Bufadienolides from Chansu Injection Synergistically Enhances the Antitumor Effect of Erlotinib by Inhibiting the KRAS Pathway in Pancreatic Cancer
<p>CSI inhibited the proliferation and migration of PDAC cells. (<b>A</b>) PANC-1 and MIA PACA-2 cells were treated with 0.1325–80 μg/mL of CSI for 24 h or 48 h, and cell viability was assessed using the MTT assay (n = 3). (<b>B</b>,<b>C</b>) Colony-formation assays were performed on PANC-1 and MIA PACA-2 cells treated with 2.5, 5 or 10 μg/mL CSI for 48 h (n = 3). (<b>D</b>,<b>E</b>) Migrating assays were conducted with PANC-1 and MIA PACA-2 cells exposed to 2.5, 5, or 10 μg/mL CSI for 48 h (n = 5). The same volume of sterile water or DMSO was added to the control group. Data were expressed as mean ± standard error (SEM). Statistical significance was defined as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 versus the control group.</p> "> Figure 2
<p>CSI inhibited the growth of PDAC cells by inducing G2/M phase arrest. (<b>A</b>) PANC-1 and MIA PACA-2 cells were treated with 2.5, 5, or 10 μg/mL CSI for 24 h, and cell cycle distribution was analyzed using flow cytometry (n = 5). (<b>B</b>) The expression of cyclin B1 and CDK1 were determined using Western blot (n = 5). Data were expressed as mean ± standard error (SEM). Statistical significance was defined as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 versus the control group.</p> "> Figure 3
<p>Network pharmacological and bioinformatics analysis of CSI against PDAC. (<b>A</b>) Overview of the network pharmacological and bioinformatics analysis for CSI against PDAC. (<b>B</b>) Volcano map and Venn diagram depicting differentially expressed genes from GSE62165, GSE91035, GSE15471, and GSE16515. (<b>C</b>) PPI network of CSI active compounds and anti-pancreatic cancer targets. (<b>D</b>,<b>E</b>) GO and KEGG enrichment analyses of 155 common targets for CSI in pancreatic cancer.</p> "> Figure 4
<p>Network pharmacological and bioinformatics analysis of CSI against PDAC. (<b>A</b>) Top 10 hub targets of CSI in pancreatic cancer. (<b>B</b>) Survival curves of patients with PDAC based on EGFR expression. (<b>C</b>) Targets of CSI interactions within the EGFR inhibitor resistance pathway. (<b>D</b>) Molecular docking analysis of CSI active compounds with EGFR, with erlotinib used as a positive control.</p> "> Figure 5
<p>CSI treatment reduced the expression of p-EGFR, KRAS, and p-ERK1/2. (<b>A</b>) PANC-1 and MIA PACA-2 cells were treated with 2.5, 5, or 10 μg/mL CSI for 24 h, and the protein expression levels of p-EGFR, EGFR, KRAS, p-ERK1/2, and ERK1/2 were analyzed using Western blot (n = 5). (<b>B</b>) Quantification of Western blot results for p-EGFR, EGFR, KRAS, p-ERK1/2, and ERK1/2 (n = 5). Data were expressed as mean ± standard error (SEM). Statistical significance was defined as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 versus the control group.</p> "> Figure 6
<p>CSI synergistically enhanced the antitumor effect of erlotinib in vitro. Er (erlotinib), CSI (Chansu injection), and Er+CSI (erlotinib+Chansu injection). (<b>A</b>) The inhibitory effects of various concentrations of CSI (2.5, 5, 10 μg/mL) in combination with erlotinib (2, 4, 8 μM) on PANC-1 and MIA PACA-2 cells for 48 h were assessed (n = 5). (<b>B</b>) Colony-formation assays were conducted on PANC-1 cells and MIA PACA-2 treated with 10 μg/mL CSI, 2 μM erlotinib, or their combination for 48 h (n = 3). Data were expressed as mean ± standard error (SEM). Statistical significance was defined as ** <span class="html-italic">p</span> < 0.01 versus the control group, and as ## <span class="html-italic">p</span> < 0.01 relative to the erlotinib (Er) group, <span class="html-italic">ns</span> represented no significant difference.</p> "> Figure 7
