In Vitro Study of Cyano-Phycocyanin Release from Hydrogels and Ex Vivo Study of Skin Penetration
"> Figure 1
<p>pH of hydrogels and determined concentrations of C-PC in the produced hydrogels with different gelling agents. An asterisk (*) indicates statistically significant differences between the added and determined concentrations of C-PC (<span class="html-italic">p</span> < 0.05), evaluated using a paired-sample <span class="html-italic">t</span>-test. The means and standard deviations are presented. The experiment was repeated three times.</p> "> Figure 2
<p>Determined concentrations of C-PCs in hydrogels with different preservatives. Different letters denote statistically significant differences (<span class="html-italic">p</span> < 0.05) in the C-PC concentrations among hydrogels containing the same gelling agent but different preservatives, as assessed using Bonferroni’s test. An asterisk (*) indicates statistically significant differences (<span class="html-italic">p</span> < 0.05) between the initially added and the determined C-PC concentrations, evaluated using a paired-sample <span class="html-italic">t</span>-test. The means and standard deviations are presented. The experiment was repeated three times.</p> "> Figure 3
<p>The release of C-PC from hydrogels: C-PC PG hydrogel and C-PC hydrogel without PG (control). Different letters indicate statistically significant differences (<span class="html-italic">p</span> < 0.05) determined by independent-samples <span class="html-italic">t</span>-test. Means and standard deviations are presented. The experiment was repeated 3 times.</p> "> Figure 4
<p>Confocal images of human skin autofluorescence (control) and human skin section after treatment with C-PC hydrogel and C-PC PG hydrogel. Scale bar 50 μm. The experiment was repeated 3 times.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Selection of Gelling Agent
2.2. Selection of Preservative for C-PC Hydrogels
2.3. Microbiological Evaluation of C-PC Hydrogels
- I C-PC gel: C-PC (1% w/w), glycerol (Sigma-Aldrich, St. Louis, MO, USA) (5% w/w), sodium alginate (3.5% w/w), and Sharosense 785 (0.05% w/w);
- II C-PC gel: C-PC (1% w/w), glycerol (5% w/w), Soligel (1.5% w/w), and Sharosense 785 (0.05% w/w);
- III C-PC gel: C-PC (1% w/w), glycerol (5% w/w), HEC (5.5% w/w), and Sharosense 785 (0.05% w/w).
2.4. In Vitro Evaluation of C-PC Release from Experimental Hydrogels
2.5. Ex Vivo Qualitative Assessment of C-PC Skin Permeation from Experimental Hydrogels
3. Discussion
3.1. The Influence of Gelling Agents and Hydrogel Production Technology on the C-PC Stability
3.2. Identifying an Efficient Preservative for C-PC Hydrogels
3.3. Contextualizing the Microbiological Results of C-PC Hydrogels
3.4. Analysis and Implications of C-PC Release Profiles in Experimental Hydrogels
3.5. Insights into Ex Vivo C-PC Skin Permeation from Experimental Hydrogels
4. Materials and Methods
4.1. Materials
4.2. Collection of Cyanobacterial Biomass
4.3. C-PC Extraction and Purification
4.4. Purity Assessment of C-PC
4.5. Production of Experimental C-PC Hydrogels
4.6. Spectrophotometric Analysis
4.7. Microbiological Analysis
4.8. Determination of pH of Experimental C-PC Hydrogels
4.9. In Vitro Study of C-PC Release from Experimental C-PC Hydrogels
4.10. Ex Vivo Skin-Permeation Study of C-PC
4.11. Statistical Analysis of Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osman, A.; Salama, A.; Ghany, A.A.; Sitohy, M. Antibacterial activity and mechanism of action of phycocyanin extracted from an Egyptian strain of Anabaena oryzae SOS13. Zagazig J. Agric. Biochem. Appl. 2015, 42, 30–321. [Google Scholar]
