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Abstract: Background: A water extract of the Ayurvedic plant Centella asiatica (L.) Ur-
ban, family Apiaceae (CAW), improves cognitive function in mouse models of aging and
Alzheimer’s disease and affects dendritic arborization, mitochondrial activity, and oxida-
tive stress in mouse primary neurons. Triterpenes (TT) and caffeoylquinic acids (CQA)
are constituents associated with these bioactivities of CAW, although little is known about
how interactions between these compounds contribute to the plant’s therapeutic benefit.
Methods: Mouse primary cortical neurons were treated with CAW or equivalent concen-
trations of four TT combined, eight CQA combined, or these twelve compounds combined
(TTCQA). Treatment effects on the cell transcriptome (18,491 genes) and metabolome (192
metabolites) relative to vehicle control were evaluated using RNAseq and metabolomic
analyses, respectively. Results: Extensive differentially expressed genes (DEGs) were seen
with all treatments, as well as evidence of interactions between compounds. Notably, many
DEGs seen with TT treatment were not observed in the TTCQA condition, possibly suggest-
ing CQA reduced the effects of TT. Moreover, additional gene activity seen with CAW as
compared to TTCQA indicates the presence of additional compounds in CAW that further
modulate TTCQA interactions. Weighted Gene Correlation Network Analysis (WGCNA)
identified 4 gene co-expression modules altered by treatments that were associated with
extracellular matrix organization, fatty acid metabolism, cellular response to stress and
stimuli, and immune function. Compound interaction patterns were seen at the eigengene
level in these modules. Interestingly, in metabolomics analysis, the TTCQA treatment saw
the highest number of changes in individual metabolites (20), followed by CQA (15), then
TT (8), and finally CAW (3). WGCNA analysis found two metabolomics modules with sig-
nificant eigenmetabolite differences for TT and CQA and possible compound interactions at
this level. Conclusions: Four gene expression modules and two metabolite modules were
altered by the four treatment types applied. This methodology demonstrated the existence
of both negative and positive interactions between TT, CQA, and additional compounds
found in CAW on the transcriptome and metabolome of mouse primary cortical neurons.

Keywords: Centella asiatica; triterpenes; caffeoylquinic acids; mouse primary cortical
neurons; transcriptome; metabolome; co-expression; omics integration
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1. Introduction
Traditional and complementary medicines are often sought to improve or maintain

health, and it is estimated that 50% of the population in industrialized countries use these ap-
proaches [1]. In the elderly, these interventions are primarily used to promote resilience [2]
since many of these are botanical extracts with purported anti-aging effects [3–6]. How-
ever, claims are controversial, and few clinical trials have been conducted with these
treatments [7].

The study of botanical extracts for healthcare is challenging, in part due to the complex
mix of compounds found in these plants. Unlike single-chemical drugs or isolated natural
products, botanical extracts may contain hundreds of compounds [8]. Many traditional
practitioners believe that these botanical mixtures are more clinically effective than isolated
compounds due to interactions between the constituents. Interactions can occur between
individual compounds, groups or fractions of compounds, constituents from different parts
of the plant, or even between compounds derived from different botanical species, as seen
in complex traditional herbal formulas [9,10]. These mixtures can interact with biological
systems in a way that is additive, synergistic, or antagonistic [9,11–15]. Fraction-based
methods have been developed to evaluate the synergy between compounds in whole
plant extracts using a combination of mass spectrometry, isolation of natural products,
and synergy assays [16]. In a whole organism, the nature of these interactions can vary
depending on the compounds and be considered pharmacokinetic or pharmacodynamic.
Pharmacokinetic interactions affect the bioavailability of a constituent in an organism
through changes in its metabolism or cellular transport induced by another constituent.
Pharmacodynamic interactions occur when two compounds affect each other’s binding
to targets or have similar or opposing biological activity mediated through interactions at
different points in molecular pathways [11,13].

While synergy studies have traditionally utilized targeted assays, leveraging un-
targeted omic analysis methods [14,15] in pre-clinical models offers an effective way to
understand multiple bioactivities and mechanisms of action that are modulated by this mix
of compounds, including understanding the interactions between the compounds. For the
current project, we propose to evaluate two untargeted molecular domains, transcriptomics
and metabolomics, in an in vitro model system to broadly study compound interactions
in the biological activity of compounds within a water extract (CAW) of the botanical
Centella asiatica (L.) Urb., family Apiaceae. This plant is native to both Asia and Australia
and has a history of use in several systems of traditional medicine, including traditional
Chinese medicine and Ayurvedic medicine [17], for the treatment of various conditions,
including cognitive impairment [18]. Current in vitro, in vivo, and clinical research also
supports the neurological benefits of Centella asiatica [19–30]. CAW can evoke particularly
potent neuroprotective effects both in vitro and in vivo that may be mediated by effects
on dendritic arborization [19,30], increased synaptic density [19,24,30], mitochondrial
biogenesis [19,23,30], and activation of endogenous antioxidant mechanisms [19,23,30].

Two classes of compounds have been associated with the health-promoting bioactivity
of CAW: pentacyclic triterpenes (TT) and mono- and di-caffeoylquinic acids (CQA) [31],
although the contribution of each compound group to the overall effects of CAW and the
mechanisms by which the compounds can elicit those effects have not been fully elucidated.
The goal of this project is to begin to determine the contributions to bioactivity of these two
compound classes separately or combined, as well as in the complete CAW extract.

In this study, mouse primary cortical neurons were treated with either CAW, groups of
TT or CQA compounds separately, or a combination of the two (TTCQA). The in vitro CAW
concentration chosen (50 µg/mL) was previously found to increase dendritic arborization,
synaptic density, mitochondrial biogenesis, and activation of antioxidant response in mouse
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primary hippocampal neurons [30,32,33]. In vivo, CAW administered in drinking water
has also been shown to affect these same pathways in both the hippocampus and cortex of
treated mice [24,29,34]. All compounds were applied at concentrations equivalent to their
presence in CAW. Transcriptomic and metabolomic data were collected from these treated
cells. The primary outcomes in this study, derived from these two untargeted molecular
domains, are both the individual gene expression and metabolite abundance levels, as well
as gene and metabolite signatures of co-expression and co-abundance. This design allowed
us to assess the effects of, and nature of interactions between, the TT and CQA compounds,
as well as interactions between these compounds and other unknown compounds in CAW,
using these outcomes.

2. Results
2.1. Analysis of Culture Media Post-Incubation

Neuron culture media was collected and frozen after the 48 h treatment period at the
time of cell harvest. The cultured media was then extracted with OstroPlate® solid-phase
extraction, and concentrations of selected phytochemicals were measured using liquid chro-
matography coupled to multiple reaction monitoring mass spectrometry (LC-MRM-MS;
Supplementary Table S1). In many of the incubations, compound concentrations were some-
what higher than the pre-incubation time zero starting value, possibly due to evaporation
of solvent during incubation (Supplementary Table S1). Interestingly, the post-incubation
concentration of CQA metabolites was ten-fold lower in CAW incubations compared to
incubations containing CQA alone or TTCQA. This suggests a rapid degradation of CQAs
in the presence of other CAW constituents. CQA metabolites are known to undergo chemi-
cal changes in non-acidic solutions [35,36]. Triterpene-glycoside content (MS and AS) was
similar in all cultures containing these compounds. Triterpene aglycones (MA and AA)
were present in higher concentrations post-incubation in CAW than the TT or TTCQA
cultures, potentially arising from precursors present in CAW, as they were considerably
higher than the time 0 values (Supplementary Table S1). Differences in response to CAW
compared to the compounds may in part be due to these concentration differences.