<p>Cotreatment of CSI and erlotinib inhibited KRAS and p-ERK1/2 in PDAC cells. Er (erlotinib), CSI (Chansu injection), and Er+CSI (erlotinib+Chansu injection). (<b>A</b>,<b>B</b>) PANC-1 and MIA PACA-2 cells were treated with 10 μg/mL CSI, 2 μM erlotinib or their combination for 48 h, and cell cycle distribution was analyzed using flow cytometry assays (n = 5). (<b>C</b>) Western blot analysis of p-EGFR, EGFR, KRAS, p-ERK1/2, ERK1/2, and CDK1 (n = 5). Data were expressed as mean ± standard error (SEM). Statistical significance was defined as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 versus the control group, as # <span class="html-italic">p</span> < 0.05 and ## <span class="html-italic">p</span> < 0.01 relative to the erlotinib (Er) group, and <span class="html-italic">ns</span> represented no significant difference.</p> "> Figure 8
<p>CSI enhanced the antitumor effect of Er (erlotinib) in tumor-bearing mice. (<b>A</b>) Images of tumor samples from PDAC-bearing mice (n = 6). (<b>B</b>) Effects of CSI and erlotinib combination on tumor weight in tumor-bearing mice (n = 6). (<b>C</b>) Effects of CSI and erlotinib combination on tumor volume (n = 6). (<b>D</b>) Representative H&E staining images of tumor, heart, liver, and kidney tissues. (<b>E</b>) Effect of CSI and erlotinib combination on body weight (n = 6). (<b>F</b>) Effect of CSI and erlotinib combination on the weight of the heart, liver, and kidney in mice (n = 6). (<b>G</b>) Representative IHC staining images of p-EGFR, KRAS, and p-ERK of tumor. Data were expressed as mean ± standard error (SEM). Statistical significance was defined as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 versus the control group, and as ## <span class="html-italic">p</span> < 0.01 relative to the erlotinib (Er) group.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Active Compounds of Chansu Injection
2.2. CSI Inhibited the Growth of PDAC Cells by Inducing G2/M Phase Arrest
2.3. Network Pharmacological and Bioinformatics Analysis of CSI Against PDAC
2.4. CSI Treatment Reduced the Expression of p-EGFR, KRAS, and p-ERK1/2
2.5. Synergistic Effects of CSI and Erlotinib by Inducing G2/M Phase Arrest in PDAC Cells
2.6. Cotreatment of CSI and Erlotinib Inhibited KRAS and p-ERK1/2 in PDAC Cells
2.7. Antitumor Effect of CSI and Erlotinib in Mice
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Active Compounds of Chansu Injection by High-Performance Liquid Chromatography (HPLC) Anaysis
4.3. Cell Lines and Cell Culture
4.4. MTT Assay
4.5. Colony-Formation Assay
4.6. Cell Cycle Analysis
4.7. Western Blot Analysis
4.8. Animal Treatment with CSI
4.9. HE Staining
4.10. Immunohistochemistry (IHC)
4.11. Enrichment Analysis of Common Target Between CSI and Pancreatic Cancer by Network Pharmacology and Bioinformatics
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Sabater, L.; Muñoz, E.; Roselló, S.; Dorcaratto, D.; Garcés-Albir, M.; Huerta, M.; Roda, D.; Gómez-Mateo, M.C.; Ferrández-Izquierdo, A.; Darder, A.; et al. Borderline resectable pancreatic cancer. Challenges and controversies. Cancer Treat. Rev. 2018, 68, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Traub, B.; Link, K.; Kornmann, M. Curing pancreatic cancer. Semin. Cancer Biol. 2021, 76, 232–246. [Google Scholar] [CrossRef]