- Yuan, B.; Li, Z.; Shan, H.; Dashnyam, B.; Xu, W.; McClements, D.J.; Zhang, B.; Tan, M.; Wang, Z.; Cao, C. A review of recent strategies to improve the physical stability of phycocyanin. Curr. Res. Food Sci. 2022, 5, 2329–2337. [Google Scholar] [CrossRef] [PubMed]
- Dranseikienė, D.; Balčiūnaitė- Murzienė, G.; Karosienė, J.; Morudov, D.; Juodžiukynienė, N.; Hudz, N.; Gerbutavičienė, R.J.; Savickienė, N. Cyano-Phycocyanin: Mechanisms of Action on Human Skin and Future Perspectives in Medicine. Plants 2022, 11, 1249. [Google Scholar] [CrossRef] [PubMed]
- Alka; Singh, P.; Pal, R.R.; Mishra, N.; Singh, N.; Verma, A.; Saraf, S.S. Development of pH-Sensitive hydrogel for advanced wound healing: Graft copolymerization of locust bean gum with acrylamide and acrylic acid. Int. J. Pharm. 2024, 661, 124450. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Bai, R.; Huang, Y.; Li, W.; Chen, J.; Cheng, Z.; Wu, X.; Diao, Y. The anti- photoaging effect of C-phycocyanin on ultraviolet B- irradiated BALB/c-nu mouse skin. Front. Bioeng. Biotechnol. 2023, 11, 1229387. [Google Scholar] [CrossRef] [PubMed]
- Salgado, M.T.S.F.; Silva, M.C.S.; Fratelli, C.; Braga, A.R.C.; Lopes, T.B.G.; Ferreira, E.; Silva, I.L.D.; Paiva, L.S.; Souza Votto, A.P. Bioactive C-phycocyanin exerts immunomodulatory and antitumor activity in mice with induced melanoma. Toxicol. Appl. Pharmacol. 2024, 484, 116874. [Google Scholar] [CrossRef]
- Fernandes, R.; Campos, J.; Serra, M.; Fidalgo, J.; Almeida, H.; Casas, A.; Toubarro, D.; Barros, A.I.R.N.A. Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications. Pharmaceuticals 2023, 16, 592. [Google Scholar] [CrossRef]
- Sala, L.; Moraes, C.C.; Kalil, S.J. Cell Pretreatment with Ethylenediaminetetraacetic Acid for Selective Extraction of C-Phycocyanin with Food Grade Purity. Biotechnol. Prog. 2018, 34, 1261–1268. [Google Scholar] [CrossRef]
- Guo, J.W.; Jee, S.H. Strategies to develop a suitable formulation for inflammatory skin disease treatment. Int. J. Mol. Sci. 2021, 22, 6078. [Google Scholar] [CrossRef]
- Hsieh-Lo, M.; Castillo, G.; Ochoa-Becerra, M.A.; Mojica, L. Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Res. 2019, 42, 101600. [Google Scholar] [CrossRef]
- Ciccone, L.; Vandooren, J.; Nencetti, S.; Orlandini, E. Natural Marine and Terrestrial Compounds as Modulators of Matrix Metalloproteinases-2 (MMP-2) and MMP-9 in Alzheimer’s Disease. Pharmaceuticals 2021, 14, 86. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke, D.P.; Teixeira, I.R.; Marzak, L.D.F.; Mercali, G.D. Phycocyanin from Spirulina: A review of extraction methods and stability. Food Res. Int. 2021, 143, 110314. [Google Scholar] [CrossRef]
- Eisenberg, I.; Harris, D.; Levi- Kalisman, Y.; Yochelis, S.; Shemesh, A.; Ben-Nissan, G.; Sharon, M.; Raviv, U.; Adir, N.; Keren, N.; et al. Concentration- based self-assembly of phycocyanin. Photosynth. Res. 2017, 134, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yi, W.; Zhang, Y.; Wu, H.; Fan, H.; Zhao, J.; Wang, S. Sodium alginate hydrogel containing platelet- rich plasma for wound healing. Colloids Surf. B Biointerfaces 2023, 222, 113096. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Li, D.; Dai, K.; Wang, Y.; Song, P.; Li, H.; Tang, P.; Zhang, Z.; Li, Z.; Zhou, Y.; et al. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int. J. Biol. Macromol. 2022, 208, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Knoos, P.; Onder, S.; Pedersen, L.; Lennart, P.; Ulvenlund, S.; Wahlgren, M. Surfactants modify the release from tablets made of hydrophobically modified poly (acrylic acid). Results Pharma Sci. 2013, 3, 7–14. [Google Scholar] [CrossRef]
