. Diabetes Endocrinol. 2017, 5, 174–183. [Google Scholar] [CrossRef]
- Inge, T.H.; Jenkins, T.M.; Xanthakos, S.A.; Dixon, J.B.; Daniels, S.R.; Zeller, M.H.; Helmrath, M.A. Long-Term Outcomes of Bariatric Surgery in Adolescents with Severe Obesity (FABS-5+): A Prospective Follow-up Analysis. Lancet. Diabetes Endocrinol. 2017, 5, 165–173. [Google Scholar] [CrossRef]
- Michalsky, M.P.; Inge, T.H.; Jenkins, T.M.; Xie, C.; Courcoulas, A.; Helmrath, M.; Brandt, M.L.; Harmon, C.M.; Chen, M.; Dixon, J.B.; et al. Cardiovascular Risk Factors After Adolescent Bariatric Surgery. Pediatrics 2018, 141, e20172485. [Google Scholar] [CrossRef]
- Lamoshi, A.; Chernoguz, A.; Harmon, C.M.; Helmrath, M. Complications of Bariatric Surgery in Adolescents. Semin. Pediatr. Surg. 2020, 29, 150888. [Google Scholar] [CrossRef] [PubMed]
- Pories, W.J. Bariatric Surgery: Risks and Rewards. J. Clin. Endocrinol. Metab. 2008, 93, S89–S96. [Google Scholar] [CrossRef] [PubMed]
- Power, M.L.; Schulkin, J. Anticipatory Physiological Regulation in Feeding Biology: Cephalic Phase Responses. Appetite 2008, 50, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Cummings, D.E.; Weigle, D.S.; Frayo, R.S.; Breen, P.A.; Ma, M.K.; Dellinger, E.P.; Purnell, J.Q. Plasma Ghrelin Levels after Diet-Induced Weight Loss or Gastric Bypass Surgery. N. Engl. J. Med. 2002, 346, 1623–1630. [Google Scholar] [CrossRef]
- Adami, G.F.; Cordera, R.; Marinari, G.; Lamerini, G.; Andraghetti, G.; Scopinaro, N. Plasma Ghrelin Concentratin in the Short-Term Following Biliopancreatic Diversion. Obes. Surg. 2003, 13, 889–892. [Google Scholar] [CrossRef]
- Kojima, S.; Ueno, N.; Asakawa, A.; Sagiyama, K.; Naruo, T.; Mizuno, S.; Inui, A. A Role for Pancreatic Polypeptide in Feeding and Body Weight Regulation. Peptides 2007, 28, 459–463. [Google Scholar] [CrossRef]
- Ramón, J.M.; Salvans, S.; Crous, X.; Puig, S.; Goday, A.; Benaiges, D.; Trillo, L.; Pera, M.; Grande, L. Effect of Roux-En-Y Gastric Bypass vs Sleeve Gastrectomy on Glucose and Gut Hormones: A Prospective Randomised Trial. J. Gastrointest. Surg. 2012, 16, 1116–1122. [Google Scholar] [CrossRef]
- Schrumpf, E.; Linnestad, P.; Nygaard, K.; Giercksky, K.E.; Fausa, O. Pancreatic Polypeptide Secretion before and after Gastric Bypass Surgery for Morbid Obesity. Scand. J. Gastroenterol. 1981, 16, 1009–1014. [Google Scholar] [CrossRef]
- Lloyd, K.C. Gut Hormones in Gastric Function. Baillieres. Clin. Endocrinol. Metab. 1994, 8, 111–136. [Google Scholar] [CrossRef]
- Rehfeld, J.F. Incretin Physiology beyond Glucagon-like Peptide 1 and Glucose-Dependent Insulinotropic Polypeptide: Cholecystokinin and Gastrin Peptides. Acta Physiol. 2011, 201, 405–411. [Google Scholar] [CrossRef]
- Schrumpf, E.; Giercksky, K.E.; Nygaard, K.; Fausa, O. Gastrin Secretion before and after Gastric Bypass Surgery for Morbid Obesity. Scand. J. Gastroenterol. 1981, 16, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.H.; Olesen, S.C.; Dirksen, C.; Jørgensen, N.B.; Bojsen-Møller, K.N.; Kielgast, U.; Worm, D.; Almdal, T.; Naver, L.S.; Hvolris, L.E.; et al. Changes in Gastrointestinal Hormone Responses, Insulin Sensitivity, and Beta-Cell Function within 2 Weeks after Gastric Bypass in Non-Diabetic Subjects. Obes. Surg. 2012, 22, 1084–1096. [Google Scholar] [CrossRef] [PubMed]
- Stenstrom, B.; Zhao, C.-M.; Tømmerås, K.; Arum, C.-J.; Chen, D. Is Gastrin Partially Responsible for Body Weight Reduction after Gastric Bypass? Eur. Surg. Res. 2006, 38, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Bueter, M.; Miras, A.D.; Chichger, H.; Fenske, W.; Ghatei, M.A.; Bloom, S.R.; Unwin, R.J.; Lutz, T.A.; Spector, A.C.; le Roux, C.W. Alterations of Sucrose Preference after Roux-En-Y Gastric Bypass. Physiol. Behav. 2011, 104, 709–721. [Google Scholar] [CrossRef]
- Oliveira-Maia, A.J.; Roberts, C.D.; Simon, S.A.; Nicolelis, M.A.L. Gustatory and Reward Brain Circuits in the Control of Food Intake. Adv. Tech. Stand. Neurosurg. 2011, 36, 31–59. [Google Scholar]
- Ochner, C.N.; Kwok, Y.; Conceição, E.; Pantazatos, S.P.; Puma, L.M.; Carnell, S.; Teixeira, J.; Hirsch, J.; Geliebter, A. Selective Reduction in Neural Responses to High Calorie Foods Following Gastric Bypass Surgery. Ann. Surg. 2011, 253, 502–507. [Google Scholar] [CrossRef]
- Godlewski, A.E.; Veyrune, J.L.; Nicolas, E.; Ciangura, C.A.; Chaussain, C.C.; Czernichow, S.; Basdevant, A.; Hennequin, M. Effect of Dental Status on Changes in Mastication in Patients with Obesity Following Bariatric Surgery. PLoS ONE 2011, 6, e22324. [Google Scholar] [CrossRef]
- Laurenius, A.; Larsson, I.; Bueter, M.; Melanson, K.J.; Bosaeus, I.; Forslund, H.B.; Lönroth, H.; Fändriks, L.; Olbers, T. Changes in Eating Behaviour and Meal Pattern Following Roux-En-Y Gastric Bypass. Int. J. Obes. 2012, 36, 348–355. [Google Scholar] [CrossRef]
- Horowitz, M.; Cook, D.J.; Collins, P.J.; Harding, P.E.; Hooper, M.J.; Walsh, J.F.; Shearman, D.J. Measurement of Gastric Emptying after Gastric Bypass Surgery Using Radionuclides. Br. J. Surg. 1982, 69, 655–657. [Google Scholar] [CrossRef]
- Kotler, D.P.; Sherman, D.; Bloom, S.R.; Holt, P.R. Malnutrition after Gastric Surgery. Association with Exaggerated Distal Intestinal Hormone Release. Dig. Dis. Sci. 1985, 30, 193–199. [Google Scholar] [CrossRef]
- Morínigo, R.; Moizé, V.; Musri, M.; Lacy, A.M.; Navarro, S.; Marín, J.L.; Delgado, S.; Casamitjana, R.; Vidal, J. Glucagon-like Peptide-1, Peptide YY, Hunger, and Satiety after Gastric Bypass Surgery in Morbidly Obese Subjects. J. Clin. Endocrinol. Metab. 2006, 91, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J. On the Physiology of GIP and GLP-1. Horm. Metab. Res. 2004, 36, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Bose, M.; Machineni, S.; Oliván, B.; Teixeira, J.; McGinty, J.J.; Bawa, B.; Koshy, N.; Colarusso, A.; Laferrère, B. Superior Appetite Hormone Profile after Equivalent Weight Loss by Gastric Bypass Compared to Gastric Banding. Obesity 2010, 18, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Borg, C.M.; le Roux, C.W.; Ghatei, M.A.; Bloom, S.R.; Patel, A.G. Biliopancreatic Diversion in Rats Is Associated with Intestinal Hypertrophy and with Increased GLP-1, GLP-2 and PYY Levels. Obes. Surg. 2007, 17, 1193–1198. [Google Scholar] [CrossRef]
- Tsoli, M.; Chronaiou, A.; Kehagias, I.; Kalfarentzos, F.; Alexandrides, T.K. Hormone Changes and Diabetes Resolution after Biliopancreatic Diversion and Laparoscopic Sleeve Gastrectomy: A Comparative Prospective Study. Surg. Obes. Relat. Dis. 2013, 9, 667–677. [Google Scholar] [CrossRef]