- Fjällskog, M.L.; Lejonklou, M.H.; Oberg, K.E.; Eriksson, B.K.; Janson, E.T. Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. Clin. Cancer Res. 2003, 9, 1469–1473. [Google Scholar] [PubMed]
- Talukdar, S.; Emdad, L.; Das, S.K.; Fisher, P.B. EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells. Adv. Cancer Res. 2020, 147, 161–188. [Google Scholar]
- Roskoski, R. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol. Res. 2019, 139, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R., Jr. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res. 2014, 9, 34–74. [Google Scholar] [CrossRef]
- Rivera, F.; López-Tarruella, S.; Vega-Villegas, M.E.; Salcedo, M. Treatment of advanced pancreatic cancer: From gemcitabine single agent to combinations and targeted therapy. Cancer Treat. Rev. 2009, 35, 335–339. [Google Scholar] [CrossRef]
- Sinn, M.; Bahra, M.; Liersch, T.; Gellert, K.; Messmann, H.; Bechstein, W.; Waldschmidt, D.; Jacobasch, L.; Wilhelm, M.; Rau, B.M.; et al. CONKO-005, Adjuvant Chemotherapy With Gemcitabine Plus Erlotinib Versus Gemcitabine Alone in Patients After R0 Resection of Pancreatic Cancer: A Multicenter Randomized Phase III Trial. J. Clin. Oncol. 2017, 35, 3330–3337. [Google Scholar] [CrossRef] [PubMed]
- Hammel, P.; Huguet, F.; van Laethem, J.L.; Goldstein, D.; Glimelius, B.; Artru, P.; Borbath, I.; Bouché, O.; Shannon, J.; André, T.; et al. Effect of Chemoradiotherapy vs Chemotherapy on Survival in Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine With or Without Erlotinib: The LAP07 Randomized Clinical Trial. JAMA 2016, 315, 1844–1853. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, K.; Wang, X.; Jia, Z.; Yang, Y.; Duan, Y.; Huang, L.; Wu, Z.X.; Zhang, J.Y.; Ding, X. Cholesterol promotes EGFR-TKIs resistance in NSCLC by inducing EGFR/Src/Erk/SP1 signaling-mediated ERRα re-expression. Mol. Cancer 2022, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Sergina, N.V.; Rausch, M.; Wang, D.; Blair, J.; Hann, B.; Shokat, K.M.; Moasser, M.M. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 2007, 445, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Liu, Z.; He, J.; Liu, Q.; Lu, Y.; He, S.; Yuan, B.; Zhang, J.; Ding, Y. Traditional Chinese medicine reverses cancer multidrug resistance and its mechanism. Clin. Transl. Oncol. 2022, 24, 471–482. [Google Scholar] [CrossRef]
- Gou, H.; Su, H.; Liu, D.; Wong, C.C.; Shang, H.; Fang, Y.; Zeng, X.; Chen, H.; Li, Y.; Huang, Z.; et al. Traditional Medicine Pien Tze Huang Suppresses Colorectal Tumorigenesis Through Restoring Gut Microbiota and Metabolites. Gastroenterology 2023, 165, 1404–1419. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Fan, X.; Fan, L.; Wu, Y.; Zhou, Z.; Wang, G.; Guo, L.; Gao, W.; Chen, Y.; Gao, Q. Liujunzi decoction exerts potent antitumor activity in oesophageal squamous cell carcinoma by inhibiting miR-34a/STAT3/IL-6R feedback loop, and modifies antitumor immunity. Phytomedicine 2023, 111, 154672. [Google Scholar] [CrossRef] [PubMed]
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lv, P.; Ma, J.; Chen, N.; Guo, H.; Chen, Y.; Gan, X.; Wang, R.; Liu, X.; Fan, S.; et al. Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression. Acta Pharm. Sin. B 2022, 12, 890–906. [Google Scholar] [CrossRef]