- Calixto, G.; Yoshii, A.C.; Roxha e Silva, H.; Curry, B.S.F.; Chorilli, M. Polyacrilic acid polymers hydrogels intended to topical drug delivery: Preparation and characterization. Pharm. Dev. Technol. 2014, 20, 490–496. [Google Scholar] [CrossRef]
- Grip, J.; Engstad, R.E.; Skjæveland, I.; Škalko- Basnet, N.; Holsæter, A.M. Sprayable Carbopol hydrogel with soluble beta-1,3/1,6-glucan as an active ingredient for wound healing—Development and in-vivo evaluation. Eur. J. Pharm. Sci. 2017, 107, 24–31. [Google Scholar] [CrossRef]
- Katakam, P.; Chary, N. Formulation Development and Physico Chemiical Evaluation of Topical Formulation of Acetofenac Using Pemulen. J. Pharm. Sci. Res. 2015, 7, 640–642. [Google Scholar]
- Dumortier, G.; Grossiord, J.L.; Agnely, F.; Chaumeil, J.C. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm. Res. 2006, 23, 2709–2728. [Google Scholar] [CrossRef]
- Dios-Perez, I.; Gonzalez-Garcinuno, A.; Tabernero, A.; Blanco-Lopez, M.; Garcia-Esteban, J.A.; Moreno-Rodilla, V.; Curto, B.; Perez-Esteban, P.; Valle, E.M.M. Development of a thermosensitive hydrogel based on Polaxamer 407 and gellan gum with inclusion complexes (Sulfobutylated-β-cyclodextrin–Farnesol) as a local drug delivery system. Eur. J. Pharm. Sci. 2023, 191, 106618. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Paredes, A.; Clares-Naveros, B.; Ruiz-Martinez, M.A.; Durban-Fornieles, J.J.; Ramos-Cormenzana, A.; Monteoliva-Sanchez, M. Delivery systems for natural antioxidant compounds: Archaeosomes and archaeosomal hydrogels characterization and release study. Int. J. Pharm. 2011, 421, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.; Shao, K.; Chen, C. Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: A review. Int. J. Biol. Macromol. 2023, 240, 124321. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, Y.; Qin, Y.; Shen, P.; Peng, Q. Structures, properties and application of alginic acid: A review. Int. J. Biol. Macromol. 2020, 162, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Terescenso, D.; Benali, L.H.; Canivet, F.; Gelebart, M.B.; Hucher, N.; Gore, E.; Picard, C. Bio-sourced polymers in cosmetic emulsions: A hidden potential of the alginates as thickeners and gelling agents. Int. J. Cosmet. Sci. 2021, 43, 573–587. [Google Scholar] [CrossRef] [PubMed]
- Shafei, S.; Khanmohammadi, M.; Heidari, R.; Ghanbari, H.; Nooshabadi, V.T.; Farzamfar, S.; Akbariqomi, M.; Sanikhani, N.S.; Absalan, M.; Tavoosidana, G. Exosome loaded alginate hydrogel promotes tissue regeneration in full- thickness skin wounds, An in vivo study. J. Biomed. Mater. Res. Part A 2020, 108, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, Q.; Chen, X.; Jiang, T.; Song, P.; Wang, B.; Zhao, X. Mussel- inspired nanocomposite hydrogel based on alginate and antimicrobial peptide for infected wound repair. Int. J. Biol. Macromol. 2022, 219, 1087–1099. [Google Scholar] [CrossRef]
- Kabir, S.M.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.A.R.; Ali, A.; Islam, M.N. Cellulose- based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef]
- El-Kased, R.F.; Amer, R.I.; Attia, D.; Elmaraz, M.M. Honey- based hydrogel: In vitro and comparative In vivo evaluation for wound healing. Sci. Rep. 2017, 7, 9692. [Google Scholar] [CrossRef]
- Freitas, E.D.; Moura, C.F., Jr.; Kerwald, J.; Beppu, M.M. An Overview of Current Knowledge on the Properties, Synthesis and Applications of Quaternary Chitosan Derivatives. Polymers 2020, 12, 2878. [Google Scholar] [CrossRef]
- Product File Soligel 01/2012. Available online: www.soliance.com (accessed on 19 August 2024).
