TRPV1 Inhibits the Ventilatory Response to Hypoxia in Adult Rats, but Not the CO2-Drive to Breathe
<p>Effects of intracerebroventricular (icv) microinjection of vehicle (DMSO), AMG9810 (TRPV1 antagonist—2.85 µg/kg, 1 µL) and AMG7905 (TRPV1 antagonist—28.5 µg/kg, 1 µL) on ventilation (<math display="inline"> <semantics> <mrow> <msub> <mover accent="true"> <mi mathvariant="normal">V</mi> <mo>˙</mo> </mover> <mi mathvariant="normal">E</mi> </msub> </mrow> </semantics> </math>), tidal volume (V<sub>T</sub>) and respiratory frequency (fR) of rats during normocapnia and hypercapnia (7% CO<sub>2</sub>). The arrow indicates the time of the microinjection. The hypercapnia duration is represented by a horizontal line on the graph. Values are expressed as mean ± S.E.M.</p> "> Figure 2
<p>Effects of intracerebroventricular (icv) microinjection of vehicle (DMSO), AMG9810 (TRPV1 antagonist—2.85 µg/kg, 1 µL) and AMG7905 (TRPV1 antagonist—28.5 µg/kg, 1 µL) on (<b>A</b>) mean arterial pressure (MAP) and heart rate (HR) and (<b>B</b>) body temperature (Tb) of rats during normocapnia and hypercapnia (7% CO<sub>2</sub>). The arrow indicates the time of the microinjection. The hypercapnia duration is represented by a horizontal line on the graph. Values are expressed as mean ± S.E.M.</p> "> Figure 3
<p>Effects of intracerebroventricular (icv) microinjection of vehicle (DMSO), AMG9810 (TRPV1 antagonist—2.85 µg/kg, 1 µL) and AMG7905 (TRPV1 antagonist—28.5 µg/kg, 1 µL) on ventilation (<math display="inline"> <semantics> <mrow> <msub> <mover accent="true"> <mi mathvariant="normal">V</mi> <mo>˙</mo> </mover> <mi mathvariant="normal">E</mi> </msub> </mrow> </semantics> </math>), tidal volume (V<sub>T</sub>) and respiratory frequency (fR) of rats during normoxia and hypoxia (10% O<sub>2</sub>). The arrow indicates the time of the microinjection. The hypoxia duration is represented by a horizontal line on the graph. Values are expressed as mean ± S.E.M. * Significant differences between AMG9810 with vehicle and AMG7905 groups. <sup>+</sup>Significant difference between AMG7905 and AMG9810 groups.</p> "> Figure 4
<p>Effects of intracerebroventricular (icv) microinjection of vehicle (DMSO), AMG9810 (TRPV1 antagonist—2.85 µg/kg, 1 µL) and AMG7905 (TRPV1 antagonist—28.5 µg/kg, 1 µL) on (<b>A</b>) mean arterial pressure (MAP) and heart rate (HR) and (<b>B</b>) body temperature (Tb) of rats during normoxia and hypoxia (10% O<sub>2</sub>). The arrow indicates the time of the microinjection. The hypoxia duration is represented by a horizontal line on the graph. Values are expressed as mean ± S.E.M.</p> "> Figure 5
<p>Effects of intraperitoneal (ip) injection of vehicle (DMSO) and AMG9810 (TRPV1 antagonist—2.85 µg/kg, 1 mL/kg) on ventilation (<math display="inline"> <semantics> <mrow> <msub> <mover accent="true"> <mi mathvariant="normal">V</mi> <mo>˙</mo> </mover> <mi mathvariant="normal">E</mi> </msub> </mrow> </semantics> </math>), tidal volume (V<sub>T</sub>) and respiratory frequency (fR) of rats during normocapnia and hypercapnia (7% CO<sub>2</sub>). The arrow indicates the time of the microinjection. The hypercapnia duration is represented by a horizontal line on the graph. Values are expressed as mean ± S.E.M.</p> "> Figure 6