- Bose, M.; Teixeira, J.; Olivan, B.; Bawa, B.; Arias, S.; Machineni, S.; Pi-Sunyer, F.X.; Scherer, P.E.; Laferrère, B. Weight Loss and Incretin Responsiveness Improve Glucose Control Independently after Gastric Bypass Surgery. J. Diabetes 2010, 2, 47–55. [Google Scholar] [CrossRef]
- Rao, R.S.; Kini, S. GIP and Bariatric Surgery. Obes. Surg. 2011, 21, 244–252. [Google Scholar] [CrossRef]
- Laferrère, B.; Swerdlow, N.; Bawa, B.; Arias, S.; Bose, M.; Oliván, B.; Teixeira, J.; McGinty, J.; Rother, K.I. Rise of Oxyntomodulin in Response to Oral Glucose after Gastric Bypass Surgery in Patients with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2010, 95, 4072–4076. [Google Scholar] [CrossRef]
- Foschi, D.; Corsi, F.; Pisoni, L.; Vago, T.; Bevilacqua, M.; Asti, E.; Righi, I.; Trabucchi, E. Plasma Cholecystokinin Levels after Vertical Banded Gastroplasty: Effects of an Acidified Meal. Obes. Surg. 2004, 14, 644–647. [Google Scholar] [CrossRef]
- Peterli, R.; Steinert, R.E.; Woelnerhanssen, B.; Peters, T.; Christoffel-Courtin, C.; Gass, M.; Kern, B.; von Fluee, M.; Beglinger, C. Metabolic and Hormonal Changes after Laparoscopic Roux-En-Y Gastric Bypass and Sleeve Gastrectomy: A Randomized, Prospective Trial. Obes. Surg. 2012, 22, 740–748. [Google Scholar] [CrossRef]
- Shankar, P.; Boylan, M.; Sriram, K. Micronutrient Deficiencies after Bariatric Surgery. Nutrition 2010, 26, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Maljaars, P.W.J.; Peters, H.P.F.; Mela, D.J.; Masclee, A.A.M. Ileal Brake: A Sensible Food Target for Appetite Control. A Review. Physiol. Behav. 2008, 95, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.F. The Continuing Importance of Bile Acids in Liver and Intestinal Disease. Arch. Intern. Med. 1999, 159, 2647–2658. [Google Scholar] [CrossRef] [PubMed]
- Chambers, A.P.; Jessen, L.; Ryan, K.K.; Sisley, S.; Wilson-Pérez, H.E.; Stefater, M.A.; Gaitonde, S.G.; Sorrell, J.E.; Toure, M.; Berger, J.; et al. Weight-Independent Changes in Blood Glucose Homeostasis after Gastric Bypass or Vertical Sleeve Gastrectomy in Rats. Gastroenterology 2011, 141, 950–958. [Google Scholar] [CrossRef]
- Promintzer-Schifferl, M.; Prager, G.; Anderwald, C.; Mandl, M.; Esterbauer, H.; Shakeri-Leidenmühler, S.; Pacini, G.; Stadler, M.; Bischof, M.G.; Ludvik, B.; et al. Effects of Gastric Bypass Surgery on Insulin Resistance and Insulin Secretion in Nondiabetic Obese Patients. Obesity 2011, 19, 1420–1426. [Google Scholar] [CrossRef]
- Dunn, J.P.; Abumrad, N.N.; Breitman, I.; Marks-Shulman, P.A.; Flynn, C.R.; Jabbour, K.; Feurer, I.D.; Tamboli, R.A. Hepatic and Peripheral Insulin Sensitivity and Diabetes Remission at 1 Month after Roux-En-Y Gastric Bypass Surgery in Patients Randomized to Omentectomy. Diabetes Care 2012, 35, 137–142. [Google Scholar] [CrossRef]
- Bharucha, A.E. Lower Gastrointestinal Functions. Neurogastroenterol. Motil. 2008, 20 (Suppl. S1), 103–113. [Google Scholar] [CrossRef]
- Salminen, S.; Bouley, C.; Boutron-Ruault, M.C.; Cummings, J.H.; Franck, A.; Gibson, G.R.; Isolauri, E.; Moreau, M.C.; Roberfroid, M.; Rowland, I. Functional Food Science and Gastrointestinal Physiology and Function. Br. J. Nutr. 1998, 80 (Suppl. S1), S147–S171. [Google Scholar] [CrossRef]
- Zhang, H.; DiBaise, J.K.; Zuccolo, A.; Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.; Rittmann, B.E.; et al. Human Gut Microbiota in Obesity and after Gastric Bypass. Proc. Natl. Acad. Sci. USA 2009, 106, 2365–2370. [Google Scholar] [CrossRef]
- Woodard, G.A.; Encarnacion, B.; Downey, J.R.; Peraza, J.; Chong, K.; Hernandez-Boussard, T.; Morton, J.M. Probiotics Improve Outcomes after Roux-En-Y Gastric Bypass Surgery: A Prospective Randomized Trial. J. Gastrointest. Surg. 2009, 13, 1198–1204. [Google Scholar] [CrossRef]
- Chaston, T.B.; Dixon, J.B.; O’Brien, P.E. Changes in Fat-Free Mass during Significant Weight Loss: A Systematic Review. Int. J. Obes. 2007, 31, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Aasheim, E.T.; Hofsø, D.; Hjelmesaeth, J.; Birkeland, K.I.; Bøhmer, T. Vitamin Status in Morbidly Obese Patients: A Cross-Sectional Study. Am. J. Clin. Nutr. 2008, 87, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Busetto, L.; Dicker, D.; Azran, C.; Batterham, R.L.; Farpour-Lambert, N.; Fried, M.; Hjelmesæth, J.; Kinzl, J.; Leitner, D.R.; Makaronidis, J.M.; et al. Practical Recommendations of the Obesity Management Task Force of the European Association for the Study of Obesity for the Post-Bariatric Surgery Medical Management. Obes. Facts 2017, 10, 597–632. [Google Scholar] [CrossRef] [PubMed]
- Mechanick, J.I.; Youdim, A.; Jones, D.B.; Garvey, W.T.; Hurley, D.L.; McMahon, M.M.; Heinberg, L.J.; Kushner, R.; Adams, T.D.; Shikora, S.; et al. Clinical Practice Guidelines for the Perioperative Nutritional, Metabolic, and Nonsurgical Support of the Bariatric Surgery Patient--2013 Update: Cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society F. Obesity 2013, 21 (Suppl. S1), S1–S27. [Google Scholar] [CrossRef]
- Marsk, R.; Jonas, E.; Rasmussen, F.; Näslund, E. Nationwide Cohort Study of Post-Gastric Bypass Hypoglycaemia Including 5,040 Patients Undergoing Surgery for Obesity in 1986-2006 in Sweden. Diabetologia 2010, 53, 2307–2311. [Google Scholar] [CrossRef]
- Stein, J.; Stier, C.; Raab, H.; Weiner, R. Review Article: The Nutritional and Pharmacological Consequences of Obesity Surgery. Aliment. Pharmacol. Ther. 2014, 40, 582–609. [Google Scholar] [CrossRef]
- Schweiger, C.; Keidar, A. Nutritional deficiencies in bariatric surgery patients: Prevention, diagnosis and treatment. Harefuah 2010, 149, 715–720, 748. [Google Scholar]
- Clayton, R.D.; Carucci, L.R. Imaging Following Bariatric Surgery: Roux-En-Y Gastric Bypass, Laparoscopic Adjustable Gastric Banding and Sleeve Gastrectomy. Br. J. Radiol. 2018, 91, 20180031. [Google Scholar] [CrossRef]
- Arterburn, D.E.; Telem, D.A.; Kushner, R.F.; Courcoulas, A.P. Benefits and Risks of Bariatric Surgery in Adults: A Review. JAMA 2020, 324, 879–887. [Google Scholar] [CrossRef]
- Nor Hanipah, Z.; Hsin, M.-C.; Liu, C.-C.; Huang, C.-K. Laparoscopic Loop Duodenaljejunal Bypass with Sleeve Gastrectomy in Type 2 Diabetic Patients. Surg. Obes. Relat. Dis. 2019, 15, 696–702. [Google Scholar] [CrossRef]