- Menon, G.K. New insights into skin structure: Scratching the surface. Adv. Drug Deliv. Rev. 2002, 54, S3–S17. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, J.A.; Honeyell-Nguyen, P.L. Skin structure and mode of action of vesicles. Adv. Drug Deliv. Rev. 2002, 54, S41–S55. [Google Scholar] [CrossRef] [PubMed]
- Quan, T. Molecular insights of human skin epidermal and dermal aging. J. Dermatol. Sci. 2023, 112, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.E. Skin penetration enhancers. Int. J. Pharm. 2013, 447, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Patil, U.K.; Saraogi, R. Natural products as potential drug permeation enhancer in transdermal drug delivery system. Arch. Dermatol. Res. 2014, 306, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Notman, R. Mechanisms of the Drug Penetration Enhancer Propylene Glycol Interacting with Skin Lipid Membranes. J. Phys. Chem. 2024, 128, 3885–3897. [Google Scholar] [CrossRef]
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Propylene Glycol, Tripropylene Glycol, and PPGs as Used in Cosmetics. Int. J. Toxicol. 2012, 31, 2455–2605. [Google Scholar] [CrossRef]
- Wang, X.; Guan, S.; Zhang, K.; Li, J. Benlysta-Loaded Sodium Alginate Hydrogel and Its Selective Functions in Promoting Skin Cell Growth and Inhibiting Inflammation. ASC Omega 2020, 5, 10395–10400. [Google Scholar] [CrossRef]
- Dananjaya, S.H.S.; Bandara, N.; Molagoda, I.N.; Sandamalika, W.M.G.; Kim, D.; Ganepola, N.; Attanayake, A.P.; Choi, D. Multifunctional alginate/ polydeoxyribonucleotide hydrogels for promoting diabetic wound healing. Int. J. Biol. Macromol. 2024, 257, 128367. [Google Scholar] [CrossRef]
- Chang, R.Y.K.; Okamoto, Y.; Morales, S.; Kutter, E.; Chan, K. Hydrogel formulations containing non-ionic polymers for topical delivery of bacteriophages. Int. J. Pharm. 2021, 605, 120850. [Google Scholar] [CrossRef]
- Enoch, K.; Somasundaram, A.A. Rheological insights on Carboxymethyl cellulose hydrogels. Int. J. Biol. Mecromolecules 2023, 253, 127481. [Google Scholar] [CrossRef]
- Natori, N.; Shibano, Y.; Hiroki, A.; Taguchi, M.; Miyajima, A.; Yoshizawa, K.; Kawano, Y.; Hanawa, T. Preparation and Evaluation of Hydrogel Film Containing Tramadol for Reduction of Peripheral Neuropathic Pain. J. Pharm. Sci. 2023, 112, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, B.; Jones, M.; Wagle, S.R.; Ionescu, C.M.; Fostes, T.; Danic, M.; Mikov, M.; Mooranian, A.; Al-Salami, H. The effect of deoxycholic acid-based hydrogels on hepatic, muscle and pancreatic beta cells. Ther. Deliv. 2024, 15, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Phatale, V.; Vaiphei, K.K.; Jha, S.; Patil, D.; Agrawal, M. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Control. Release 2022, 351, 361–380. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Hou, X.; Yu, Y.; Wen, X.; Ding, Y.; Li, Y.; Wang, Z. Improving the Thermal and Oxidative Stability of Food-Grade Phycocyanin from Arthrospira platensis by Addition of Saccharides and Sugar Alcohols. Foods 2022, 11, 1752. [Google Scholar] [CrossRef] [PubMed]
- Chaiklahan, R.; Bunnag, B.; Chirasuwan, N. Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochem. 2012, 47, 659–664. [Google Scholar] [CrossRef]
- Głaz, P.; Rosinska, A.; Wozniak, S.; Boguszewska-Czubara, A.; Biernasiuk, A.; Matosiuk, D. Effect of Commonly Used Cosmetic Preservatives on Healthy Human Skin Cells. Cells 2023, 12, 1076. [Google Scholar] [CrossRef]
- Long, M.C.; Nagegowda, D.A.; Kaminaga, Y.; Ho, K.K.; Kish, C.M.; Schnepp, J.; Sherman, D.; Weiner, H.; Rhodes, D.; Dudareva, N. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. Plant J. Cell Mol. Biol. 2009, 59, 256–265. [Google Scholar] [CrossRef]
- Olmo, A.; Calzada, J.; Nuñez, M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy. Crit. Rev. Food Sci. Nutr. 2017, 57, 3084–3103. [Google Scholar] [CrossRef]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Modern Food Microbiology, 7th ed.; Springer Science+ Business Media, INC: New York, NY, USA, 2005; pp. 301–305. [Google Scholar]
- Ziklo, N.; Bibi, M.; Salama, P. The Antimicrobial Mode of Action of Maltol and Its Synergistic Efficacy with Selected Cationic Surfactants. Cosmetics 2021, 8, 86. [Google Scholar] [CrossRef]
- The SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation; 9th Revision; Scientific Committee on Consumer Safety (SCCS); European Commission: Brussels, Belgium, 2016; Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf (accessed on 19 August 2024).