2.2. CAW and Its Constituent Compounds Induce Extensive Gene Expression Changes

Of the 40, 39 culture samples were of sufficient quality for RNA-seq processing,
displaying a high level of inter-neuronal networking and neuro-spheres (n = 8 per treatment
except for TTCQA, which had n = 7). RNA extracted from the samples was of high quality
with an average RNA Integrity Number (RIN) of 9.9. For the metabolomics processing, we
had 50 cell culture samples of sufficient quality (n = 10 per treatment).

To investigate both differentially expressed genes (DEG) and differentially abundant
metabolites (DAM), we compared each of the four treatment groups to the vehicle control
(CAW vs. Ctrl, TT vs. Ctrl, CQA vs. Ctrl, and TTCQA vs. Ctrl). RNA-seq genes with
expression less than 10 counts in any of the samples were removed, leaving 18,491 genes
for analysis. Our in-house library provided 192 metabolites for analysis. A false discovery
rate cutoff of 0.05 was used for both DEG and DAM analyses. While there was a high
degree of treatment-related gene expression change in the neurons (CAW 946 upregu-
lated, 1721 downregulated; CQA 33 upregulated, 165 downregulated; TT 514 upregulated,
1.246 downregulated; TTCQA 303 upregulated, 678 downregulated), based on fold change
(Supplementary Table S2), the same was not true for changes in metabolites. In contrast, the
metabolomics analysis found only 3 downregulated metabolites for CAW, 8 upregulated
and 7 downregulated metabolites for CQA, 3 upregulated and 5 downregulated metabolites
for TT, and 12 upregulated and 8 downregulated metabolites for TTCQA (Supplementary
Table S3). This difference in the magnitude of DEGs as compared to DAMs was largely be-
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cause the full transcriptome (18,491) was evaluated, but only a select number of metabolites
(192) was assessed. When compared by the percentage of affected genes or metabolites,
relative to the total number tested, the difference is not as dramatic (transcriptome: 21.8%
of the 18,491 genes had a change in expression; metabolome: 16.1% of the 192 metabolites
had a change in abundance).

A principal component analysis (PCA) was used to assess the effect of each treatment
relative to the control and also to compare the treatments to each other, using both the
transcriptomic and metabolomic data. This work was performed with the PCA tools R
package [37]. Metabolites and genes in the lowest decile of variability across samples
were removed. There was not a strong separation of samples seen between treatments for
both data types, as would be expected since some of these treatments contain the same
compounds (Figure 1A). However, for the independent treatment vs. control analyses,
there is greater separation of samples as the number of differentially expressed metabolites
between the groups being compared increases (Figure 1C). The same is generally true
with the transcriptomic data (Figure 1B). This confirmed that the treatments were having
some effect.
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data. (B) RNA-seq data, each treatment compared individually to control. (C) Metabolic data,
each treatment compared individually to control. For (B,C), the number of differentially expressed
metabolites or genes (#DE) is shown in the lower right corner of each plot. The plots are also ordered
left to right by increasing number of CA compounds in each treatment.

2.3. Complex Interactions Were Seen Between CAW Compounds, Both Activating and
Inactivating Genes

Transcriptomic analysis revealed many interactions were apparent between constituent
compounds in CAW. Only 17% of the DEGs that are seen in the TT and CQA separate
treatments are also seen in the combined TTCQA treatment. (Supplementary Figure S1),
However, there are 420 new DEGs seen in this combination, of which only 263 are seen in
the full CAW treatment, indicating the potential ‘silencing’ of 157 DEGs by interactions
with unknown additional compounds in CAW. Interestingly, 177 of the TT DEGs not seen
in the TTCQA treatment return in the full CAW treatment, and there are only 26 DEGs in
common to all four treatments (Supplementary Figure S1A). In the metabolomic data, only
two metabolites downregulated by a constituent treatment (CQA) were seen in the full
CAW treatment (Supplementary Figure S1B).

A more detailed classification of the different types of gene expression interactions
(additive, synergistic, antagonistic) from the differential gene expression model between
TT and CQA can be seen in Figure 2 (See Section 4.6).
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Figure 2. Effect on gene expression of the TT and CQA compounds administered separately and
interactions between these groups observed in the TTCQA-treated samples. The figure on the left
shows a mapping of the interactions listed in the table on the right. Any gene with significant expres-
sion changes, relative to control, seen with any of the TT, CQA, or TTCQA treatments are represented
in the figure and table (N = 2268 unique genes). The relative number of genes and the expression
status are represented within each of the three columns labeled TT, CQA, or TTCQA (red = significant
downregulation, green = significant upregulation, beige = no significant expression changes seen
with this treatment). The TT and CQA compound ‘Interaction effect’ for the combined group is
shown next to the TTCQA column (‘P’ = positive, or synergistic; ‘N’ = negative, or antagonistic; ‘none’
= additive, or no interaction). The gray ribbons show the number of genes interacting between
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TT and CQA, the interaction status, and the final expression status in the TTCQA treatment. The
table on the right shows the number of genes in each category. As an example, a positive interaction
has a higher fold change value in the TTCQA treatment than the sum of the two-fold change values
from TT and CQA, and a negative interaction has a lower TTCQA fold change than the sum of TT
and CQA fold changes. So a positive interaction could still result in a downregulated or unregulated
TTCQA gene, and a negative interaction could result in an upregulated or unregulated TTCQA gene.

For this analysis, a little less than half of the genes examined had a negative interaction
between TT and CQA (n = 966). A substantial number of these genes had a significant
effect from the TT treatment (n = 728), while very few had an effect from CQA (n = 33).
There was an increased downregulation in the TTCQA treatment in 524 of these genes,
238 of which did not have a significant change from either TT or CQA (considered a
negative interaction for the sake of this analysis). Other interactions reduced or neutralized
significant upregulated effects seen in either TT or CQA (n = 443).

We saw a larger number of genes with a positive interaction between the TT and CQA
treatments (n = 1272). Most of these were either downregulated by TT, CQA, or both and
had their downregulation either diminished (n = 154) or neutralized (n = 888) in the TTCQA
treatment. Interestingly, there were 182 genes that were not affected by either the TT or
CQA treatment that were significantly upregulated by the TTCQA mixture.

Finally, there were 30 genes that did not have any interaction between the TT and
CQA treatment, all of which were either upregulated (n = 21) or downregulated (n = 9) by
only TT (Figure 2). A table of the parameter estimates for each treatment can be found in
(Supplementary Table S4) for the TT and CQA gene expression interaction classification.