- Ukleja, A. Dumping Syndrome: Pathophysiology and Treatment. Nutr. Clin. Pract. 2005, 20, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Vecht, J.; Masclee, A.A.; Lamers, C.B. The Dumping Syndrome. Current Insights into Pathophysiology, Diagnosis and Treatment. Scand. J. Gastroenterol. 1997, 223, 21–27. [Google Scholar]
- Schauer, P.R.; Ikramuddin, S.; Gourash, W.; Ramanathan, R.; Luketich, J. Outcomes after Laparoscopic Roux-En-Y Gastric Bypass for Morbid Obesity. Ann. Surg. 2000, 232, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Heber, D.; Greenway, F.L.; Kaplan, L.M.; Livingston, E.; Salvador, J.; Still, C. Endocrine and Nutritional Management of the Post-Bariatric Surgery Patient: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2010, 95, 4823–4843. [Google Scholar] [CrossRef]
- Jeong, H.J.; Park, J.W.; Kim, Y.J.; Lee, Y.G.; Jang, Y.W.; Seo, J.W. Wernicke’s Encephalopathy after Sleeve Gastrectomy for Morbid Obesity—A Case Report. Ann. Rehabil. Med. 2011, 35, 583–586. [Google Scholar] [CrossRef]
- Potoczna, N.; Harfmann, S.; Steffen, R.; Briggs, R.; Bieri, N.; Horber, F.F. Bowel Habits after Bariatric Surgery. Obes. Surg. 2008, 18, 1287–1296. [Google Scholar] [CrossRef]
- Fornari, F.; Madalosso, C.A.S.; Farré, R.; Gurski, R.R.; Thiesen, V.; Callegari-Jacques, S.M. The Role of Gastro-Oesophageal Pressure Gradient and Sliding Hiatal Hernia on Pathological Gastro-Oesophageal Reflux in Severely Obese Patients. Eur. J. Gastroenterol. Hepatol. 2010, 22, 404–411. [Google Scholar] [CrossRef]
- Sarkhosh, K.; Birch, D.W.; Sharma, A.; Karmali, S. Complications Associated with Laparoscopic Sleeve Gastrectomy for Morbid Obesity: A Surgeon’s Guide. Can. J. Surg. 2013, 56, 347–352. [Google Scholar] [CrossRef]
- Flegal, K.M.; Carroll, M.D.; Kit, B.K.; Ogden, C.L. Prevalence of Obesity and Trends in the Distribution of Body Mass Index among US Adults, 1999–2010. JAMA 2012, 307, 491–497. [Google Scholar] [CrossRef]
- García-García, M.L.; Martín-Lorenzo, J.G.; Campillo-Soto, A.; Torralba-Martínez, J.A.; Lirón-Ruiz, R.; Miguel-Perelló, J.; Mengual-Ballester, M.; Aguayo-Albasini, J.L. Complications and level of satisfaction after dermolipectomy and abdominoplasty post-bariatric surgery. Cir. Esp. 2014, 92, 254–260. [Google Scholar] [CrossRef]
- Wyatt, S.B.; Winters, K.P.; Dubbert, P.M. Overweight and Obesity: Prevalence, Consequences, and Causes of a Growing Public Health Problem. Am. J. Med. Sci. 2006, 331, 166–174. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.M.; Sarr, M.G.; Clark, M.M.; Gall, M.M.; Knoetgen, J., 3rd; Service, F.J.; Laskowski, E.R.; Hurley, D.L. Clinical Management after Bariatric Surgery: Value of a Multidisciplinary Approach. Mayo Clin. Proc. 2006, 81, S34–S45. [Google Scholar] [CrossRef] [PubMed]
- Spaniolas, K.; Kasten, K.R.; Celio, A.; Burruss, M.B.; Pories, W.J. Postoperative Follow-up After Bariatric Surgery: Effect on Weight Loss. Obes. Surg. 2016, 26, 900–903. [Google Scholar] [CrossRef] [PubMed]
- Narbro, K.; Agren, G.; Jonsson, E.; Näslund, I.; Sjöström, L.; Peltonen, M. Pharmaceutical Costs in Obese Individuals: Comparison with a Randomly Selected Population Sample and Long-Term Changes after Conventional and Surgical Treatment: The SOS Intervention Study. Arch. Intern. Med. 2002, 162, 2061–2069. [Google Scholar] [CrossRef] [PubMed]
- Arterburn, D.E.; Bogart, A.; Sherwood, N.E.; Sidney, S.; Coleman, K.J.; Haneuse, S.; O’Connor, P.J.; Theis, M.K.; Campos, G.M.; McCulloch, D.; et al. A Multisite Study of Long-Term Remission and Relapse of Type 2 Diabetes Mellitus Following Gastric Bypass. Obes. Surg. 2013, 23, 93–102. [Google Scholar] [CrossRef]
- Pories, W.J.; Swanson, M.S.; MacDonald, K.G.; Long, S.B.; Morris, P.G.; Brown, B.M.; Barakat, H.A.; DeRamon, R.A.; Israel, G.; Dolezal, J.M. Who Would Have Thought It? An Operation Proves to Be the Most Effective Therapy for Adult-Onset Diabetes Mellitus. Ann. Surg. 1995, 222, 332–339. [Google Scholar] [CrossRef]
- Sjöström, L.; Lindroos, A.-K.; Peltonen, M.; Torgerson, J.; Bouchard, C.; Carlsson, B.; Dahlgren, S.; Larsson, B.; Narbro, K.; Sjöström, C.D.; et al. Lifestyle, Diabetes, and Cardiovascular Risk Factors 10 Years after Bariatric Surgery. N. Engl. J. Med. 2004, 351, 2683–2693. [Google Scholar] [CrossRef]
- Wentworth, J.M.; Playfair, J.; Laurie, C.; Ritchie, M.E.; Brown, W.A.; Burton, P.; Shaw, J.E.; O’Brien, P.E. Multidisciplinary Diabetes Care with and without Bariatric Surgery in Overweight People: A Randomised Controlled Trial. Lancet. Diabetes Endocrinol. 2014, 2, 545–552. [Google Scholar] [CrossRef]
- Ding, S.-A.; Simonson, D.C.; Wewalka, M.; Halperin, F.; Foster, K.; Goebel-Fabbri, A.; Hamdy, O.; Clancy, K.; Lautz, D.; Vernon, A.; et al. Adjustable Gastric Band Surgery or Medical Management in Patients with Type 2 Diabetes: A Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2015, 100, 2546–2556. [Google Scholar] [CrossRef]
- Ikramuddin, S.; Korner, J.; Lee, W.-J.; Thomas, A.J.; Connett, J.E.; Bantle, J.P.; Leslie, D.B.; Wang, Q.; Inabnet, W.B., 3rd; Jeffery, R.W.; et al. Lifestyle Intervention and Medical Management With vs Without Roux-En-Y Gastric Bypass and Control of Hemoglobin A1c, LDL Cholesterol, and Systolic Blood Pressure at 5 Years in the Diabetes Surgery Study. JAMA 2018, 319, 266–278. [Google Scholar] [CrossRef]
- Schauer, P.R.; Bhatt, D.L.; Kirwan, J.P.; Wolski, K.; Aminian, A.; Brethauer, S.A.; Navaneethan, S.D.; Singh, R.P.; Pothier, C.E.; Nissen, S.E.; et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes—5-Year Outcomes. N. Engl. J. Med. 2017, 376, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Courcoulas, A.P.; Gallagher, J.W.; Neiberg, R.H.; Eagleton, E.B.; DeLany, J.P.; Lang, W.; Punchai, S.; Gourash, W.; Jakicic, J.M. Bariatric Surgery vs Lifestyle Intervention for Diabetes Treatment: 5-Year Outcomes from a Randomized Trial. J. Clin. Endocrinol. Metab. 2020, 105, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Müller-Stich, B.P.; Senft, J.D.; Warschkow, R.; Kenngott, H.G.; Billeter, A.T.; Vit, G.; Helfert, S.; Diener, M.K.; Fischer, L.; Büchler, M.W.; et al. Surgical versus Medical Treatment of Type 2 Diabetes Mellitus in Nonseverely Obese Patients: A Systematic Review and Meta-Analysis. Ann. Surg. 2015, 261, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Hofsø, D.; Nordstrand, N.; Johnson, L.K.; Karlsen, T.I.; Hager, H.; Jenssen, T.; Bollerslev, J.; Godang, K.; Sandbu, R.; Røislien, J.; et al. Obesity-Related Cardiovascular Risk Factors after Weight Loss: A Clinical Trial Comparing Gastric Bypass Surgery and Intensive Lifestyle Intervention. Eur. J. Endocrinol. 2010, 163, 735–745. [Google Scholar] [CrossRef]