- Yu, H.L.; Goh, C.F. Glycols: The ubiquitous solvent for dermal formulations. Eur. J. Pharm. Biopharm. 2024, 196, 114182. [Google Scholar] [CrossRef]
- Yang, D.; Liu, C.; Quan, P.; Fang, L. A systematic approach to determination of permeation enhancer action efficacy and sites: Molecular mechanism investigated by quantitative structure–activity relationship. J. Controll. Release 2020, 322, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xue, Y.; Zhu, Z.; Hu, Y.; Zeng, Q.; Wu, Y.; Wang, Y.; Shen, C.; Jiang, C.; Liu, L.; et al. Quantitative Structure-Activity Relationship of Enhancers of Licochalcone A and Glabridin Release and Permeation Enhancement from Carbomer Hydrogel. Pharmaceutics 2022, 14, 262. [Google Scholar] [CrossRef] [PubMed]
- Carrer, V.; Alonso, C.; Pont, M.; Zanuy, M.; Cordoba, M.; Espinosa, S.; Barba, C.; Oliver, M.A.; Marti, M.; Coderch, L. Effect of propylene glycol on the skin penetration of drugs. Arch. Dermatol. Res. 2020, 312, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.N.; Kim, I.G.; Kim, J.H.; Bhattacharyya, A.; Chung, E.J.; Noh, I. Incorporation of Cell-Adhesive Proteins in 3D-Printed Lipoic Acid- Maleic Acid- Poly (Propylene Glycol)- Based Tough Gel Ink for Cell- Supportive Microenvironment. Macromol. Biosci. 2023, 23, 2300316. [Google Scholar] [CrossRef] [PubMed]
- Adli, S.A.; Ali, F.; Azmi, A.S.; Anuar, H.; Nasir, N.A.M.; Hasham, R.; Idris, M.K.D. Development of Biodegradable Cosmetic Patch Using a Polylactic Acid/Phycocyanin-Alginate Composite. Polymers 2020, 12, 1669. [Google Scholar] [CrossRef] [PubMed]
- Kis, N.; Gunnarsson, M.; Berko, S.; Sparr, E. The effects of glycols on molecular mobility, structure, and permeability in stratum corneum. J. Controll. Release 2022, 343, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Minghetti, P.; Cilurzo, F.; Casiraghi, A.; Montanari, L.; Fini, A. Ex vivo study of transdermal permeation of four diclofenac salts from different vehicles. J. Pharm. Sci. 2007, 96, 814–823. [Google Scholar] [CrossRef]
- Khazi, M.I.; Demirel, Z.; Liaqat, F.; Dalay, M.C. Analytical Grade Purification of Phycocyanin from Cyanobacteria. In Biofuels from Algae. Methods in Molecular Biology, 1st ed.; Spilling, K., Ed.; Springer: New York, NY, USA, 1980; pp. 173–179. [Google Scholar]
- Bennett, A.; Bogorad, L. Complementary chromatic adaption in a filamentous blue-green alga. J. Cell Biol. 1973, 58, 419–435. [Google Scholar] [CrossRef]
- LST EN ISO 18416:2016; Cosmetics–Microbiology–Detection of Candida albicans. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- LST EN ISO 21150:2016; Cosmetics–Microbiology–Detection of Escherichia coli. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- LST EN ISO 22717:2016; Cosmetics–Microbiology–Detection of Pseudomonas aeruginosa. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- LST EN ISO 22718:2016; Cosmetics–Microbiology–Detection of Staphylococcus aureus. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- LST EN ISO 21149:2017; Cosmetics–Microbiology–Enumeration and detection of aerobic mesophilic bacteria. European Committee for Standardization (CEN): Brussels, Belgium, 2017.