2.4. Multiple Modules Capturing a Diverse Variety of Compound Interactions Point to Distinct
Cellular Mechanisms Affected by CAW and Its Constituent Compounds in the Transcriptomic Data

Weighted Correlation Gene Network Analysis (WCGNA) was used to find groups of
genes expressed in a correlated manner across the 39 samples, irrespective of DEG status,
indicating probable participation in a common biological function. The soft thresholding
power was set at 12 to create a scale-free topology in the weighted co-expression network.
The 18,491 genes clustered into 14 modules (see Section 4.7). A least squares linear method
with post-hoc Tukey multiple comparison tests were used to identify treatment differences,
relative to control, within these modules (FDR cutoff of 0.05). Eight of these modules
showed significant eigengene differences between at least one of the treatments and the
control. To functionally classify these modules, we performed an over-representation
analysis using a hypergeometric test to see if the number of genes from a module mapped
to a pathway was greater than would be expected by random chance. Genes in each
module were used to enrich Mus musculus pathways from the Reactome Pathway Database
using the ReactomePA package in R version 1.46.0 [38]. Genes in five of the eight modules
significantly enriched molecular pathways in Reactome. Sample eigengene distributions
for these five modules are shown in Figure 3 by treatment group.

The size of the five modules varied from 256 to 2490 genes. Module 1 (M1) was
enriched for extracellular matrix organization and collagen biosynthesis pathways. CAW
was the only treatment with a significant effect on this eigengene (70% upregulated DEGs)
(Figure 3, Module 1). Fatty acid metabolism pathways were associated with Module 2 (M2),
and three treatments show a significant effect (TT, TTCQA, and CAW; 80% downregulated
DEGs) (Figure 3, Module 2). Module 3 (M3) enriched pathways included cellular response
to stress and stimuli and were significantly impacted by the TT treatment (61% upregulated
DEGs) (Figure 3, Module 3). Module 4 (M4) enriched pathways are primarily involved in
immune system functions. Here again, only the TT treatment showed a significant impact
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(90% downregulated DEGs). (Figure 3, Module 4). Enriched pathways for Module 5 (M5)
are mostly associated with Electron Transport and Mitochondrial Biogenesis, only affected
by the CQA treatment (91% downregulated DEGs) (Figure 3, Module 5). The pathways
mentioned here were the highest level. For a more detailed description of smaller enriched
pathways see Supplementary Table S5.
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Figure 3. Sample eigengene distributions for the five gene co-expression modules with significant
eigengene differences between at least one treatment and control. Boxplots for module eigengene
distributions by each treatment group (* p-value ≤ 0.05). Module 1 = Extracellular Matrix Organiza-
tion and Collagen Biosynthesis, Module 2 = Fatty Acid Metabolism, Module 3 = Cellular Response
to Stress and Stimuli, Module 4 = Immune System, Module 5 = Electron Transport and Mitochon-
drial Biogenesis. Module 1 also shows a heat map of individual gene expression levels (blue = low,
red = high). The highlighted section represents samples in the significant treatment for this module.
See Supplementary Figure S6 for heatmaps for Modules 2–5.

Module 1 of Figure 3 also shows an associated heatmap of individual gene expression
levels for this module with groups defined by hierarchical clustering. The two highest-level
clusters show a reversal of expression patterns associated with the treatment of significant
effect (CAW), with an upregulated cluster for the treatment group showing a mostly
downregulated pattern in the control group, and vice versa. For heatmaps associated with
Modules 2–5, see Supplementary Figure S6. The number of module genes in the enriched
pathways was generally small in our analysis, compared to the total number in the module
(M1 = 6%, M2 = 2%, M3 = 11%, M4 = 21%, M5 = 4%). It is not unusual for the fraction of
genes related to the primary biological function of the module to be less than 20% of all
genes in that module. While not all genes in the module were associated with the enriched
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function(s), genes that were not in these pathways but had a strong relationship to the
module could be (guilt by association) [39]. To evaluate the strength of the relationship
of both enriched and non-enriched genes to the entire module, we assessed both module
membership (MM) and intramodular connectivity (IC). MM, or kME, is the correlation
between individual module gene expression and the eigenvalue of that module. IC, or
kWithin, is the gene degree, or number of neighboring connections within the module,
in the weighted gene co-expression network that we constructed. The MM of the genes
in enriched pathways was evaluated using a t-test with Bonferroni correction and found
that genes within four out of the five modules (M1, M2, M3, M4) had significantly higher
MM scores than genes not found in enriched pathways. Interestingly, the MM of M5 was
significantly lower than the non-enriched pathway MM in this module, having a weak
negative correlation (r = −0.19 average) with the eigengene.

Next, the treatment DEGs contribution to each module was evaluated. While not all
treatment DEGs were found in the five modules, the significant treatments, with respect to
the eigengenes, had the highest number of significant DEGs in the module. CAW DEGs
comprised 28% of the genes in M1, whereas all other treatment DEGs were less than 1% of
this module. For M2, TT DEGs were 30% of the total module genes, TTCQA DEGs were
23%, CAW DEGs were 38%, and CQA DEGs were less than 1%. TT DEGs in M3 were 22%
of total genes, and none of the other treatments were more than 10%. In M4, TT DEGs
comprised 63% of the module, and none of the other treatment DEGs were more than 7% of
the module. Treatment DEG contributions were lower in M5, but the significant eigengene
treatment CQA still had the highest percentage of the module at 9%.

The MM measure was significantly higher for the DEGs associated with significant
eigengene treatments compared to non-DEGs in the module in two modules, M2 and M4
(M2: TT 0.54 vs. 0.18, TTCQA 0.52 vs. 0.22, and CAW 0.58 vs. 0.12; M4: TT 0.68 vs. 0.31;
Bonferroni adjusted t-test). No other significant treatment DEGs in the other three modules
were found to have significantly higher MM measures.

Each module displays a distinctly different pattern of CAW compound interaction at
the eigengene level (Figure 3, all modules). M1 (Extracellular Matrix Organization) shows
an increasing effect as the number of compounds increases, reaching significance with the
full CAW treatment. M2 (Fatty Acid Metabolism) shows the effect of the TT treatment
carried through to the full CAW treatment. CQA does not have an effect in this module
and does not seem to diminish the TT effect, nor do the additional unknown compounds
in CAW. The significant effect of TT seen in M3 (Cellular Response to Stress) seems to
be diminished by CQA and even further diminished by the unknown compounds. The
same pattern is seen with the TT treatment in M4 (immune function), but here TT has
a downregulating effect, whereas it had an upregulating effect in M3. In M5 (Electron
Transport and Mitochondrial Biogenesis), only the CQA treatment had a significant effect,
which seems to be negated through interactions with the TT compounds and not further
impacted by interactions with unknown compounds in CAW.

Information about the individual genes in these five modules and the pathways they
enrich can be found in Supplementary Table S5.