<p>Effects of intraperitoneal (ip) injection of vehicle (DMSO) and AMG9810 (TRPV1 antagonist—2.85 µg/kg, 1 mL/kg) on (<b>A</b>) mean arterial pressure (MAP) and heart rate (HR) and (<b>B</b>) body temperature (Tb) of rats during normocapnia and hypercapnia (7% CO<sub>2</sub>). The arrow indicates the time of the microinjection. The hypercapnia duration is represented by a horizontal line on the graph. Values are expressed as mean ± S.E.M.</p> "> Figure 7
<p>Effects of intraperitoneal (ip) injection of vehicle (DMSO) and AMG9810 (TRPV1 antagonist—2.85 µg/kg, 1 mL/kg) on ventilation (<math display="inline"> <semantics> <mrow> <msub> <mover accent="true"> <mi mathvariant="normal">V</mi> <mo>˙</mo> </mover> <mi mathvariant="normal">E</mi> </msub> </mrow> </semantics> </math>), tidal volume (V<sub>T</sub>) and respiratory frequency (fR) of rats during normoxia and hypoxia (10% O<sub>2</sub>). The arrow indicates the time of the microinjection. The hypoxia duration is represented by a horizontal line on the graph. Values are expressed as mean ± S.E.M. * Significant difference between vehicle and AMG9810 groups.</p> "> Figure 8
<p>Effects of intraperitoneal (ip) injection of vehicle (DMSO) and AMG9810 (TRPV1 antagonist—2.85 µg/kg, 1 mL/kg) on (<b>A</b>) mean arterial pressure (MAP) and heart rate (HR) and (<b>B</b>) body temperature (Tb) of rats during normoxia and hypoxia (10% O<sub>2</sub>). The arrow indicates the time of the microinjection. The hypoxia duration is represented by a horizontal line on the graph. Values are expressed as mean ± S.E.M. * Significant difference between vehicle and AMG9810 groups.</p> "> Figure 9
<p>Relationship between pulmonary ventilation (<math display="inline"> <semantics> <mrow> <msub> <mover accent="true"> <mi mathvariant="normal">V</mi> <mo>˙</mo> </mover> <mi mathvariant="normal">E</mi> </msub> </mrow> </semantics> </math>; data from <a href="#pharmaceuticals-12-00019-f007" class="html-fig">Figure 7</a>) and body temperature (Tb; data from <a href="#pharmaceuticals-12-00019-f008" class="html-fig">Figure 8</a>B) in rats treated with vehicle (DMSO) or AMG9810 (TRPV1 antagonist—2.85 µg/kg, 1 mL/kg). The direction of time is shown with arrows, and the times corresponding to the earliest (5 min) and latest (35 min) hypoxia exposure data points are indicated. Values are expressed as mean ± S.E.M.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Effect of icv Injection of AMG9810 and AMG7905 on , MAP, HR and Tb in Normocapnic and Hypercapnic Conditions
2.2. Effect of icv Injection of AMG9810 and AMG7905 on , MAP, HR and Tb in Normoxic and Hypoxic Conditions
2.3. Effect of Intraperitoneal Injection of AMG9810 on , MAP, HR and Tb in Normocapnic and Hypercapnic Conditions
2.4. Effect of Intraperitoneal Injection of AMG9810 on , MAP, HR and Tb in Normoxic and Hypoxic Conditions
2.5. Effect of icv and Intraperitoneal Injection of AMG9810 on Blood Gases and pH in Normoxic, Normocapnic, Hypercapnic and Hypoxic Conditions
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Surgeries and Microinjection
4.3. Drugs and Gas Mixture
4.4. Determination of Pulmonary Ventilation
4.5. Blood Gases and pH Measurements