- Marquele-Oliveira, F.; Fonseca, Y.M.; de Freitas, O.; Fonseca, M.J. Development of topical functionalized formulations added with propolis extract: Stability, cutaneous absorption and in vivo studies. Int. J. Pharm. 2007, 342, 40–48. [Google Scholar] [CrossRef]
- Marquele, F.D.; Oliveira, A.R.; Bonato, P.S.; Lara, M.G.; Fonseca, M.J. Propolis extract release evaluation from topical formulations by chemiluminescence and HPLC. J. Pharm. Biomed. Anal. 2006, 41, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Olejnik, A.; Goscianska, J.; Nowak, I. Active compounds release from semisolid dosage forms. J. Pharm. Sci. 2012, 101, 4032–4045. [Google Scholar] [CrossRef] [PubMed]
- Žilius, M.; Ramanauskienė, K.; Briedis, V. Release of propolis phenolic acids from Semisolid formulations and their penetration into the human skin in vitro. Evid.-Based Complement. Altern. Med. 2013, 2013, 958717. [Google Scholar] [CrossRef]
Microorganisms | Hydrogel Samples | ||
---|---|---|---|
I C-PC Hydrogel | II C-PC Hydrogel | III C-PC Hydrogel | |
Candida albicans | Not detected | Not detected | Not detected |
Escherichia coli | Not detected | Not detected | Not detected |
Pseudomonas aeruginosa | Not detected | Not detected | Not detected |
Staphylococcus aureus | Not detected | Not detected | Not detected |
Number of aerobic mesophilic bacteria CFU */g | <1.0 × 101 | <1.0 × 101 | <1.0 × 101 |
Excipient | C-PC Hydrogel without PG (C-PC Hydrogel) (%, w/w) | C-PC Hydrogel with PG (C-PC PG Hydrogel) (%, w/w) | |
---|---|---|---|
Composition of Experimental Hydrogels | Purified water | 90 | 75 |
Sodium alginate | 3.5 | 3.5 | |
C-PC | 1 | 1 | |
Glycerol | 5 | 5 | |
PG | - | 15 | |
SharoSENSETM Plus 785 | 0.5 | 0.5 | |
Determined pH | 5.0 (0.03) | 4.8 (0.01) |
Microorganisms | Method for Detecting Microorganisms |
---|---|
Candida albicans | LST EN ISO 18416:2016 except ISO 18416:2015/Amd1:2022 (N) [64] |
Escherichia coli | LST EN ISO 21150:2016 except ISO 21150:2015/Amd1:2022 (N) [65] |
Pseudomonas aeruginosa | LST EN ISO 22717:2016 except ISO 22717:2015/Amd1:2022 (N) [66] |
Staphylococcus aureus | LST EN ISO 22718:2016 except ISO 22718:2015/Amd1:2022 (N) [67] |
Number of aerobic mesophilic bacteria CFU */g | LST EN ISO 21149:2017 except ISO 21149:2017/Amd1:2022 (N) [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galinytė, D.; Bernatoniene, J.; Žilius, M.; Rysevaitė-Kyguolienė, K.; Savickas, A.; Karosienė, J.; Briedis, V.; Pauža, D.H.; Savickienė, N. In Vitro Study of Cyano-Phycocyanin Release from Hydrogels and Ex Vivo Study of Skin Penetration. Pharmaceuticals 2024, 17, 1224. https://doi.org/10.3390/ph17091224
Galinytė D, Bernatoniene J, Žilius M, Rysevaitė-Kyguolienė K, Savickas A, Karosienė J, Briedis V, Pauža DH, Savickienė N. In Vitro Study of Cyano-Phycocyanin Release from Hydrogels and Ex Vivo Study of Skin Penetration. Pharmaceuticals. 2024; 17(9):1224. https://doi.org/10.3390/ph17091224
Chicago/Turabian StyleGalinytė, Daiva, Jurga Bernatoniene, Modestas Žilius, Kristina Rysevaitė-Kyguolienė, Arūnas Savickas, Jūratė Karosienė, Vitalis Briedis, Dainius Haroldas Pauža, and Nijolė Savickienė. 2024. "In Vitro Study of Cyano-Phycocyanin Release from Hydrogels and Ex Vivo Study of Skin Penetration" Pharmaceuticals 17, no. 9: 1224. https://doi.org/10.3390/ph17091224
APA StyleGalinytė, D., Bernatoniene, J., Žilius, M., Rysevaitė-Kyguolienė, K., Savickas, A., Karosienė, J., Briedis, V., Pauža, D. H., & Savickienė, N. (2024). In Vitro Study of Cyano-Phycocyanin Release from Hydrogels and Ex Vivo Study of Skin Penetration. Pharmaceuticals, 17(9), 1224. https://doi.org/10.3390/ph17091224