2.5. TT Treatment Has the Greatest Effect on Functions Associated with Metabolite Co-Abundance,
and This Effect Is Diminished by Interactions with Other Compounds

A modified protocol for WCGNA, with normalized metabolite abundance values, was
used to find groups of metabolites that were co-expressed across the 50 samples (10 from
each treatment plus control) [40]. Using a soft thresholding power of 12 to construct the
co-abundance network, the 192 metabolites clustered into 6 modules (see Section 4.7). Two
of the six modules had significant differences between at least one of the treatments and
control (FDR cutoff of 0.05). A Tukey multiple comparison test was employed to identify
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the specific treatment differences in each of these two modules (Figure 4A). Metabolites
from both modules significantly enriched 31 Reactome Mus musculus pathways for Module
1 and 345 pathways for Module 2 (see Supplementary Table S6 for pathway information),
using a hypergeometric test.
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The majority of metabolites in Module 1 (M1) were amino acids (Figure 4C, M1),
which was reflected in several of the 31 enriched pathways (‘branched-chain amino acid
catabolism’, ‘phenylalanine and tyrosine metabolism’). Most of the metabolites in Module 2
(M2) were either nucleotides or amino acids (Figure 4C, M2). This was also reflected in
several of the 345 enriched pathways for this module (‘metabolism of amino acids and
derivatives’, ’metabolism of nucleotides’).

Information about individual metabolites in both modules can be found in Supplementary
Table S7.

There were no enriched pathways in common between those associated with metabo-
lite module M1 and the pathways associated with the five transcriptomic modules described
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in Section 2.4 However, there were common enriched pathways between metabolite mod-
ule M2 and four of the transcriptomic modules (transcriptomic M1, M3, M4, M5). Some
of these pathways include ‘signaling by PDGF’ for M1, ‘cellular responses to stress and
stimuli’ for M3, ‘homeostasis’ for M4, and ‘respiratory electron transport’ for M5. For a
complete list of the common pathways, see Supplementary Table S8.

2.6. Integration of Transcriptome and Metabolome Shows Little Overlap Between TT, CQA, and
TTCQA in Significant Gene Activity, but Commonality in Pathways Affected

In the previous section, it was noted that there were several common biological
pathways enriched with both genes and metabolites from the WGCNA modules generated
for both omics domains. To focus more specifically on how an individual treatment impacts
genes and metabolites that are functionally related to each other within a certain biological
function (pathway), we performed an integration analysis as described in Section 4.8.
This integration approach considered all DEGs for a specific treatment and then used a
computational framework to find metabolites, from both the DAMs and WGCNA modules,
that were also impacted by the same treatment and were statistically associated with
the DEGs. This framework used network methods and prior knowledge of biological
functions (pathways).

The 1760 DEGs and 133 DAMs (8 individual DAMs, 25 from Module 1, and 100
from Module 2) identified following TT treatment were used as seeds to construct the
composite network as described in Section 4.8. This network was constructed without
the necessity of additional connector genes/proteins to contain the maximum number
of seeds possible. However, there were genes in the metabolite-gene network that were
not differentially expressed by TT. There were 6 communities detected in the composite
network that contained both a gene and metabolite seed, for a total of 37 metabolites
and 42 genes in close functional relationship to each other (see Supplementary Table S9).
Reactome pathway enrichment, conducted at the individual community level using both
seed and non-seed genes, identified a total of 29 pathways containing at least one DEG
for the TT treatment overall (see Supplementary Table S10). An example of the network
derived from one TT community from the composite network is in Figure 5. Individual
network figures for each community containing both seed metabolites and genes are in
Supplementary Figure S2.

The 198 DEGs and 115 DAMs (15 individual DAMs and 100 from Module 2) affected
by CQA treatment were used as seeds. In this case, connector genes/proteins were used for
maximum seed inclusion in the composite network, which yielded five communities, meet-
ing our criteria of containing both a seed metabolite and a gene. These communities con-
tained a total of 23 seed metabolites and 26 seed genes (see Supplementary Table S11), and
these DEGs contributed to the enrichment of 74 pathways (see Supplementary Table S10).
Module network figures are in Supplementary Figure S4.

The 981 DEGs and 20 individual DAMs (no Module metabolites) altered with TTCQA
treatment were used as seeds. Again, connector genes/proteins were used to construct
the composite network, yielding two communities of interest, containing a total of 2 seed
metabolites and 24 seed genes (see Supplementary Table S12), contributing to the en-
richment of 90 pathways (see Supplementary Table S10). Module network figures are in
Supplementary Figure S5.

No composite network communities built using CAW seed genes and metabolites met
the necessary criteria.
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Figure 5. TT Integration Community Network Example. Network is derived from seed genes and
metabolites in one community of the TT integrated composite network. Seed genes and metabolites
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network connections, or degree. This network enriched mostly fatty acid metabolism pathways.

Next, pathway and gene overlap were evaluated between treatments using the com-
posite network module level data, as described above. Comparisons were performed
between TT and CQA, TTCQA and TT, and TTCQA and CQA. There were very few genes
in common between any of these treatments (GPT for TT and CQA, CYP4F15 and ACOT5
for TTCQA and TT, and none for TTCQA and CQA). However, while there was only one
pathway in common between TT and CQA, there were 6 pathways in common between
TTCQA and TT and 34 between TTCQA and CQA.

2.7. Functional Relationships of DEGs for All Treatment Groups Are Not by Random Chance

A network approach was used to determine the overall functional similarity of the
genes differentially expressed by each treatment. First, a protein–protein interaction (PPI)
network was constructed using the STRING Database [41]. Protein interactions with a
physical interaction score ≥ 400 (scale 0–1000), which is a moderate to high confidence in
the interaction, were kept, and then the DEGs from each treatment were mapped onto this
network, and the average network shortest path between the DEGs within each treatment
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separately was calculated. Permutation testing (1000 permutations) in the PPI network was
then conducted by randomly distributing the same number of genes that were differentially
expressed in each treatment. This was performed to see if the average shortest path distance
between the DEGs for a specific treatment was closer than would be expected by random
distribution. DEGs associated with all four treatments were significantly closer in the
STRING PPI than would be expected by chance, as was also the case with the DEGs found
in the five co-expression modules.

3. Discussion
Herbal or botanical healthcare products generally consist of complex mixtures in

the form of powders or extracts of single or multiple herbs. The effects of the product
may be due to the bioactivities of individual compounds present in the mixture but may
also result from complex interactions between the different components. Studying in-
teractions that may occur between multiple components of a botanical mixture presents
a significant challenge. Several methods exist to understand these interactions, includ-
ing the use of isobolograms of bioactivity vs. the proportion of the components being
tested and biochemometric approaches where the activity of mixtures including or missing
specific components is evaluated [16,42–47]. Untargeted transcriptomic analysis has previ-
ously been used to study individual and combined effects of herbs and phytochemicals in
neuroglial cell lines [14,15].

In the present study, the primary outcomes derived from two untargeted omics do-
mains, as well as their integration, were used to evaluate interactions between components
of Centella asiatica water extract, CAW, which contains a complex set of components as
previously reported [31,48]. This study compared different subsets of CAW constituent
compounds, as well as the complete CAW extract, in a nested compound design.