- Teng, L.; Wang, K.; Chen, W.; Wang, Y.S.; Bi, L. HYR-2 plays an anti-lung cancer role by regulating PD-L1 and Akkermansia muciniphila. Pharmacol. Res. 2020, 160, 105086. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Wu, H.; Wu, H.; Wang, R.; Luo, C.; Gao, B.; Chen, Z.; Li, Q. Metabolites from Bufo gargarizans (Cantor, 1842): A review of traditional uses, pharmacological activity, toxicity and quality control. J. Ethnopharmacol. 2020, 246, 112178. [Google Scholar] [CrossRef]
- Chang, H.; Li, J.; Cao, Y.; Liu, T.; Shi, S.; Chen, W. Bufadienolides from Venenum bufonis Inhibit mTOR-Mediated Cyclin D1 and Retinoblastoma Protein Leading to Arrest of Cell Cycle in Cancer Cells. Evid. Based Complement. Alternat. Med. 2018, 2018, 3247402. [Google Scholar] [CrossRef]
- Wei, W.L.; Hou, J.J.; Wang, X.; Yu, Y.; Li, H.J.; Li, Z.W.; Feng, Z.J.; Qu, H.; Wu, W.Y.; Guo, D.A. Venenum bufonis: An overview of its traditional use, natural product chemistry, pharmacology, pharmacokinetics and toxicology. J. Ethnopharmacol. 2019, 237, 215–235. [Google Scholar] [CrossRef]
- Park, J.S.; Shin, D.Y.; Lee, Y.W.; Cho, C.K.; Kim, G.Y.; Kim, W.J.; Yoo, H.S.; Choi, Y.H. Apoptotic and anti-metastatic effects of the whole skin of Venenum bufonis in A549 human lung cancer cells. Int. J. Oncol. 2012, 40, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Wang, J.; Gu, Z.; Ni, H.; Luo, Y.; Ling, J.; Chen, Y.; Wu, Y.; Liu, X.; Zhou, Y.; et al. Network pharmacology and metabolomics elucidate the underlying mechanisms of Venenum Bufonis in the treatment of colorectal cancer. J. Ethnopharmacol. 2023, 317, 116695. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yu, S.; Zhao, W.; Qin, S.; Chu, Q.; Wu, K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol. Cancer 2018, 17, 53. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, C.; Li, W. Gamabufotalin suppressed osteosarcoma stem cells through the TGF-β/periostin/PI3K/AKT pathway. Chem. Biol. Interact. 2020, 331, 109275. [Google Scholar] [CrossRef]
- Liu, L.; Shi, D.; Xia, Z.Y.; Wang, B.W.; Wang, X.L.; Wang, X.T.; Wang, G.L.; Li, M.J.; Zheng, Q.S.; Li, D.; et al. Gamabufotalin Induces Apoptosis and Cytoprotective Autophagy through the mTOR Signaling Pathway in Hepatocellular Carcinoma. J. Nat. Prod. 2023, 86, 966–978. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Shimada, R.; Xu, K.; Han, L.; Si, N.; Zhao, H.; Bian, B.; Hayashi, H.; Okazaki, M.; Takagi, N. Multiple cytotoxic effects of gamabufotalin against human glioblastoma cell line U-87. Chem. Biol. Interact. 2019, 314, 108849. [Google Scholar] [CrossRef]
- Yuan, B.; Xu, K.; Shimada, R.; Li, J.; Hayashi, H.; Okazaki, M.; Takagi, N. Cytotoxic Effects of Arsenite in Combination With Gamabufotalin Against Human Glioblastoma Cell Lines. Front. Oncol. 2021, 11, 628914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, B.; Bian, B.; Zhao, H.; Kiyomi, A.; Hayashi, H.; Iwatani, Y.; Sugiura, M.; Takagi, N. Cytotoxic Effects of Hellebrigenin and Arenobufagin Against Human Breast Cancer Cells. Front. Oncol. 2021, 11, 711220. [Google Scholar] [CrossRef]