4.6. Experimental Protocol
4.7. Data Processing and Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heymans, C.; Bouckaert, J.J. Sinus caroticus and respiratory reflexes: I. Cerebral blood flow and respiration. Adrenaline apnoea. J. Physiol. 1930, 69, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Loeschcke, H.H. Central chemosensitivity and the reaction theory. J. Physiol. 1982, 332, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, D.; Scheid, P. Central chemosensitivity of respiration: A brief overview. Respir. Physiol. 2001, 129, 5–12. [Google Scholar] [CrossRef]
- Cui, N.; Zhang, X.; Tadepalli, J.S.; Yu, L.; Gai, H.; Petit, J.; Pamulapati, R.T.; Jin, X.; Jiang, C. Involvement of TRP channels in the CO2 chemosensitivity of locus coeruleus neurons. J. Neurophysiol. 2011, 105, 2791–2801. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Fite, L.; Donnelly, D.F.; Kim, J.H.; Carroll, J.L. Possible Role of TRP Channels in Rat Glomus Cells. Adv. Exp. Med. Biol. 2015, 860, 227–232. [Google Scholar]
- Romanovsky, A.A. Thermoregulation: Some concepts have changed. Functional architecture of the thermoregulatory system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R37–R46. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Siemens, J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature 2015, 2, 178–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, Z.; Xie, J.; Yu, A.S.; Stock, J.; Du, J.; Yue, L. Role of TRP channels in the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H157–H182. [Google Scholar] [CrossRef]
- Buniel, M.C.F.; Schilling, W.P.; Kunze, D.L. Distribution of transient receptor potential channels in the rat carotid chemosensory pathway. J. Comp. Neurol. 2003, 464, 404–413. [Google Scholar] [CrossRef]
- Romanovsky, A.A.; Almeida, M.C.; Garami, A.; Steiner, A.A.; Norman, M.H.; Morrison, S.F.; Nakamura, K.; Burmeister, J.J.; Nucci, T.B. The Transient Receptor Potential Vanilloid-1 Channel in Thermoregulation: A Thermosensor It Is Not. Pharmacol. Rev. 2009, 61, 228–261. [Google Scholar] [CrossRef] [Green Version]
- Romanovsky, A.A. Skin temperature: Its role in thermoregulation. Acta Physiol. 2014, 210, 498–507. [Google Scholar] [CrossRef]
- Díaz-Franulic, I.; Caceres-Molina, J.; Sepulveda, R.V.; Gonzalez-Nilo, F.; Latorre, R. Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1. Mol. Pharmacol. 2016, 90, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Szallasi, A.; Blumberg, P.M. Characterization of vanilloid receptors in the dorsal horn of pig spinal cord. Brain Res. 1991, 547, 335–338. [Google Scholar] [CrossRef]
- Tóth, A.; Boczán, J.; Kedei, N.; Lizanecz, E.; Bagi, Z.; Papp, Z.; Édes, I.; Csiba, L.; Blumberg, P.M. Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Mol. Brain Res. 2005, 135, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Kauer, J.A.; Gibson, H.E. Hot flash: TRPV channels in the brain. Trends Neurosci. 2009, 32, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.G. TRPV1 in the central nervous system: Synaptic plasticity, function, and pharmacological implications. Prog. Drug Res. 2014, 68, 77–104. [Google Scholar]