While the earlier studies used targeted analyses of specific effects of the extract,
here the effects of the nested subsets of compounds were compared in an untargeted
fashion to identify broad patterns of activity and interactions for further research. For
example, previous in vitro synergy experiments have generally evaluated a single biological
activity in a targeted fashion, such as cell viability or an anti-microbial effect, often in a
pairwise fashion between two compounds [44], and previous systems biology in silico
methods are reliant on computational predictions [43]. To our knowledge, this is the first
in vitro approach using systems biology methods to study compound interaction effects on
bioactivity in a complex plant extract with a nested compound design with two untargeted
molecular domains.

At the individual gene level, the TT treatment stood out in the gene expression results,
with the most activated genes of the three select compound treatments (TT, CQA, and
TTCQA) and the most activated genes that were still retained in the full CAW treatment, as
compared to those retained from the CQA and TTCQA treatments in CAW. This would
be consistent with the body of previous research focusing on TTs as the main bioactive
compound in Centella asiatica, with activity demonstrated for many health conditions,
including neurodegenerative, dermatological, and others [17]. However, in this study,
there were many complex interactions reflected in the overlap of activated genes between
TTs and other treatments. A large portion of gene activity seen with either the TT or
CQA treatments was not seen when the two groups were combined or in the complete
CAW extract, with 66% of the TT and CQA gene effects disappearing with TTCQA and
56% of these effects disappearing with CAW. Interestingly, 10% of gene expression lost on
combining compounds in TTCQA is restored with the full CAW treatment, which suggests
that the additional compounds within CAW are modulating these effects. Based on the
post-incubation cultured media analysis, this return of gene activity in CAW could in part
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be modulated by the degradation of CQA compounds, which appear to inhibit the TT
activity in the TTCQA treatment. Since there was no apparent degradation of either TT
or CQA compounds seen in the TTCQA treatment (the post-incubation concentrations
remained relatively unchanged for CQA in TTCQA), it could be assumed that the TT
inactivation was through some other type of compound inhibition. There was also a large
amount of new gene activity unique to TTCQA and CAW that was not observed in TT or
CQA groups alone, suggesting the presence of interactions between TT and CQA (in the
case of TTCQA) and/or the involvement of additional compounds in the case of CAW for
interactions with these genes. Further studies are needed to identify whether DEGs unique
to CAW could be the result of interactions between TT or CQA and other compounds
within the extract.

Continuing with individual genes, the combination TTCQA treatment inactivated
many genes whose expression was altered by TT. Most of this interaction is positive on
genes downregulated by TT, with no effect by CQA alone. However, there is also a large
number of upregulated TT genes neutralized by negative interaction with CQA (Figure 2
and Supplementary Figure S1).

Some of these inactivated genes explain the therapeutic mechanisms of TT. The effect
of TT on these genes not only has a therapeutic effect on neurodegenerative diseases but
also on endocrine, dermatological, cardiovascular, digestive, respiratory, gynecological,
and rheumatoid diseases (Asiatic acid impact on AKT, mTOR, NF-κB, BDNF, CPT-1, SOX2,
BCL2, IL18, CASP-3, and NLRP3 modulates the therapeutic effect for some neurological,
digestive, dermatological, endocrine, cardiovascular, and respiratory conditions. Asiati-
coside’s impact on NF-κB, MAPK, BCL2, TLR4, TRAF6, IL18, and IL10 modulates the
therapeutic effect for some neurological, endocrine, cardiovascular, digestive, and respira-
tory conditions. Additionally, madecassoside impacts MAPK, TLR2, and IL10, modulating
the therapeutic effect for some neurological, endocrine, dermatological, and rheumatoid
conditions [17,49]. This finding could suggest a therapeutic rationale for not combining TT
and CQA compounds, i.e., using isolated TT compounds. While TT compounds are more
widely studied, recent research has also shown health benefits from the CQA compounds,
such as ameliorating cognitive impairment in an Alzheimer’s mouse model [28].

When evaluating higher-level functions using gene co-expression modules affected
by each treatment, TT again showed the greatest effect across both the transcriptomics
modules and metabolomics modules. However, there were very different patterns of
interaction with TT and other compounds for these different modules. In Module 2, which
was enriched for fatty acid metabolism and had a dominant gene downregulation effect
from TT, there was virtually no interaction with CQA or unknown compounds. This
module effect was still seen with TTCQA and CAW. One of the pathways within fatty
acid metabolism was arachidonic acid metabolism. Downregulation of this pathway could
explain some of the anti-inflammatory and immune-modulating effects of both TT and
CAW [17]. With both Module 3 and Module 4, the significant effect of TT, seen with
eigengenes (Figure 3), appears to be diminished by CQA and then further diminished by
unknown compounds in CAW. Both of the overall functions associated with these modules
through the enrichment analysis (cellular response to stress and stimuli, immune functions)
were previously researched for CA. While the pattern of compound interaction is the same
in these two modules, the effect of that interaction is different. For Module 3 (cellular
response to stress and stimuli), the effect is overall an upregulation of genes, which seems
to be neutralized by interactions. The reverse is true for Module 4 (immune functions).
However, both triterpene compounds and extracts of CA, water, or ethanol have shown
effects in these functions in previous research [17]. However, most of these were in vivo
studies. The metabolomic Module 1 had the same pattern of interaction and differential
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abundance as the transcriptomic Module 4, but the metabolomic Module 2 had a pattern of
interaction distinct from any transcriptomic module. For this module, both TT and CQA
have relatively equivalent significant effects that are apparently neutralized through their
interaction and then further reduced by interactions with unknown compounds.

The significant effect for CAW seen in transcriptomic Module 1 (extracellular matrix
organization) appears to be mediated through interactions of all the compounds tested in
this experiment since no significant effect is seen until all compounds are together in the
full CAW extract, with possibly a strong contribution from unknown compounds (Figure 3,
Module 1). Collagen formation sub-pathways, within extracellular matrix organization, are
dominant in this module. Interestingly, TT has been found to reduce the deposition of the
extracellular matrix and is thus useful in treating liver, pulmonary, and other fibrotic condi-
tions [50,51]. However, a methanol extract of Centella asiatica has been found to stimulate
collagen and extracellular matrix formation, which is beneficial in certain dermatological
conditions, as well as wound healing [17,49,52]. TT compounds alone have shown benefit
in treating dermatological conditions, but this effect appears to be modulated through other
mechanisms besides collagen formation [17].

The integration analysis conducted for this experiment was metabolomics-centric
since we had a much smaller number of metabolites of interest than genes. Finding
genes associated with these metabolites helped to focus on specific functions for the
compound interaction analysis. This is likely why some of the functionality seen with the
gene co-expression analysis is not reflected in this integration. Generally, functions seen
here are more closely reflected in the metabolite co-abundance findings, except for fatty
acid metabolism.