- Courcoulas, A.P.; King, W.C.; Belle, S.H.; Berk, P.; Flum, D.R.; Garcia, L.; Gourash, W.; Horlick, M.; Mitchell, J.E.; Pomp, A.; et al. Seven-Year Weight Trajectories and Health Outcomes in the Longitudinal Assessment of Bariatric Surgery (LABS) Study. JAMA Surg. 2018, 153, 427–434. [Google Scholar] [CrossRef]
- Climent, E.; Goday, A.; Pedro-Botet, J.; Solà, I.; Oliveras, A.; Ramón, J.M.; Flores-Le Roux, J.A.; Checa, M.Á.; Benaiges, D. Laparoscopic Roux-En-Y Gastric Bypass versus Laparoscopic Sleeve Gastrectomy for 5-Year Hypertension Remission in Obese Patients: A Systematic Review and Meta-Analysis. J. Hypertens. 2020, 38, 185–195. [Google Scholar] [CrossRef]
- Sjöström, C.D.; Peltonen, M.; Wedel, H.; Sjöström, L. Differentiated Long-Term Effects of Intentional Weight Loss on Diabetes and Hypertension. Hypertension 2000, 36, 20–25. [Google Scholar] [CrossRef]
- Schiavon, C.A.; Bersch-Ferreira, A.C.; Santucci, E.V.; Oliveira, J.D.; Torreglosa, C.R.; Bueno, P.T.; Frayha, J.C.; Santos, R.N.; Damiani, L.P.; Noujaim, P.M.; et al. Effects of Bariatric Surgery in Obese Patients with Hypertension: The GATEWAY Randomized Trial (Gastric Bypass to Treat Obese Patients with Steady Hypertension). Circulation 2018, 137, 1132–1142. [Google Scholar] [CrossRef]
- Benaiges, D.; Sagué, M.; Flores-Le Roux, J.A.; Pedro-Botet, J.; Ramón, J.M.; Villatoro, M.; Chillarón, J.J.; Pera, M.; Más, A.; Grande, L.; et al. Predictors of Hypertension Remission and Recurrence After Bariatric Surgery. Am. J. Hypertens. 2016, 29, 653–659. [Google Scholar] [CrossRef]
- Piché, M.-E.; Tardif, I.; Auclair, A.; Poirier, P. Effects of Bariatric Surgery on Lipid-Lipoprotein Profile. Metabolism. 2021, 115, 154441. [Google Scholar] [CrossRef]
- Liu, D.-F.; Ma, Z.-Y.; Zhang, C.-S.; Lin, Q.; Li, M.-W.; Su, K.-Z.; Li, Y.-R.; Wang, H.-D.; Zang, Q.; Dong, J. The Effects of Bariatric Surgery on Dyslipidemia and Insulin Resistance in Overweight Patients with or without Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Surg. Obes. Relat. Dis. 2021, 17, 1655–1672. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Sun, J.; Li, R.; Wang, Z.; Ding, H.; Zhu, T.; Wang, G. A Comprehensive Comparison of LRYGB and LSG in Obese Patients Including the Effects on QoL, Comorbidities, Weight Loss, and Complications: A Systematic Review and Meta-Analysis. Obes. Surg. 2020, 30, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Noria, S.F.; Grantcharov, T. Biological Effects of Bariatric Surgery on Obesity-Related Comorbidities. Can. J. Surg. 2013, 56, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Bouldin, M.J.; Ross, L.A.; Sumrall, C.D.; Loustalot, F.V.; Low, A.K.; Land, K.K. The Effect of Obesity Surgery on Obesity Comorbidity. Am. J. Med. Sci. 2006, 331, 183–193. [Google Scholar] [CrossRef]
- Wong, A.-M.; Barnes, H.N.; Joosten, S.A.; Landry, S.A.; Dabscheck, E.; Mansfield, D.R.; Dharmage, S.C.; Senaratna, C.V.; Edwards, B.A.; Hamilton, G.S. The Effect of Surgical Weight Loss on Obstructive Sleep Apnoea: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2018, 42, 85–99. [Google Scholar] [CrossRef]
- Buchwald, H.; Avidor, Y.; Braunwald, E.; Jensen, M.D.; Pories, W.; Fahrbach, K.; Schoelles, K. Bariatric Surgery: A Systematic Review and Meta-Analysis. JAMA 2004, 292, 1724–1737. [Google Scholar] [CrossRef]
- Reyes, C.; Leyland, K.M.; Peat, G.; Cooper, C.; Arden, N.K.; Prieto-Alhambra, D. Association Between Overweight and Obesity and Risk of Clinically Diagnosed Knee, Hip, and Hand Osteoarthritis: A Population-Based Cohort Study. Arthritis Rheumatol. 2016, 68, 1869–1875. [Google Scholar] [CrossRef]
- Radu, A.F.; Bungau, S.G.; Tit, D.M.; Behl, T.; Uivaraseanu, B.; Marcu, M.F. Highlighting the Benefits of Rehabilitation Treatments in Hip Osteoarthritis. Medicina 2022, 58, 494–571. [Google Scholar] [CrossRef]
- Groen, V.A.; van de Graaf, V.A.; Scholtes, V.A.B.; Sprague, S.; van Wagensveld, B.A.; Poolman, R.W. Effects of Bariatric Surgery for Knee Complaints in (Morbidly) Obese Adult Patients: A Systematic Review. Obes. Rev. 2015, 16, 161–170. [Google Scholar] [CrossRef]
- Hacken, B.; Rogers, A.; Chinchilli, V.; Silvis, M.; Mosher, T.; Black, K. Improvement in Knee Osteoarthritis Pain and Function Following Bariatric Surgery: 5-Year Follow-Up. Surg. Obes. Relat. Dis. 2019, 15, 979–984. [Google Scholar] [CrossRef]
- Li, S.; Luo, X.; Sun, H.; Wang, K.; Zhang, K.; Sun, X. Does Prior Bariatric Surgery Improve Outcomes Following Total Joint Arthroplasty in the Morbidly Obese? A Meta-Analysis. J. Arthroplast. 2019, 34, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Dağ, Z.Ö.; Dilbaz, B. Impact of Obesity on Infertility in Women. J. Turkish Ger. Gynecol. Assoc. 2015, 16, 111–117. [Google Scholar]
- Vitek, W.S.; Hoeger, K.M. Worth the Wait? Preconception Weight Reduction in Women and Men with Obesity and Infertility: A Narrative Review. Fertil. Steril. 2022, 118, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Soares Júnior, J.M.; Lobel, A.; Ejzenberg, D.; Serafıni, P.C.; Baracat, E.C. Bariatric Surgery in Infertile Women with Morbid Obesity: Defınitive Solution? Rev. Assoc. Med. Bras. 2018, 64, 565–567. [Google Scholar] [CrossRef]
- Pg Baharuddin, D.M.; Leik, N.K.O.; Hayati, F.; Mohd Daud, M.N.; See, E.; Sharif, S.Z.; Nik Lah, N.A.S. Successful Pregnancy in Morbidly Obese Lady with Polycystic Ovary Syndrome after Bariatric Surgery: A Case Report. Int. J. Surg. Case Rep. 2021, 85, 106235. [Google Scholar] [CrossRef]
- Cornthwaite, K.; Prajapati, C.; Lenguerrand, E.; Knight, M.; Blencowe, N.; Johnson, A.; Draycott, T.; Siassakos, D. Pregnancy Outcomes Following Different Types of Bariatric Surgery: A National Cohort Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 260, 10–17. [Google Scholar] [CrossRef]
- Subak, L.L.; King, W.C.; Belle, S.H.; Chen, J.-Y.; Courcoulas, A.P.; Ebel, F.E.; Flum, D.R.; Khandelwal, S.; Pender, J.R.; Pierson, S.K.; et al. Urinary Incontinence Before and After Bariatric Surgery. JAMA Intern. Med. 2015, 175, 1378–1387. [Google Scholar] [CrossRef]
- Chapman, A.; Kiroff, G. Laparoscopic Adjustable Gastric Banding for the Treatment of Obesity. Available online: https://www.ncbi.nlm.nih.gov/books/NBK69433/ (accessed on 11 November 2024).