- Zhao, Q.; Wang, W.; Wang, R.; Cheng, Y. TRPV1 and neuropeptide receptor immunoreactivity and expression in the rat lung and brainstem after lung ischemia-reperfusion injury. J. Surg. Res. 2016, 203, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, O.; Singh, U.; Goswami, C.; Singru, P.S. Transient receptor potential vanilloid 1-6 (Trpv1-6) gene expression in the mouse brain during estrous cycle. Brain Res. 2018, 1701, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Mezey, E.; Tóth, Z.E.; Cortright, D.N.; Arzubi, M.K.; Krause, J.E.; Elde, R.; Guo, A.; Blumberg, P.M.; Szallasi, A. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl. Acad. Sci. USA 2000, 97, 3655–3660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tani, M.; Kotani, S.; Hayakawa, C.; Lin, S.-T.; Irie, S.; Ikeda, K.; Kawakami, K.; Onimaru, H. Effects of a TRPV1 agonist capsaicin on respiratory rhythm generation in brainstem-spinal cord preparation from newborn rats. Pflugers Arch. 2017, 469, 327–338. [Google Scholar] [CrossRef]
- Mohammed, M.; Madden, C.J.; Andresen, M.C.; Morrison, S.F. Activation of TRPV1 in nucleus tractus solitarius reduces brown adipose tissue thermogenesis, arterial pressure, and heart rate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R134–R143. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Mandadi, S.; Fiamma, M.-N.; Rodikova, E.; Ferguson, E.V.; Whelan, P.J.; Wilson, R.J.A. Anandamide modulates carotid sinus nerve afferent activity via TRPV1 receptors increasing responses to heat. J. Appl. Physiol. 2012, 112, 212–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, K.T.; Roy, A.; Rivard, K.B.; Wilson, R.J.A.; Scantlebury, M.H. Vagal TRPV1 activation exacerbates thermal hyperpnea and increases susceptibility to experimental febrile seizures in immature rats. Neurobiol. Dis. 2018, 119, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Hollis, M.; Wang, D.H. Transient receptor potential vanilloid in blood pressure regulation. Curr. Opin. Nephrol. Hypertens. 2013, 22, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, D.-P.; Chen, S.-R.; Hittelman, W.N.; Pan, H.-L. Sensing of blood pressure increase by transient receptor potential vanilloid 1 receptors on baroreceptors. J. Pharmacol. Exp. Ther. 2009, 331, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Gavva, N.R.; Tamir, R.; Klionsky, L.; Norman, M.H.; Louis, J.-C.; Wild, K.D.; Treanor, J.J.S. Proton activation does not alter antagonist interaction with the capsaicin-binding pocket of TRPV1. Mol. Pharmacol. 2005, 68, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Lehto, S.G.; Tamir, R.; Deng, H.; Klionsky, L.; Kuang, R.; Le, A.; Lee, D.; Louis, J.-C.; Magal, E.; Manning, B.H.; et al. Antihyperalgesic effects of (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)-acrylamide (AMG8562), a novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats. J. Pharmacol. Exp. Ther. 2008, 326, 218–229. [Google Scholar] [CrossRef]
- Garami, A.; Pakai, E.; McDonald, H.A.; Reilly, R.M.; Gomtsyan, A.; Corrigan, J.J.; Pinter, E.; Zhu, D.X.D.; Lehto, S.G.; Gavva, N.R.; et al. TRPV1 antagonists that cause hypothermia, instead of hyperthermia, in rodents: Compounds’ pharmacological profiles, in vivo targets, thermoeffectors recruited and implications for drug development. Acta Physiol. 2018, 223. [Google Scholar] [CrossRef]