- Han, L.; Yuan, B.; Shimada, R.; Hayashi, H.; Si, N.; Zhao, H.Y.; Bian, B.; Takagi, N. Cytocidal effects of arenobufagin and hellebrigenin, two active bufadienolide compounds, against human glioblastoma cell line U-87. Int. J. Oncol. 2018, 53, 2488–2502. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Xu, W.; Jin, X.; Mu, H.; Wang, Z.; Hua, Y.; Cai, Z.; Zhang, T. Telocinobufagin inhibits osteosarcoma growth and metastasis by inhibiting the JAK2/STAT3 signaling pathway. Eur. J. Pharmacol. 2023, 942, 175529. [Google Scholar] [CrossRef]
- Shen, Y.; Cai, H.; Ma, S.; Zhu, W.; Zhao, H.; Li, J.; Ye, H.; Yang, L.; Zhao, C.; Huang, X.; et al. Telocinobufagin Has Antitumor Effects in Non-Small-Cell Lung Cancer by Inhibiting STAT3 Signaling. J. Nat. Prod. 2022, 85, 765–775. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, B.; Liu, Y.; Xu, L.; Wan, M. Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4. Free Radic. Biol. Med. 2022, 180, 75–84. [Google Scholar] [CrossRef]
- Wang, J.; Chang, H.; Su, M.; Zhao, H.; Qiao, Y.; Wang, Y.; Shang, L.; Shan, C.; Zhang, S. The Potential Mechanisms of Cinobufotalin Treating Colon Adenocarcinoma by Network Pharmacology. Front. Pharmacol. 2022, 13, 934729. [Google Scholar] [CrossRef]
- Liu, J.H.; Yang, H.L.; Deng, S.T.; Hu, Z.; Chen, W.F.; Yan, W.W.; Hou, R.T.; Li, Y.H.; Xian, R.T.; Xie, Y.Y.; et al. The small molecule chemical compound cinobufotalin attenuates resistance to DDP by inducing ENKUR expression to suppress MYH9-mediated c-Myc deubiquitination in lung adenocarcinoma. Acta Pharmacol. Sin. 2022, 43, 2687–2695. [Google Scholar] [CrossRef]
- Hou, R.; Li, Y.; Luo, X.; Zhang, W.; Yang, H.; Zhang, Y.; Liu, J.; Liu, S.; Han, S.; Liu, C.; et al. ENKUR expression induced by chemically synthesized cinobufotalin suppresses malignant activities of hepatocellular carcinoma by modulating β-catenin/c-Jun/MYH9/USP7/c-Myc axis. Int. J. Biol. Sci. 2022, 18, 2553–2567. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, F.; Zhuang, Y.; Liu, Y.; Xu, L.; Zhao, H.; Xiang, Y.; Dai, X.; Liu, Z.; Huang, X.; et al. Acetyl-bufalin shows potent efficacy against non-small-cell lung cancer by targeting the CDK9/STAT3 signalling pathway. Br. J. Cancer 2021, 124, 645–657. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Zheng, H.M.; Xia, C.; Li, X.; Wang, G.; Zhao, T.; Cui, X.N.; Wang, R.Y.; Liu, Y. The Research Progress of Bufalin in the Treatment of Hepatocellular Carcinoma. Onco Targets Ther. 2022, 15, 291–298. [Google Scholar] [CrossRef]
- Su, S.; Dou, H.; Wang, Z.; Zhang, Q. Bufalin inhibits ovarian carcinoma via targeting mTOR/HIF-α pathway. Basic. Clin. Pharmacol. Toxicol. 2021, 128, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Ju, Q.; Shi, Q.; Liu, C.; Fu, G.; Shi, H. Bufalin suppresses esophageal squamous cell carcinoma progression by activating the PIAS3/STAT3 signaling pathway. J. Thorac. Dis. 2023, 15, 2141–2160. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Yang, Y.; Lu, Q.; Qu, D.; Chandrakesan, P.; Feng, H.; Chen, H.; Chen, X.; Liao, Z.; Du, J.; et al. Bufalin Inhibits Tumorigenesis, Stemness, and Epithelial -Mesenchymal Transition in Colorectal Cancer through a C-Kit/Slug Signaling Axis. Int. J. Mol. Sci. 2022, 23, 13354. [Google Scholar] [CrossRef]
- Yu, Z.; Li, Y.; Li, Y.; Zhang, J.; Li, M.; Ji, L.; Tang, Y.; Zheng, Y.; Sheng, J.; Han, Q.; et al. Bufalin stimulates antitumor immune response by driving tumor-infiltrating macrophage toward M1 phenotype in hepatocellular carcinoma. J. Immunother. Cancer 2022, 10, e004297. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Jia, L.; He, J.; Li, Y.; Liu, H.; Wu, R.; Qiu, Y.; Zhan, Y.; Yuan, Z.; et al. Bufalin targets the SRC-3/MIF pathway in chemoresistant cells to regulate M2 macrophage polarization in colorectal cancer. Cancer Lett. 2021, 513, 63–74. [Google Scholar] [CrossRef]