- Srikanth, M.S.; Keskey, T.; Fox, S.R.; Oh, K.H.; Fox, E.R.; Fox, K.M. Computed Tomography Patterns in Small Bowel Obstruction after Open Distal Gastric Bypass. Obes. Surg. 2004, 14, 811–822. [Google Scholar] [CrossRef]
- Fisher, B.L.; Atkinson, J.D.; Cottam, D. Incidence of Gastroenterostomy Stenosis in Laparoscopic Roux-En-Y Gastric Bypass Using 21- or 25-Mm Circular Stapler: A Randomized Prospective Blinded Study. Surg. Obes. Relat. Dis. 2007, 3, 176–179. [Google Scholar] [CrossRef]
- Donatelli, G.; Dumont, J.-L.; Pourcher, G.; Tranchart, H.; Tuszynski, T.; Dagher, I.; Catheline, J.-M.; Chiche, R.; Marmuse, J.-P.; Dritsas, S.; et al. Pneumatic Dilation for Functional Helix Stenosis after Sleeve Gastrectomy: Long-Term Follow-up (with Videos). Surg. Obes. Relat. Dis. 2017, 13, 943–950. [Google Scholar] [CrossRef]
- Rebibo, L.; Hakim, S.; Dhahri, A.; Yzet, T.; Delcenserie, R.; Regimbeau, J.-M. Gastric Stenosis After Laparoscopic Sleeve Gastrectomy: Diagnosis and Management. Obes. Surg. 2016, 26, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Doumouras, A.G.; Saleh, F.; Hong, D. 30-Day Readmission after Bariatric Surgery in a Publicly Funded Regionalized Center of Excellence System. Surg. Endosc. 2016, 30, 2066–2072. [Google Scholar] [CrossRef] [PubMed]
- Martinino, A.; Bhandari, M.; Abouelazayem, M.; Abdellatif, A.; Koshy, R.M.; Mahawar, K. Perforated Marginal Ulcer after Gastric Bypass for Obesity: A Systematic Review. Surg. Obes. Relat. Dis. 2022, 18, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, H.M.; Meron-Eldar, S.; Yenumula, P.; Rogula, T.; Brethauer, S.A.; Schauer, P.R. Incidence and Management of Bleeding Complications after Gastric Bypass Surgery in the Morbidly Obese. Surg. Obes. Relat. Dis. 2012, 8, 729–735. [Google Scholar] [CrossRef]
- Turrentine, F.E.; Denlinger, C.E.; Simpson, V.B.; Garwood, R.A.; Guerlain, S.; Agrawal, A.; Friel, C.M.; LaPar, D.J.; Stukenborg, G.J.; Jones, R.S. Morbidity, Mortality, Cost, and Survival Estimates of Gastrointestinal Anastomoticleaks. J. Am. Coll. Surg. 2015, 220, 195–206. [Google Scholar] [CrossRef]
- Chang, S.-H.; Freeman, N.L.B.; Lee, J.A.; Stoll, C.R.T.; Calhoun, A.J.; Eagon, J.C.; Colditz, G.A. Early Major Complications after Bariatric Surgery in the USA, 2003-2014: A Systematic Review and Meta-Analysis. Obes. Rev. 2018, 19, 529–537. [Google Scholar] [CrossRef]
- Stein, P.D.; Matta, F. Pulmonary Embolism and Deep Venous Thrombosis Following Bariatric Surgery. Obes. Surg. 2013, 23, 663–668. [Google Scholar] [CrossRef]
- Gonzalez, R.; Haines, K.; Nelson, L.G.; Gallagher, S.F.; Murr, M.M. Predictive Factors of Thromboembolic Events in Patients Undergoing Roux-En-Y Gastric Bypass. Surg. Obes. Relat. Dis. 2006, 2, 30–36. [Google Scholar] [CrossRef]
- Jamal, M.H.; Corcelles, R.; Shimizu, H.; Kroh, M.; Safdie, F.M.; Rosenthal, R.; Brethauer, S.A.; Schauer, P.R. Thromboembolic Events in Bariatric Surgery: A Large Multi-Institutional Referral Center Experience. Surg. Endosc. 2015, 29, 376–380. [Google Scholar] [CrossRef]
- Finks, J.F.; English, W.J.; Carlin, A.M.; Krause, K.R.; Share, D.A.; Banerjee, M.; Birkmeyer, J.D.; Birkmeyer, N.J. Predicting Risk for Venous Thromboembolism with Bariatric Surgery: Results from the Michigan Bariatric Surgery Collaborative. Ann. Surg. 2012, 255, 1100–1104. [Google Scholar] [CrossRef]
- Portincasa, P.; Moschetta, A.; Palasciano, G. Cholesterol Gallstone Disease. Lancet 2006, 368, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Coupaye, M.; Castel, B.; Sami, O.; Tuyeras, G.; Msika, S.; Ledoux, S. Comparison of the Incidence of Cholelithiasis after Sleeve Gastrectomy and Roux-En-Y Gastric Bypass in Obese Patients: A Prospective Study. Surg. Obes. Relat. Dis. 2015, 11, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Csendes, A.; Csendes, P.; Orellana, O.; Cuneo, N.; Figueroa, M.; Martinez, G. Patients Remain at High Risk of Gallstones Development Late (10 y) After Sleeve Gastrectomy? Surg. Laparosc. Endosc. Percutaneous Tech. 2019, 29, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Jonas, E.; Marsk, R.; Rasmussen, F.; Freedman, J. Incidence of Postoperative Gallstone Disease after Antiobesity Surgery: Population-Based Study from Sweden. Surg. Obes. Relat. Dis. 2010, 6, 54–58. [Google Scholar] [CrossRef]
- Alsaif, F.A.; Alabdullatif, F.S.; Aldegaither, M.K.; Alnaeem, K.A.; Alzamil, A.F.; Alabdulkarim, N.H.; Aldohayan, A.D. Incidence of Symptomatic Cholelithiasis after Laparoscopic Sleeve Gastrectomy and Its Association with Rapid Weight Loss. Saudi J. Gastroenterol. 2020, 26, 94–98. [Google Scholar] [CrossRef]
- Talha, A.; Abdelbaki, T.; Farouk, A.; Hasouna, E.; Azzam, E.; Shehata, G. Cholelithiasis after Bariatric Surgery, Incidence, and Prophylaxis: Randomized Controlled Trial. Surg. Endosc. 2020, 34, 5331–5337. [Google Scholar] [CrossRef]
- Asplin, J.R.; Coe, F.L. Hyperoxaluria in Kidney Stone Formers Treated with Modern Bariatric Surgery. J. Urol. 2007, 177, 565–569. [Google Scholar] [CrossRef]
- Lieske, J.C.; Mehta, R.A.; Milliner, D.S.; Rule, A.D.; Bergstralh, E.J.; Sarr, M.G. Kidney Stones Are Common after Bariatric Surgery. Kidney Int. 2015, 87, 839–845. [Google Scholar] [CrossRef]
- Gonzalez, R.D.; Canales, B.K. Kidney Stone Risk Following Modern Bariatric Surgery. Curr. Urol. Rep. 2014, 15, 401. [Google Scholar] [CrossRef]
- Semins, M.J.; Matlaga, B.R.; Shore, A.D.; Steele, K.; Magnuson, T.; Johns, R.; Makary, M.A. The Effect of Gastric Banding on Kidney Stone Disease. Urology 2009, 74, 746–749. [Google Scholar] [CrossRef]
- Duffey, B.G.; Pedro, R.N.; Makhlouf, A.; Kriedberg, C.; Stessman, M.; Hinck, B.; Ikramuddin, S.; Kellogg, T.; Slusarek, B.; Monga, M. Roux-En-Y Gastric Bypass Is Associated with Early Increased Risk Factors for Development of Calcium Oxalate Nephrolithiasis. J. Am. Coll. Surg. 2008, 206, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Ormanji, M.S.; Rodrigues, F.G.; Heilberg, I.P. Dietary Recommendations for Bariatric Patients to Prevent Kidney Stone Formation. Nutrients 2020, 12, 1442. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Mandel, E.I.; Curhan, G.C.; Gambaro, G.; Taylor, E.N. Dietary Protein and Potassium, Diet-Dependent Net Acid Load, and Risk of Incident Kidney Stones. Clin. J. Am. Soc. Nephrol. 2016, 11, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, L.; Narbro, K.; Sjöström, C.D.; Karason, K.; Larsson, B.; Wedel, H.; Lystig, T.; Sullivan, M.; Bouchard, C.; Carlsson, B.; et al. Effects of Bariatric Surgery on Mortality in Swedish Obese Subjects. N. Engl. J. Med. 2007, 357, 741–752. [Google Scholar] [CrossRef]
- Gregory, N.S. The Effects of Bariatric Surgery on Bone Metabolism. Endocrinol. Metab. Clin. N. Am. 2017, 46, 105–116. [Google Scholar] [CrossRef]
- Sakhaee, K.; Griffith, C.; Pak, C.Y.C. Biochemical Control of Bone Loss and Stone-Forming Propensity by Potassium-Calcium Citrate after Bariatric Surgery. Surg. Obes. Relat. Dis. 2012, 8, 67–72. [Google Scholar] [CrossRef]
- Ben-Porat, T.; Elazary, R.; Sherf-Dagan, S.; Goldenshluger, A.; Brodie, R.; Mintz, Y.; Weiss, R. Bone Health Following Bariatric Surgery: Implications for Management Strategies to Attenuate Bone Loss. Adv. Nutr. 2018, 9, 114–127. [Google Scholar] [CrossRef]