- Steiner, A.A.; Turek, V.F.; Almeida, M.C.; Burmeister, J.J.; Oliveira, D.L.; Roberts, J.L.; Bannon, A.W.; Norman, M.H.; Louis, J.-C.; Treanor, J.J.S.; et al. Nonthermal Activation of Transient Receptor Potential Vanilloid-1 Channels in Abdominal Viscera Tonically Inhibits Autonomic Cold-Defense Effectors. J. Neurosci. 2007, 27, 7459–7468. [Google Scholar] [CrossRef] [Green Version]
- Gavva, N.R.; Treanor, J.J.; Garami, A.; Fang, L.; Surapaneni, S.; Akrami, A.; Alvarez, F.; Bak, A.; Darling, M.; Gore, A.; et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 2008, 136, 202–210. [Google Scholar] [CrossRef]
- Alawi, K.M.; Aubdool, A.A.; Liang, L.; Wilde, E.; Vepa, A.; Psefteli, M.-P.; Brain, S.D.; Keeble, J.E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. FASEB J. 2015, 29, 4285–4298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Jordt, S.-E.; Tominaga, M.; Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl. Acad. Sci. USA 2000, 97, 8134–8139. [Google Scholar] [CrossRef] [Green Version]
- Morgado-Valle, C.; Feldman, J.L. Depletion of substance P and glutamate by capsaicin blocks respiratory rhythm in neonatal rat in vitro. J. Physiol. 2004, 555, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Garami, A.; Shimansky, Y.P.; Pakai, E.; Oliveira, D.L.; Gavva, N.R.; Romanovsky, A.A. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia. J. Neurosci. 2010, 30, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, M.; Caterina, M.J.; Malmberg, A.B.; Rosen, T.A.; Gilbert, H.; Skinner, K.; Raumann, B.E.; Basbaum, A.I.; Julius, D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998, 21, 531–543. [Google Scholar] [CrossRef]
- Kollarik, M.; Ru, F.; Undem, B.J. Acid-sensitive vagal sensory pathways and cough. Pulm. Pharmacol. Ther. 2007, 20, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Semtner, M.; Schaefer, M.; Pinkenburg, O.; Plant, T.D. Potentiation of TRPC5 by protons. J. Biol. Chem. 2007, 282, 33868–33878. [Google Scholar] [CrossRef]
- Kim, M.J.; Jeon, J.-P.; Kim, H.J.; Kim, B.J.; Lee, Y.M.; Choe, H.; Jeon, J.-H.; Kim, S.J.; So, I. Molecular determinant of sensing extracellular pH in classical transient receptor potential channel 5. Biochem. Biophys. Res. Commun. 2008, 365, 239–245. [Google Scholar] [CrossRef]
- Bond, S.M.; Cervero, F.; McQueen, D.S. Influence of neonatally administered capsaicin on baroreceptor and chemoreceptor reflexes in the adult rat. Br. J. Pharmacol. 1982, 77, 517–524. [Google Scholar] [CrossRef]
- De Sanctis, G.T.; Green, F.H.; Remmers, J.E. Ventilatory responses to hypoxia and hypercapnia in awake rats pretreated with capsaicin. J. Appl. Physiol. 1991, 70, 1168–1174. [Google Scholar] [CrossRef] [PubMed]
- Diaz, V.; Arsenault, J.; Praud, J.P. Consequences of capsaicin treatment on pulmonary vagal reflexes and chemoreceptor activity in lambs. J. Appl. Physiol. 2000, 89, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Gavva, N.R.; Bannon, A.W.; Hovland, D.N.; Lehto, S.G.; Klionsky, L.; Surapaneni, S.; Immke, D.C.; Henley, C.; Arik, L.; Bak, A.; et al. Repeated Administration of Vanilloid Receptor TRPV1 Antagonists Attenuates Hyperthermia Elicited by TRPV1 Blockade. J. Pharmacol. Exp. Ther. 2007, 323, 128–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.G.; Mills, E. Restoration of reflex ventilatory response to hypoxia after removal of carotid bodies in the cat. Neuroscience 1980, 5, 573–580. [Google Scholar] [CrossRef]