Distinctly different functions between the TT and CQA treatments were apparent at
the pathway level based on this integration analysis. Some of the top pathways associated
with DEGs in the TT integration included the metabolism of amino acids, nucleotides,
and fatty acids. The top pathways associated with DEGs in the CQA integration included
chromatin organization, epigenetic regulation of gene expression, and DNA repair. There
were also functional variations across network community groups within a treatment (see
Supplementary Tables S9, S11, and S12). Many of the same pathways seen with CQA
are also seen in TTCQA, such as chromatin organization, epigenetic regulation of gene
expression, and DNA repair. Interestingly, there is almost no overlap between these three
treatments at the DEG level, but a substantial amount of overlap at the pathway level,
particularly between TTCQA and CQA, suggesting that some functions are retained in the
TTCQA combination but mediated through different genes.

The PPI network analysis is another ‘guilt by association’ approach that considers two
genes in a PPI to have a more likely functional relationship the shorter the path between
them [53]. There is also some evidence that the network proximity of DEGs in a PPI is
associated with the therapeutic synergy of the associated compounds [54]. This analysis
revealed that none of the collections of altered genes were distributed by random chance.
This would be expected for collections of compounds with structural similarity, such as
the four compounds in the TT treatment of the eight compounds in the CQA treatment.
However, it is more surprising to see this phenomenon maintained within the combination
of these two sets of compounds (TTCQA), especially in the large number of structurally
diverse compounds seen with CAW. It is possible that the lack of random distribution seen
in CAW is mediated through compound interactions, and even possibly driven by the two
therapeutic classes of compounds.

Future analyses could address some of the limitations of this current study. This
study sample size was relatively small and may not be able to detect smaller significant
effects, particularly with the metabolomics differential analyses. Additionally, the individ-
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ual experiments were not able to collect sufficient cells from the cultures to perform the
two omics analyses on the same batch of neuronal cultures. This particularly impacts our
methodological approach to omics integration. Using a knowledge-based approach has
limitations due to incomplete annotation of biological functions. The two independent
co-expression/abundant analyses were data-driven and likely a more complete picture
of functional molecular relationships, although still subject to limitations from the use of
known pathway data for the enrichment analysis. Even the co-expression/abundance
analyses are based on the assumption of a linear relationship between biological molecules,
which is not always the case. Some sample variability can be seen in the eigengenes and
eigenmetabolites in Figures 3 and 4A. While the two omics experiments were performed in
separate batches, the samples within each omics domain were from the same culture batch,
so this would not have a source of variation. This could be related to interactions at the
cellular transport level.

Since this was an in vitro experiment, some of the findings may not translate at an
organism level. Some compounds present in these treatments may not be absorbed when
given orally, and, in general, most pharmacokinetic mechanisms are not accounted for
in this type of experiment. Future studies should explore the in vivo absorption of these
compounds and also examine metabolomic and transcriptomic changes in the brains of
mice treated with TT, CQA, TTCQA, and CAW. In humans, the concentration of TT and
CQA compounds and endogenous metabolites could be measured in plasma following
treatment with these mixtures, although these may not correlate directly to levels in the
brain or other sites of action of these compounds.

It is difficult to know how the concentrations used in this experiment relate to the
medicinal use of Centella asiatica as both traditional and commercial preparations vary
widely in composition and dosage and corresponding plasma and tissue concentrations
of TT and CQA are not usually known. However, in a clinical trial, a Centella asiatica
TT preparation that improved symptoms of diabetic neuropathy resulted in steady state
total TT plasma levels of about 0.6 µM [55]. Human pharmacokinetic studies of 2 g and
4 g doses of CAW [56] resulted in plasma Cmax values for total TT of 0.5 and 1.2 µM,
respectively. CQA levels resulting from Centella asiatica administration are more difficult
to evaluate as they are widely distributed among commonly consumed food plants [57].
Nevertheless, the TT plasma concentrations seen in humans were of a similar order to the
in vitro concentrations used in this study, supporting the potential clinical relevance of the
data obtained here.

In conclusion, this study revealed some compelling patterns for further investigation.
Four gene expression modules and two metabolite modules were altered by the 4 types of
treatments applied. This methodology demonstrated the existence of both negative and
positive interactions between TT, CQA, and additional compounds found in CAW on the
transcriptome and metabolome of mouse primary cortical neurons. It will be interesting
to confirm the pathways that emerged from this study in targeted future experiments.
Additionally, it will be informative to evaluate how the phenotypic endpoints that previous
work has shown to be affected by CAW are impacted by TT, CQA, and TTCQA treatment.

4. Materials and Methods
4.1. Mouse Primary Cortical Neuron Cell Cultures

Mouse primary cortical neurons were isolated and cultured (37 ◦C) following a pre-
viously published protocol [58]. Briefly, six-well plates were coated with poly-L-lysine
(PLL; Sigma, Burlington, MA, USA), three days prior to primary neuron harvest. After
one day, the PLL was removed, and the plates were washed with double distilled water.
Following the wash, plating media (Minimal Essential Media, Fetal Bovine Serum 4.6%,



Pharmaceuticals 2025, 18, 19 16 of 24

Glucose 0.55%, Antibiotic-antimycotic: 10,000 U/mL Penicillin 10,000 U/mL Streptomycin
and 25 µg of amphotericin B/mL, (Invitrogen, Carlsbad, CA, USA)) was added to each
well for the remaining two days. Then, neurons were isolated from the cortices of C57BL6
mouse embryos at embryonic days 16–18, incubated in a mixture of HBSS and trypsin
(2.5%) (Gibco, Grand Island, NY, USA) at 37 ◦C, then dissociated. Neurons were plated onto
six-well plates (1 million/well) and incubated (37 ◦C) for 3 h after which the plating media
was replaced with supplemented neurobasal media (with B27 1:50 dilution, Glutamax 1:100
dilution, antibiotic-antimycotic: penicillin 10,000 U/mL, streptomycin 10,000 U/mL and
amphotericin B 25 µg/mL, (Invitrogen, Carlsbad, CA, USA)). Neurons were then cultured
for five days at 37 ◦C before receiving experimental treatments.