- Fang, K.; Zhan, Y.; Zhu, R.; Wang, Y.; Wu, C.; Sun, M.; Qiu, Y.; Yuan, Z.; Liang, X.; Yin, P.; et al. Bufalin suppresses tumour microenvironment-mediated angiogenesis by inhibiting the STAT3 signalling pathway. J. Transl. Med. 2021, 19, 383. [Google Scholar] [CrossRef]
- Hou, R.; Liu, X.; Yang, H.; Deng, S.; Cheng, C.; Liu, J.; Li, Y.; Zhang, Y.; Jiang, J.; Zhu, Z.; et al. Chemically synthesized cinobufagin suppresses nasopharyngeal carcinoma metastasis by inducing ENKUR to stabilize p53 expression. Cancer Lett. 2022, 531, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, Y.; Liu, X.; Zhang, N.; Mao, G.; Zeng, Q.; Yin, M.; Song, D.; Deng, H. Resibufogenin suppresses transforming growth factor-β-activated kinase 1-mediated nuclear factor-κB activity through protein kinase C-dependent inhibition of glycogen synthase kinase 3. Cancer Sci. 2018, 109, 3611–3622. [Google Scholar] [CrossRef]
- Sherman, M.H.; Beatty, G.L. Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. Annu. Rev. Pathol. 2023, 18, 123–148. [Google Scholar] [CrossRef]
- Ho, W.J.; Jaffee, E.M.; Zheng, L. The tumour microenvironment in pancreatic cancer—Clinical challenges and opportunities. Nat. Rev. Clin. Oncol. 2020, 17, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Biffi, G.; Oni, T.E.; Spielman, B.; Hao, Y.; Elyada, E.; Park, Y.; Preall, J.; Tuveson, D.A. IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2019, 9, 282–301. [Google Scholar] [CrossRef]
- Mucciolo, G.; Araos Henríquez, J.; Jihad, M.; Pinto Teles, S.; Manansala, J.S.; Li, W.; Ashworth, S.; Lloyd, E.G.; Cheng, P.S.W.; Luo, W.; et al. EGFR-activated myofibroblasts promote metastasis of pancreatic cancer. Cancer Cell 2024, 42, 101–118.e11. [Google Scholar] [CrossRef] [PubMed]
- Donahue, K.L.; Watkoske, H.R.; Kadiyala, P.; Du, W.; Brown, K.; Scales, M.K.; Elhossiny, A.M.; Espinoza, C.E.; Lasse Opsahl, E.L.; Griffith, B.D.; et al. Oncogenic KRAS-Dependent Stromal Interleukin-33 Directs the Pancreatic Microenvironment to Promote Tumor Growth. Cancer Discov. 2024, 14, 1964–1989. [Google Scholar] [CrossRef] [PubMed]
- Ardito, C.M.; Grüner, B.M.; Takeuchi, K.K.; Lubeseder-Martellato, C.; Teichmann, N.; Mazur, P.K.; Delgiorno, K.E.; Carpenter, E.S.; Halbrook, C.J.; Hall, J.C.; et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell 2012, 22, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Timar, J.; Kashofer, K. Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev. 2020, 39, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.R.; Rosenberg, S.C.; McCormick, F.; Malek, S. RAS-targeted therapies: Is the undruggable drugged? Nat. Rev. Drug Discov. 2020, 19, 533–552. [Google Scholar] [CrossRef]
- Singh, S.; Ellenrieder, V. Senescence in pancreatic carcinogenesis: From signalling to chromatin remodelling and epigenetics. Gut 2013, 62, 1364–1372. [Google Scholar] [CrossRef]
- Uprety, D.; Adjei, A. KRAS: From undruggable to a druggable Cancer Target. Cancer Treat. Rev. 2020, 89, 102070. [Google Scholar] [CrossRef]
- Ni, D.; Li, X.; He, X.; Zhang, H.; Zhang, J.; Lu, S. Drugging K-Ras through covalent inhibitors: Mission possible? Pharmacol. Ther. 2019, 202, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Sacher, A.; LoRusso, P.; Patel, M.R.; Miller, W.H., Jr.; Garralda, E.; Forster, M.D.; Santoro, A.; Falcon, A.; Kim, T.W.; Paz-Ares, L.; et al. KRAS Single-Agent Divarasib (GDC-6036) in Solid Tumors with a G12C Mutation. N. Engl. J. Med. 2023, 389, 710–721. [Google Scholar] [CrossRef]