- Garami, A.; Ibrahim, M.; Gilbraith, K.; Khanna, R.; Pakai, E.; Miko, A.; Pinter, E.; Romanovsky, A.A.; Porreca, F.; Patwardhan, A.M. Transient Receptor Potential Vanilloid 1 Antagonists Prevent Anesthesia-induced Hypothermia and Decrease Postincisional Opioid Dose Requirements in Rodents. Anesthesiology 2017, 127, 813–823. [Google Scholar] [CrossRef]
- Pardridge, W.M. Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 2011, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Davson, H. The Cerebrospinal Fluid. In Handbook of Neurochemistry; Springer: Boston, MA, USA, 1969; pp. 23–48. [Google Scholar]
- Tattersall, G.J.; Milsom, W.K. Hypoxia reduces the hypothalamic thermogenic threshold and thermosensitivity. J. Physiol. 2009, 587, 5259–5274. [Google Scholar] [CrossRef] [Green Version]
- Gautier, H.; Bonora, M.; Schultz, S.A.; Remmers, J.E. Hypoxia-induced changes in shivering and body temperature. J. Appl. Physiol. 1987, 62, 2477–2484. [Google Scholar] [CrossRef]
- Barros, R.C.; Zimmer, M.E.; Branco, L.G.; Milsom, W.K. Hypoxic metabolic response of the golden-mantled ground squirrel. J. Appl. Physiol. 2001, 91, 603–612. [Google Scholar] [CrossRef]
- Tattersall, G.J.; Milsom, W.K. Transient peripheral warming accompanies the hypoxic metabolic response in the golden-mantled ground squirrel. J. Exp. Biol. 2003, 206, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Bicego, K.C.; Barros, R.C.H.; Branco, L.G.S. Physiology of temperature regulation: Comparative aspects. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 147, 616–639. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.C. Interactions Between Hypoxia and Hypothermia. Annu. Rev. Physiol. 1991, 53, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.C. Oxygen as a modulator of body temperature. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Med. Biol. 1995, 28, 1249–1256. [Google Scholar]
- Steiner, A.A.; Branco, L.G.S. Hypoxia-Induced Anapyrexia: Implications and Putative Mediators. Annu. Rev. Physiol. 2002, 64, 263–288. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780080475134. [Google Scholar]
- Drorbaugh, J.E.; Fenn, W.O. A barometric method for measuring ventilation in newborn infants. Pediatrics 1955, 16, 81–87. [Google Scholar] [PubMed]
- Biancardi, V.; Bícego, K.C.; Almeida, M.C.; Gargaglioni, L.H. Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflügers Arch. Eur. J. Physiol. 2008, 455, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, D.; Bícego, K.C.; de Castro, O.W.; da Silva, G.S.F.; Garcia-Cairasco, N.; Gargaglioni, L.H. Role of neurokinin-1 expressing neurons in the locus coeruleus on ventilatory and cardiovascular responses to hypercapnia. Respir. Physiol. Neurobiol. 2010, 172, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Patrone, L.G.A.; Bícego, K.C.; Hartzler, L.K.; Putnam, R.W.; Gargaglioni, L.H. Cardiorespiratory effects of gap junction blockade in the locus coeruleus in unanesthetized adult rats. Respir. Physiol. Neurobiol. 2014, 190, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Patrone, L.G.A.; Biancardi, V.; Marques, D.A.; Bícego, K.C.; Gargaglioni, L.H. Brainstem catecholaminergic neurones and breathing control during postnatal development in male and female rats. J. Physiol. 2018, 596, 3299–3325. [Google Scholar] [CrossRef]