- Stein, E.M.; Carrelli, A.; Young, P.; Bucovsky, M.; Zhang, C.; Schrope, B.; Bessler, M.; Zhou, B.; Wang, J.; Guo, X.E.; et al. Bariatric Surgery Results in Cortical Bone Loss. J. Clin. Endocrinol. Metab. 2013, 98, 541–549. [Google Scholar] [CrossRef]
- Schafer, A.L.; Weaver, C.M.; Black, D.M.; Wheeler, A.L.; Chang, H.; Szefc, G.V.; Stewart, L.; Rogers, S.J.; Carter, J.T.; Posselt, A.M.; et al. Intestinal Calcium Absorption Decreases Dramatically After Gastric Bypass Surgery Despite Optimization of Vitamin D Status. J. Bone Miner. Res. 2015, 30, 1377–1385. [Google Scholar] [CrossRef]
- Nelson, W.K.; Fatima, J.; Houghton, S.G.; Thompson, G.B.; Kendrick, M.L.; Mai, J.L.; Kennel, K.A.; Sarr, M.G. The Malabsorptive Very, Very Long Limb Roux-En-Y Gastric Bypass for Super Obesity: Results in 257 Patients. Surgery 2006, 140, 517–522. [Google Scholar] [CrossRef]
- Canales, B.K.; Ellen, J.; Khan, S.R.; Hatch, M. Steatorrhea and Hyperoxaluria Occur after Gastric Bypass Surgery in Obese Rats Regardless of Dietary Fat or Oxalate. J. Urol. 2013, 190, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Heinberg, L.J.; Bond, D.S.; Carroll, I.; Crosby, R.; Fodor, A.; Fouladi, F.; Gunstad, J.; Mitchell, J.; Peat, C.; Steffen, K. Identifying Mechanisms That Predict Weight Trajectory after Bariatric Surgery: Rationale and Design of the Biobehavioral Trial. Surg. Obes. Relat. Dis. 2020, 16, 1816–1826. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarian, H.; Bhutta, H.Y.; Heshmati, K.; Unes Kunju, S.; Sheu, E.G.; Tavakkoli, A. Pre-Operative Predictors of Weight Loss and Weight Regain Following Roux-En-Y Gastric Bypass Surgery: A Prospective Human Study. Obes. Surg. 2020, 30, 4852–4859. [Google Scholar] [CrossRef] [PubMed]
- Baig, S.J.; Priya, P.; Mahawar, K.K.; Shah, S. Weight Regain After Bariatric Surgery-A Multicentre Study of 9617 Patients from Indian Bariatric Surgery Outcome Reporting Group. Obes. Surg. 2019, 29, 1583–1592. [Google Scholar] [CrossRef]
- Cooper, T.C.; Simmons, E.B.; Webb, K.; Burns, J.L.; Kushner, R.F. Trends in Weight Regain Following Roux-En-Y Gastric Bypass (RYGB) Bariatric Surgery. Obes. Surg. 2015, 25, 1474–1481. [Google Scholar] [CrossRef]
- Lauti, M.; Kularatna, M.; Hill, A.G.; MacCormick, A.D. Weight Regain Following Sleeve Gastrectomy—a Systematic Review. Obes. Surg. 2016, 26, 1326–1334. [Google Scholar] [CrossRef]
- Colles, S.L.; Dixon, J.B.; O’Brien, P.E. Grazing and Loss of Control Related to Eating: Two High-Risk Factors Following Bariatric Surgery. Obesity 2008, 16, 615–622. [Google Scholar] [CrossRef]
- Athanasiadis, D.I.; Martin, A.; Kapsampelis, P.; Monfared, S.; Stefanidis, D. Factors Associated with Weight Regain Post-Bariatric Surgery: A Systematic Review. Surg. Endosc. 2021, 35, 4069–4084. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Rørth, R.; Jhund, P.S.; Docherty, K.F.; Sattar, N.; Preiss, D.; Køber, L.; Petrie, M.C.; McMurray, J.J. V Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. Lancet. Diabetes Endocrinol. 2019, 7, 776–785. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Edgerton, C.; Mehta, M.; Mou, D.; Dey, T.; Khaodhiar, L.; Tavakkoli, A. Patterns of Weight Loss Medication Utilization and Outcomes Following Bariatric Surgery. J. Gastrointest. Surg. 2021, 25, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.; Chaudhry, U.I.; Suzo, A.; Durkin, N.; Wehr, A.M.; Foreman, K.S.; Tychonievich, K.; Mikami, D.J.; Needleman, B.J.; Noria, S.F. Pharmacotherapy in Conjunction with a Diet and Exercise Program for the Treatment of Weight Recidivism or Weight Loss Plateau Post-Bariatric Surgery: A Retrospective Review. Obes. Surg. 2016, 26, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Yaylali, G.F.; Tekekoglu, S.; Akin, F. Sexual Dysfunction in Obese and Overweight Women. Int. J. Impot. Res. 2010, 22, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Dawes, A.J.; Maggard-Gibbons, M.; Maher, A.R.; Booth, M.J.; Miake-Lye, I.; Beroes, J.M.; Shekelle, P.G. Mental Health Conditions Among Patients Seeking and Undergoing Bariatric Surgery: A Meta-Analysis. JAMA 2016, 315, 150–163. [Google Scholar] [CrossRef]
- Buddeberg-Fischer, B.; Klaghofer, R.; Sigrist, S.; Buddeberg, C. Impact of Psychosocial Stress and Symptoms on Indication for Bariatric Surgery and Outcome in Morbidly Obese Patients. Obes. Surg. 2004, 14, 361–369. [Google Scholar] [CrossRef]
- Cox, S.; Brode, C. Predictors of Binge Eating among Bariatric Surgery Candidates: Disinhibition as a Mediator of the Relationship Between Depressive Symptoms and Binge Eating. Obes. Surg. 2018, 28, 1990–1996. [Google Scholar] [CrossRef]
- Kalarchian, M.A.; Marcus, M.D. Psychosocial Concerns Following Bariatric Surgery: Current Status. Curr. Obes. Rep. 2019, 8, 1–9. [Google Scholar] [CrossRef]
- Konttinen, H.; Sjöholm, K.; Jacobson, P.; Svensson, P.-A.; Carlsson, L.M.S.; Peltonen, M. Prediction of Suicide and Nonfatal Self-Harm After Bariatric Surgery: A Risk Score Based on Sociodemographic Factors, Lifestyle Behavior, and Mental Health: A Nonrandomized Controlled Trial. Ann. Surg. 2021, 274, 339–345. [Google Scholar] [CrossRef]
- Gordon, K.H.; King, W.C.; White, G.E.; Belle, S.H.; Courcoulas, A.P.; Ebel, F.E.; Engel, S.G.; Flum, D.R.; Hinojosa, M.W.; Pomp, A.; et al. A Longitudinal Examination of Suicide-Related Thoughts and Behaviors among Bariatric Surgery Patients. Surg. Obes. Relat. Dis. 2019, 15, 269–278. [Google Scholar] [CrossRef]
- Law, S.; Dong, S.; Zhou, F.; Zheng, D.; Wang, C.; Dong, Z. Bariatric Surgery and Mental Health Outcomes: An Umbrella Review. Front. Endocrinol. 2023, 14, 1283621. [Google Scholar] [CrossRef]
- Libeton, M.; Dixon, J.B.; Laurie, C.; O’Brien, P.E. Patient Motivation for Bariatric Surgery: Characteristics and Impact on Outcomes. Obes. Surg. 2004, 14, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Giordano, S.; Victorzon, M.; Koskivuo, I.; Suominen, E. Physical Discomfort Due to Redundant Skin in Post-Bariatric Surgery Patients. J. Plast. Reconstr. Aesthet. Surg. 2013, 66, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Shermak, M. Body Contouring Following Massive Weight Loss. Obes. Surg. 2004, 14, 1080–1085. [Google Scholar] [CrossRef] [PubMed]
- Kitzinger, H.B.; Abayev, S.; Pittermann, A.; Karle, B.; Bohdjalian, A.; Langer, F.B.; Prager, G.; Frey, M. After Massive Weight Loss: Patients’ Expectations of Body Contouring Surgery. Obes. Surg. 2012, 22, 544–548. [Google Scholar] [CrossRef]
- Mitchell, J.E.; Crosby, R.D.; Ertelt, T.W.; Marino, J.M.; Sarwer, D.B.; Thompson, J.K.; Lancaster, K.L.; Simonich, H.; Howell, L.M. The Desire for Body Contouring Surgery after Bariatric Surgery. Obes. Surg. 2008, 18, 1308–1312. [Google Scholar] [CrossRef]
- Ivezaj, V.; Grilo, C.M. The Complexity of Body Image Following Bariatric Surgery: A Systematic Review of the Literature. Obes. Rev. 2018, 19, 1116–1140. [Google Scholar] [CrossRef]
- Song, A.Y.; Rubin, J.P.; Thomas, V.; Dudas, J.R.; Marra, K.G.; Fernstrom, M.H. Body Image and Quality of Life in Post Massive Weight Loss Body Contouring Patients. Obesity 2006, 14, 1626–1636. [Google Scholar] [CrossRef]