4.2. Treatments

Centella asiatica dried plant material (aerial parts; batch number X20090016) was
purchased from Oregon’s Wild Harvest (OWH; Redmond, OR, USA). Voucher samples
were deposited in the BENFRA Center laboratories at Oregon Health & Science Univer-
sity (code number BEN-CA-6) and at the Herbarium at Oregon State University (code
number OSC-V-265416). A water extract (CAW) was prepared by reflux extraction of
the dried plant aerial parts minus the root, filtering, and lyophilization [23–25,59]. The
ratio of dried plant material to dried extract was 5:1. The CAW treatment was prepared
from this dried extract (0.050 mg/mL in 0.025% v/v aqueous methanol vehicle in each
well). The triterpene (TT) and caffeoylquinic acid (CQA) content in the CAW was de-
termined using liquid chromatography coupled with multiple reaction monitoring mass
spectrometry (LC-MRM-MS) as previously described [31]. The triterpene (TT) treatment
was prepared (0.025% v/v aqueous methanol vehicle final concentration in the cell cul-
ture) with madecassoside (1.7945 µg/mL; 1.84 µM), asiaticoside (0.7376 µg/mL; 0.769 µM),
madecassic acid (0.0377 µg/mL; 0.073 µM), and asiatic acid (0.021 µg/mL; 0.043 µM) con-
centrations equivalent to that in the CAW 50 µg/mL solution (LC-MRM-MS verified concen-
trations). The caffeoylquinic acid (CQA) solution was prepared in the same fashion using
chlorogenic acid (0.3749 µg/mL; 1.06 µM), neo-chlorogenic acid (0.1695 µg/mL; 0.478 µM),
crypto-chlorogenic acid (0.1492 µg/mL; 0.421 µM), 3,4-dicaffeoylqinic acid (0.1146 µg/mL;
0.221 µM), 3,5-dicaffeoylqinic acid (0.0884 µg/mL; 0.171 µM), 4,5-dicaffeoylqinic acid
(0.0975 µg/mL; 0.189 µM), 1,3-dicaffeoylqinic acid (0.1291 µg/mL; 0.250 µM), and
1,5-dicaffeoylqinic acid (0.1946 µg/mL; 0.377 µM), (LC-MRM-MS verified concentra-
tions). The triterpene and caffeoylquinic acid (TTCQA) solution was prepared using
the 12 compounds that were used in the TT and CQA treatments, prepared in the same
fashion. The control vehicle consisted of aqueous methanol (0.025% v/v). These are the
stock treatment ‘theoretical values’. These stock treatment solutions were then quantified
using LC-MRM-MS as described in Section 4.3. These are the expected time zero values and
can be found in the first four lines of Supplementary Table S1. Purified reference Centella
asiatica TT and CQA were purchased from Chemfaces (Wuhan, Hubei, Peoples Republic
of China).

CAW or compound treatments were initiated after five days of incubation and lasted
for 48 h. There were four compound treatments (CAW, TT, CQA, TTCQA) and one vehicle
control treatment. After the 48 h treatment period, an aliquot of medium from each well
was collected for analysis of post-incubation cultured media compound concentrations,
and cells were harvested by trypsinization (0.25% trypsin in Hanks’ balanced salt solution,
37 ◦C, 5 min) after media was removed and cells rinsed 1× with phosphate-buffered saline.
Detached cells were then centrifuged at 300× g for 5 min at room temperature and the
resulting cell pellet was flash-frozen and stored at −80 ◦C until analysis. Eight samples
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for each experimental condition were prepared for RNA sequencing and ten samples were
prepared for each condition for metabolomics analyses.

4.3. Analysis of Compound Concentrations in the Media After 48 h of Treatment

For quantifying 12 CA phytochemical marker compounds (3 mono-CQA, 5 di-CQAs,
and 4 TTs) in media, a SPE method was developed that removes phospholipids and proteins
(using Ostro® Protein Precipitation and Phospholipid Removal Plate (Waters Corp., Milford,
MA, USA)) prior to LC-MRM-MS analysis. Each media sample was thawed and a 100 µL
aliquot was transferred into an Eppendorf tube, that contained 300 µL methanol containing
0.1% formic acid and 5 µL digoxin-d3 (10 µg/mL) as an internal standard. Media sample
was loaded into an Ostro plate well and 300 µL acetonitrile containing 0.1% formic acid was
added and mixed by pipetting up and down 3 times. The plate was placed onto a vacuum
manifold and the elution solvent was drawn into glass inserts of the collecting plate. The
1-mL glass inserts containing the eluate were placed into a 2-mL micro-centrifuge tube
and dried in Speed Vac for approximately 1 h to obtain solid residues. For reconstitution,
50 µL of 70% methanol containing 0.1% formic acid was added to the glass inserts and
resuspended by pipetting up and down 3 times. Samples were centrifuged at 13,000 rpm
at 4 ◦C for 10 min, and each supernatant was transferred to an LC-MS vial and stored
at −20 ◦C until LC-MRM-MS analysis using a Waters Xevo TQXS system connected to a
Waters UPLC I-class. The MS method details have been described by us previously [31].
Chromatograms from LC-MRM-MS, targeted to detect only TT and CQA compounds, are
provided in Supplementary Figure S7. These show the presence of the required compounds
in the stock solutions for TT, CQA, TTCQA, and CAW and that their concentrations are
in line with those of the CAW extract. An untargeted LC-qTOF-MS chromatogram of all
compounds detected in the CAW extract can be found in Supplementary Figure S8 showing
the presence of additional compounds. Previous studies employing LC-qTOF-MS with a
slower solvent gradient allowed the detection and annotation of 117 compounds in CAW
extracts [48].

Cell pellets were resuspended in RLT-β-mercaptoethanol (QIAGEN) lysis buffer and
quickly frozen for RNA extraction at the Oregon Health & Science University (OHSU) Gene
Profiling Shared Resource. RNA quality was assessed at the GPSR and assigned an RNA
Integrity Number (RIN). Only samples with RIN ≥ 8.0 were considered for sequencing,
which occurred at the OHSU Massively Parallel Sequencing Shared Resource facility. This
was performed on a HiSeq 2500 (Illumina, San Diego, CA, USA) and aligned to the mm38
mouse genome with the Star aligner [60]. Subsequent QA/QC was performed using the
MultiQC package version 1.22 [61].

4.4. Metabolomics

Cells for control and treatments (approximately 1 million each) were thawed on ice
and transferred to Precellys Lysing Kit bead blender tube with pre-supplied beads (2 mL
Tissue Homogenizing Mixed Beads Kit (CKMix), Item No. 10409, Cayman Chemicals,
Ann Arbor, MI, USA). Extraction solvents (500 µL, cold 80% methanol in water containing
12-[[(cyclohexylamino)carbonyl]amino]-dodecanoic acid (CUDA, 20 ppm, 10 µL)) were
added to each vial, and homogenized. The homogenates were incubated for 1 h at −20 ◦C,
then centrifuged at 10,000 rpm at 4 ◦C for 10 min. Each supernatant was transferred to a new
vial and dried using a Speed Vac. Each residue was reconstituted in a cold 50% aqueous
acetonitrile, vortexed for 20 s, and centrifuged at 10,000 rpm at 4 ◦C for 10 min. Each
supernatant was transferred to an LC-MS vial and stored at −80 ◦C until LC-MS analysis.
Quality control (QC) samples were generated by pooling 10-µL aliquots from each sample
extract and were analyzed with samples. Blanks contained only extraction solvent.
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The LC-MS/MS metabolomics workflow was described by us previously (see [62])
and entails two chromatographic methods: (1) Reverse-phase liquid chromatography was
carried out using ACE Excel C18-PFP (1.7 µm, 2.1 mm × 100 mm). The sample injection
volume was 5 µL, and the flow rate was 0.5 mL/min. The mobile phases consisted of water
(A) and acetonitrile (B), both containing 0.1% formic acid. The gradient was as follows:
initial hold at 5% B for 3 min, then increase to 80% B in 13 min, held until 16 min, then shift
to 5% B and hold for equilibration from 16.5 min to 20.5 min. The column oven temperature
was maintained at 30 ◦C. (2) Hydrophilic interaction liquid chromatography, the method
was identical to that previously reported [62].