A | DMSO (n = 7) | AMG9810 (n = 7) | ||||
Normocapnia (b.m.) | Normocapnia (a.m.) | Hypercapnia (a.m.) | Normocapnia (b.m.) | Normocapnia (a.m.) | Hypercapnia (a.m.) | |
pHa | 7.44 ± 0.01 | 7.43 ± 0.01 | 7.30 ± 0.01 * | 7.44 ± 0.01 | 7.43 ± 0.01 | 7.28 ± 0.01 * |
PaCO2 (mmHg) | 27.2 ± 1.4 | 26.4 ± 1.5 | 42.0 ± 1.8 * | 26.8 ± 1.3 | 25.3 ± 1.4 | 38.2 ± 0.8 * |
PaO2 (mmHg) | 78.3 ± 1.9 | 80.1 ± 1.6 | 110.0 ± 1.3 * | 76.0 ± 1.6 | 79.0 ± 1.4 | 110.3 ± 1.9 * |
HCO3− | 18.7 ± 1.5 | 17.6 ± 1.2 | 20.9 ± 1.1 | 18.2 ± 1.1 | 16.9 ± 0.9 | 18.0 ± 0.7 |
B | DMSO (n = 7) | AMG9810 (n = 6) | ||||
Normoxia (b.m.) | Normoxia (a.m.) | Hypoxia (a.m.) | Normoxia (b.m.) | Normoxia (a.m.) | Hypoxia (a.m.) | |
pHa | 7.44 ± 0.01 | 7.44 ± 0.01 | 7.58 ± 0.01 ** | 7.46 ± 0.01 | 7.44 ± 0.01 | 7.58 ± 0.01 ** |
PaCO2 (mmHg) | 29.3 ± 2.1 | 25.9 ± 0.8 | 14.8 ± 0.5 ** | 28.4 ± 1.4 | 26.1 ± 0.7 | 13.7 ± 0.5 ** |
PaO2 (mmHg) | 69.0 ± 2.2 | 76.0 ± 1.5 | 28.7 ± 1.2 ** | 72.8 ± 2.1 | 78.8 ± 2.2 | 31.1 ± 1.3 ** |
HCO3− | 20.3 ± 1.8 | 18.3 ± 0.8 | 14.1 ± 0.3 ** | 20.0 ± 0.9 | 17.8 ± 0.6 | 13.0 ± 0.4 ** |
DMSO (n = 3) | AMG9810 (n = 4) | |||||
---|---|---|---|---|---|---|
Normoxia (b.m.) | Normoxia (a.m.) | Hypoxia (a.m.) | Normoxia (b.m.) | Normoxia (a.m.) | Hypoxia (a.m.) | |
pHa | 7.46 ± 0.01 | 7.47 ± 0.01 | 7.65 ± 0.02 * | 7.43 ± 0.01 | 7.46 ± 0.01 | 7.60 ± 0.02 * |
PaCO2 (mmHg) | 38.6 ± 2.2 | 36.9 ± 2.1 | 18.6 ± 1.4 * | 35.4 ± 2.7 | 36.7 ± 1.3 | 14.0 ± 1.1 * |
PaO2 (mmHg) | 75.6 ± 2.2 | 76.3 ± 0.8 | 30.1 ± 1.0 * | 70.5 ± 3.4 | 79.0 ± 3.6 | 32.7 ± 1.2 * |
HCO3− | 27.8 ± 1.7 | 27.2 ± 1.2 | 17.6 ± 1.8 * | 23.1 ± 2.2 | 28.9 ± 0.9 | 13.1 ± 0.6 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patrone, L.G.A.; Duarte, J.B.; Bícego, K.C.; Steiner, A.A.; Romanovsky, A.A.; Gargaglioni, L.H. TRPV1 Inhibits the Ventilatory Response to Hypoxia in Adult Rats, but Not the CO2-Drive to Breathe. Pharmaceuticals 2019, 12, 19. https://doi.org/10.3390/ph12010019
Patrone LGA, Duarte JB, Bícego KC, Steiner AA, Romanovsky AA, Gargaglioni LH. TRPV1 Inhibits the Ventilatory Response to Hypoxia in Adult Rats, but Not the CO2-Drive to Breathe. Pharmaceuticals. 2019; 12(1):19. https://doi.org/10.3390/ph12010019
Chicago/Turabian StylePatrone, Luis Gustavo A., Jaime B. Duarte, Kênia Cardoso Bícego, Alexandre A. Steiner, Andrej A. Romanovsky, and Luciane H. Gargaglioni. 2019. "TRPV1 Inhibits the Ventilatory Response to Hypoxia in Adult Rats, but Not the CO2-Drive to Breathe" Pharmaceuticals 12, no. 1: 19. https://doi.org/10.3390/ph12010019
APA StylePatrone, L. G. A., Duarte, J. B., Bícego, K. C., Steiner, A. A., Romanovsky, A. A., & Gargaglioni, L. H. (2019). TRPV1 Inhibits the Ventilatory Response to Hypoxia in Adult Rats, but Not the CO2-Drive to Breathe. Pharmaceuticals, 12(1), 19. https://doi.org/10.3390/ph12010019