Criteria for MBS | Recommendations | |
---|---|---|
BMI | 30–34.9 kg/m2 | Individuals suffering from type 2 diabetes. |
One medical issue linked to obesity. | ||
Patients whose nonsurgical weight reduction or co-morbidity improvement is not significant or long-lasting. | ||
35–40 kg/m2 without comorbidities | Individuals with a BMI of over 35 kg/m2, independent of the existence, degree, or absence of problems associated with obesity. | |
For Asian population | Patients with a BMI over 25 kg/m2 are considered to be clinically obese in the Asian community; the conventional BMI requirements alone should not be used to deny someone access to MBS. | |
Extreme age | Elderly | MBS is linked to somewhat greater rates of postoperative problems in septuagenarians than in younger people, but it still offers significant advantages in terms of weight loss and the remission of comorbid diseases. |
Indications for MBS include fragility, mental status, smoking status, and end-organ functionality. | ||
An age restriction for older individuals seeking MBS is not supported by any data, although it is advised to carefully choose patients. | ||
Pediatrics and adolescence | Both normal growth and pubertal development are unaffected by MBS. | |
MBS provides long-lasting weight loss and reduces comorbidities, and it is safe for people under the age of 18. | ||
Link to other therapies | MBS before a joint replacement | Orthopedic surgical societies recommend avoiding hip and knee replacement for patients with a BMI more than 40 kg/m2 due to the greater likelihood of recurrence and surgical complications, such as wound infection and deep vein thrombosis. |
Before total knee and hip replacement, MBS has decreased the length of hospital stays, surgery times, and early postoperative complications. | ||
For an individual with a BMI of over 30 kg/m2, MBS is recommended before joint arthroplasty. | ||
Treating abdominal wall hernias and MBS | One risk factor for the occurrence of ventral hernias is obesity. | |
To lower the risk of postoperative complications, MBS is advised before to ventral hernia repair, in patients with obesity and an abdominal wall hernia. | ||
MBS before receiving an organ transplant | Obesity may restrict opportunity to transplantation and is linked to end-stage organ disease; obesity presents special technical difficulties during surgery and is a relative contraindication for solid organ transplantation. | |
According to published data, people with grade 3 obesity and end-stage renal illness may be eligible for a kidney transplant following MBS. | ||
In certain individuals who would not otherwise be eligible, MBS has been demonstrated to be a safe and successful gateway to liver transplantation. | ||
MBS may increase lung transplant eligibility. | ||
MBS can be performed simultaneously or after solid organ transplantation, to lower mortality and complication rates. | ||
MBS can enhance the results of heart transplants. | ||
Patients with high risk factors | BMI ≥ 60 kg/m2 | MBS is both safe and effective. |
Research indicates that individuals with a BMI bigger than 60 kg/m2 are more likely to experience perioperative problems following MBS. | ||
The evidence shows that MBS is safe for patients whose starting BMI was 70 kg/m2. | ||
Individuals with liver cirrhosis | A major risk factor for both liver cirrhosis and metabolic dysfunction-associated liver disease is obesity. | |
MBS has been linked to liver fibrosis regression and histologic improvement in metabolic dysfunction-associated liver disease. | ||
MBS is linked to a lower risk of MAFLD developing into liver cirrhosis. | ||
High perioperative mortality is linked to MBS in patients with “decompensated” cirrhosis. To guarantee the greatest results, careful patient selection and surgical method selection are crucial. | ||
Individuals with heart failure | A major risk factor for both liver cirrhosis and metabolic dysfunction. MBS is linked to improved left ventricular ejection fraction, increased functional capacity, and an increased risk of heart transplantation in individuals with obesity with heart failure. | |
MBS has a low morbidity and death rate in individuals with HF and obesity, and it may be a helpful adjuvant prior to left ventricular assist device implantation or heart transplantation. | ||
Assessment of the patient | Interdisciplinary treatment | In preoperative and postoperative care of MBS patients, interdisciplinary treatment plays a crucial role. |
MBS adjustment | Adjustment surgery following MBS may be indicated for a variety of reasons: inadequate weight reduction or regain, inadequate co-morbidity remission, and the treatment of comorbidities, such as acid reflux. | |
Adjustment surgery following MBS might be linked to increased perioperative difficulties. Still, it can result in acceptable mortality and morbidity rates together with satisfactory metabolic outcomes. |
Categories/Age | Type of MBS | Results | Risks | Ref. |
---|---|---|---|---|
Older population ≥ 70 years old | LSG | Following an average follow-up of 31.3 and 33.5 months, 24.6 percent of the total body weight was lost. Remission of co-morbidities. | MBS is linked to a slightly increased incidence of complications following surgery. | [59,60] |
Pediatrics and adolescents/ ≤18 years old | RYGB | Significantly better. Improvement in cardiovascular co-morbidities and weight loss as compared to adolescents receiving medication care. Improvements in dyslipidemia and hypertension have been shown for up to eight years following surgery. Substantial loss of body weight and sustained reductions in cardiovascular risk factors and type 2 diabetes. | Dietary deficits, incisional hernias, failure of therapy resulting in surgical correction, and reflux gastroesophageal reflux are chronic issues that are most described. | [61,62,63,64] |
Affected Gastrointestinal Physiology/ What Changes | Mechanism of Action | Physiologic Role | Impact of MBS | Ref |
---|---|---|---|---|
Cephalic phase/ Sight, smell, thought or taste of food | Influencing the levels of ghrelin, insulin, PP, and gastrin | Ghrelin, an orexigenic hormone released by the stomach before a meal, increases appetite. | Initially suppressed ghrelin amount, but months following surgery, restore to their preoperative values. | [66,67,68] |
Pancreatic polypeptide, a pancreatic islet-expressed anorexigenic hormone that is released in response to dietary stimulus and necessitates intact parasympathetic vagal nerve system signaling. | Following RYGB and LSG, PP has typically been reported as stable; however, some studies have found a decrease in fasting levels following RYGB. | [69,70,71] | ||
Gastrin, mostly released by the stomach’s antrum’s G-cells, it helps release gastric acid and may also aid in the production of insulin through the islets of the pancreas’ gastrin receptors. | Gastrin levels are unchanged in some studies. According to one study, two weeks after RYGB, postprandial levels were reduced. According to a study on mice, postoperative weight reduction may be attributed to a decrease in gastrin following RYGB. | [72,73,74,75,76] | ||