For both chromatographic methods ESI-MS/MS data were acquired in positive and
negative ionization modes using a quadrupole time-of-flight MS system (AB Sciex tripleTOF
5600; Framingham, MA, USA). Individual metabolites were annotated using an existing
in-house library based on retention time, exact mass, and MS/MS of 650 compounds
compiled in the Mass Spectrometry Metabolite Library of Standards (MSMLS, IROA Tech-
nologies, Bolton, MA, USA). Raw data files were imported and processed using PeakView
(ver. 1.2, Sciex) and MultiQuant (ver. 3.0.2, Sciex) software. Metabolites were verified using
chromatographic retention time (error < 10%), accurate mass (error < 10 ppm), MS/MS
fragmentation (score > 70), and isotopic pattern (error < 20%). The RP-C18 LC method
yielded 117 metabolites (58 metabolites in positive ion mode and 59 in negative ion mode),
and the HILIC method resulted in 234 metabolites (135 metabolites in positive ion mode
and 119 in negative ion mode). The metabolites that were assigned in both methods were
evaluated and the metabolites detected with the lower coefficient variation (CV) value in
the QC samples were kept. This evaluation resulted in 192 high confident unique metabo-
lites (178 metabolites (<20% QC CV), 10 metabolites (<30% QC CV), and 4 metabolites
(>30% QC CV), Supplementary Table S13).

4.5. Differential Analyses for Gene Expression and Metabolite Abundance

For differential gene expression, the limma-voom package was used, a modification
of the limma package designed for RNA-seq count data [63]. Genes were removed from
the data if they did not have a transcript count of at least 10 in each sample. Next, a
log2 transformation of counts per million (l cpm) was performed, followed by a trimmed
mean of M-values (TMM) normalization. Heteroscedasticity was controlled with the
voom function to meet the assumptions of a linear method. Differential calculations were
conducted between each of the four treatments (TT, CQA, TTCQA, CAW) and the control
(FDR cutoff 0.05).

For metabolite abundance, the MetaboAnalyst package version 5.0 was used [64]. The
data were median normalized, log2 transformed, and then Pareto scaled (Supplementary
Figure S3). t-tests were performed to compare each treatment to the control for all
192 metabolites (FDR cutoff 0.05).

4.6. TT and CQA Gene Expression Interaction Classification

To assess the interaction between the TT and CQA treatments on normalized gene
expression data, parameter estimates were derived from a least squares linear method with
the control group as a reference, using the limma R package version 3.58.1 [63]. For each
group, the effects (parameter estimates) of each treatment were assessed relative to the
control. Next, the sum of the effects of TT and CQA treatments was contrasted with the
effect of the TTCQA treatment using the contrasts.fit eBayes functions in limma. Any gene
found to be differentially expressed by any of these three treatments was examined for
interaction (N = 2268). We included genes that might not be differentially expressed by
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either one or two of the other treatments to see if an interaction might create or inhibit a
significant expression.

If the TTCQA effect on the expression of a particular gene was greater than the
sum of the TT and CQA effects, the interaction was classified as positive, or synergistic.
If the TTCQA effect was less than the sum, the interaction was classified as negative,
or antagonistic. If they were equal, the interaction was classified as an additive, or no
interaction [65]. Since these coefficients represent log2 fold changes, negative values
represent downregulation and positive values represent upregulation. So, any negative
interaction that decreases this coefficient value would potentially increase downregulation,
and positive interactions, as well as additive, would increase upregulation.

4.7. Weighted Gene Correlation Network Analysis (WGCNA Gene Co-Expression and Metabolite
Co-Abundance)

The WGCNA package in R [66] was used for both RNA-seq and metabolomic data [40].
Both data types were normalized for the creation of this network by variance stabilizing
transformation. To create a scale-free network, Pearson correlation was first used to con-
struct an adjacency matrix for all gene or metabolite pairs using a soft thresholding power
of 12 for both data types. The matrix was transformed into a topological overlap matrix
(TOM) which was then converted to a dissimilarity matrix (1-TOM). Hierarchical clustering
was applied to the final matrix to identify clusters of genes or metabolites with similar
expression or abundance profiles. The minimum node size was 5 for metabolomics data and
30 for RNA-seq data. Module eigengenes and eigenmetabolites (first principal components)
were calculated using the moduleEigengenes of WGCNA. Module membership for each
gene or metabolite was calculated as the correlation between the normalized expression
or abundance values with the module eigengene or eigenmetabolite and was calculated
with the signedKME in WGCNA. Intramodular connectivity was the degree of each gene
or metabolite in the adjacency matrix described above, calculated with the intramodular
connectivity function in WGCNA.

Following the construction of these modules in each of the two omics domains, we
then tested for differences between each treatment and control seen at the eigengene or
eigenmetabolite level.

4.8. Integration of Transcriptomics and Metabolomics Data

A modification of a protocol previously used to integrate transcriptomic and
metabolomic data for the study of neurodegenerative disease [67] was used to obtain a more
comprehensive functional perspective for comparing the four treatments. This protocol
was modified to fit the limitations of the data. Since this project was a repeated experi-
ment design, with the transcriptome coming from different samples than the metabolome,
rather than a split design with both omics coming from the same samples, a ‘data-driven’
approach was not appropriate. A ‘data-driven’ approach would correlate expression and
abundance levels (or eigenvalues) across domains to create correlation-based networks for
further analyses. Instead, a ‘knowledge-based’ approach was used, with existing molecular
pathway information, to construct networks within and between individual genes and
metabolites. These networks and subsequent analyses were conducted using OMICSNET
software version 2.0 [68].

Genes and metabolites associated with significant treatment effects, relative to control,
were used as seeds to construct the ‘knowledge-based’ networks in OMICSNET. Analyses
were performed separately for each treatment. Any gene differentially expressed by a
treatment was used as a seed. Any individual metabolite affected by treatment or member
of a metabolite module whose eigenmetabolite was affected by treatment was also used
as a seed. Due to the sparse number of individual metabolites affected, we also included
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co-expressed metabolites. Seed genes were used to construct a primary protein–protein
interaction (PPI) network using the STRING database [41]. Genes and proteins are used
interchangeably here. Connector proteins (non-seed) were added if necessary to create
a more fully connected network. Seed metabolites were used to first create a primary
metabolite-protein network using the KEGG pathway database [69]. A secondary PPI
was created using the proteins in the primary metabolite-protein network using STRING,
adding connector proteins if necessary. Finally, a composite network was created by linking
the three independent network layers with common nodes (genes/proteins). To control
the network size, the ‘Minimum network’ function was used in OMICSNET to create the
smallest network possible which still contained as many seeds as possible.

Once an integrated network was created, tightly clustered communities of nodes were
detected using the Walktrap algorithm [70]. Only communities that contained both seed
metabolites and seed genes were further analyzed. These communities identified close
functional relationships between genes and metabolites both affected by the same treatment.
Subsequent Reactome pathway over-representation analysis was conducted using all genes
in a community (seeds and connectors) using ReactomePA [38]. A comparison of pathways
impacted by each treatment was then performed to identify overlapping and distinct
functions using the integrated omics data (Figure 6).
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