Chewing and tasting/Chewing time, taste preference and food perception | Elevated concentrations of the satiety hormones GLP-1 and PYY. | The release of gastrointestinal hormones that are essential for energy homeostasis, food intake, and satisfaction is regulated by signals that the brain receives from the sense of taste and gastrointestinal membrane. | A modification in flavor and a lack of hunger. A selective decrease in brain reactions to high-calorie foods could be the cause of this. Longer chewing durations and more chewing cycles while eating solid meals. A reduction in meal size. | [77,78,79,80,81] |
Gastric phase/Emptying the stomach entero-gastrointestinal transit time and values | Increasing or decreasing the stomach emptying time. | Emptying the stomach and intestinal transit time are controlled by hormonal, neurological, and stomach contents. | Slower stomach emptying time for solids but faster gastric emptying for liquids. Higher levels of glucagon and quicker transit time. Accelerated gastric emptying and shortened transit time. | [82,83,84] |
Phase of the intestine and gut peptide/ The expression of OXM, PYY, and glp-1, the gut hormones that cause anorexia | Enhanced | GLP-1 released from the colon’s and small intestine’s distal l-cells, insulin production rises while glucagon, other gastrointestinal secretions, and motility are reduced. GLP-2 secreted from intestinal l-cells following meal consumption; it increases the absorptive surface area of the ileal and colon mucosa by promoting cellular proliferation and inhibiting apoptosis. GIP produced in the jejunal and duodenal mucosa by k-cells. | The levels during meal stimulation or oral glucose supplementation have been demonstrated to be constantly boosted following MBS. It has been unpredictable following MBS; certain investigations have shown a rise in these levels, while others have shown a fall. | [85,86,87,88,89,90] |
PYY is released by the small and large intestine’s mucosal L-cells and suppresses intestinal, pancreas, and stomach secretions. | The results of the studies are controversial; some reported increased postprandial PYY3-36 after MBS. | [75,88] | ||
OXM is an anorexigenic peptide that intestinal L-cells co-secrete along with PYY and GLP-1. | Postprandial OXM rises 1–2 months following RYGB. | [91] | ||
CCK-GE/stomach motility is inhibited by this satiety hormone, which is generated by intestinal I-cells. | The levels of CCK increase after MBS. | [92,93] | ||
Absorbative phase/Nutrient absorption | Diminish | This occurs subsequently to the metabolism of vitamins, minerals, proteins, lipids, and carbs—all of which are necessary for cellular repair, development, and the synthesis of energy. | Micronutrient deficiencies can include iron, selenium, zinc, and copper as well as vitamins A, C, D, K, thiamine, folic acid, and B12; these deficiencies are frequently linked to RYGB and BPD. | [94] |
Ileal break/Gut hormones on ingestive behavior mediated by neuroendocrine mechanism | Activating the ileal break which causes a reduction in jejunal contraction, delayed GE, and elevated ITT, all contributing to extended satiety; PYY, GLP-1, and possibly OXM could act as mediators in the ileal brake. | The ileal brake is a distal-to-proximal unfavorable reaction mechanism that effects jejunal motility, ITT, GE, and pancreatic and biliary contents. | It is unknown how much the ileal brake contributed in relation to the metabolic benefits seen in the context of MBS. | [95] |
Liver and bile acid phase/The transport of nutrients from the bloodstream to the liver and glucose metabolism | Hypothalamic metabolic centers are activated by glucose in the portal vein; consequently, consumption of food is reduced and the insulin sensitivity and equilibrium of glucose enhanced (due to suppressed HGP). | The removal of cholesterol comes first and is the most crucial step; by transforming cholesterol into bile acid and causing the cholesterol in bile to become micellar soluble, bile acids help the body remove cholesterol by allowing it to pass from the hepatocyte into the intestinal lumen and eventually be eliminated through the fecal pathway. | When weight loss occurred, RYGB and LSG dramatically enhanced insulin sensitivity and glucose metabolism in rat research employing a hyperinsulinemia glycemic clamp. Following RYGB, nondiabetic obese adults showed better hepatic insulin index, high levels of insulin and C-peptide, and similar natural synthesis of glucose in comparison with the slim and obese control subjects. Subjects with type 2 diabetes showed improved hepatic metabolism one month after RYGB, as seen by improvements in their hepatic insulin sensitivity index and HGP, without corresponding improvements in their peripheral insulin sensitivity. | [96,97,98,99] |
Large intestine and microbiota phase/Food digestion and the balance between the various bacterial families of the microbiota | The colon adjusts and can function as a digestive organ, breaking down partially absorbed proteins and carbs through bacterial fermentation; this is then absorbed and contributes in some way to the body’s energy supply. | Water and electrolytes are primarily absorbed in the large intestine. Several metabolic activities, including the generation of vitamins and amino acids, the degradation of indigestible carbs, and the biotransformation of BA, are carried out by the vast population and variety of bacteria found in the large intestine. | Both obese/normal-weight patients showed increased Firmicutes microflora, which decreased after RYGB; post-surgery, there was a notable rise in Gamma proteobacteria, absent in pre-surgery. Patients with RYGB who took probiotic supplements saw a higher percentage of excess weight reduction six/twelve weeks following surgery. | [100,101,102,103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin, R.-C.; Radu, A.-F.; Negru, P.A.; Radu, A.; Negru, D.; Aron, R.A.C.; Bodog, T.M.; Bodog, R.F.; Maghiar, P.B.; Brata, R. Integrated Insights into Metabolic and Bariatric Surgery: Improving Life Quality and Reducing Mortality in Obesity. Medicina 2025, 61, 14. https://doi.org/10.3390/medicina61010014
Marin R-C, Radu A-F, Negru PA, Radu A, Negru D, Aron RAC, Bodog TM, Bodog RF, Maghiar PB, Brata R. Integrated Insights into Metabolic and Bariatric Surgery: Improving Life Quality and Reducing Mortality in Obesity. Medicina. 2025; 61(1):14. https://doi.org/10.3390/medicina61010014
Chicago/Turabian StyleMarin, Ruxandra-Cristina, Andrei-Flavius Radu, Paul Andrei Negru, Ada Radu, Denisa Negru, Raluca Anca Corb Aron, Teodora Maria Bodog, Ruxandra Florina Bodog, Paula Bianca Maghiar, and Roxana Brata. 2025. "Integrated Insights into Metabolic and Bariatric Surgery: Improving Life Quality and Reducing Mortality in Obesity" Medicina 61, no. 1: 14. https://doi.org/10.3390/medicina61010014
APA StyleMarin, R.-C., Radu, A.-F., Negru, P. A., Radu, A., Negru, D., Aron, R. A. C., Bodog, T. M., Bodog, R. F., Maghiar, P. B., & Brata, R. (2025). Integrated Insights into Metabolic and Bariatric Surgery: Improving Life Quality and Reducing Mortality in Obesity. Medicina, 61(1), 14. https://doi.org/10.3390/medicina61010014