- Tran, J.C.; Hunsaker, T.; Bell, C.; Ma, T.P.; Chan, E.; Larrocha, P.S.; Homyk, K.; Liu, L.; La, H.; Mao, J.; et al. Quantifying KRAS G12C Covalent Drug Inhibitor Activity in Mouse Tumors Using Mass Spectrometry. Anal. Chem. 2023, 95, 4834–4839. [Google Scholar] [CrossRef] [PubMed]
- Yaeger, R.; Weiss, J.; Pelster, M.S.; Spira, A.I.; Barve, M.; Ou, S.I.; Leal, T.A.; Bekaii-Saab, T.S.; Paweletz, C.P.; Heavey, G.A.; et al. Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12C. N. Engl. J. Med. 2023, 388, 44–54. [Google Scholar] [CrossRef]
- Kuboki, Y.; Fakih, M.; Strickler, J.; Yaeger, R.; Masuishi, T.; Kim, E.J.; Bestvina, C.M.; Kopetz, S.; Falchook, G.S.; Langer, C.; et al. Sotorasib with panitumumab in chemotherapy-refractory KRAS-mutated colorectal cancer: A phase 1b trial. Nat. Med. 2024, 30, 265–270. [Google Scholar] [CrossRef]
- Desai, J.; Alonso, G.; Kim, S.H.; Cervantes, A.; Karasic, T.; Medina, L.; Shacham-Shmueli, E.; Cosman, R.; Falcon, A.; Gort, E.; et al. Divarasib plus cetuximab in KRAS G12C-positive colorectal cancer: A phase 1b trial. Nat. Med. 2024, 30, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Allegra, C.J.; Jessup, J.M.; Somerfield, M.R.; Hamilton, S.R.; Hammond, E.H.; Hayes, D.F.; McAllister, P.K.; Morton, R.F.; Schilsky, R.L. American Society of Clinical Oncology provisional clinical opinion: Testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. Clin. Oncol. 2009, 27, 2091–2096. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–1422. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, K.; Allen, J.; Whitfield, T.W.; Maoz, A.; Reeves, S.; Velarde, J.; Yang, D.; Meglan, A.; Ribeiro, J.; Blandin, J.; et al. Targeted therapies prime oncogene-driven lung cancers for macrophage-mediated destruction. J. Clin. Investig. 2024, 134. [Google Scholar] [CrossRef]
- Ryan, M.B.; Coker, O.; Sorokin, A.; Fella, K.; Barnes, H.; Wong, E.; Kanikarla, P.; Gao, F.; Zhang, Y.; Zhou, L.; et al. KRASG12C-independent feedback activation of wild-type RAS constrains KRASG12C inhibitor eficacy. Cell Rep. 2022, 39, 110993. [Google Scholar] [CrossRef] [PubMed]
- Amodio, V.; Yaeger, R.; Arcella, P.; Cancelliere, C.; Lamba, S.; Lorenzato, A.; Arena, S.; Montone, M.; Mussolin, B.; Bian, Y.; et al. EGFR blockade reverts resistance to KRASG12C inhibition in colorectal cancer. Cancer Discov. 2020, 10, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Lito, P.; Solomon, M.; Li, L.S.; Hansen, R.; Rosen, N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 2016, 351, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Eberhard, D.A.; Johnson, B.E.; Amler, L.C.; Goddard, A.D.; Heldens, S.L.; Herbst, R.S.; Ince, W.L.; Jänne, P.A.; Januario, T.; Johnson, D.H.; et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 2005, 23, 5900–5909. [Google Scholar] [CrossRef] [PubMed]
- Diep, C.H.; Munoz, R.M.; Choudhary, A.; Von Hoff, D.D.; Han, H. Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells. Clin. Cancer Res. 2011, 17, 2744–2756. [Google Scholar] [CrossRef]
- He, X.; Sun, Y.; Fan, R.; Sun, J.; Zou, D.; Yuan, Y. Knockdown of the DJ-1 (PARK7) gene sensitizes pancreatic cancer to erlotinib inhibition. Mol. Ther. Oncolytics 2021, 20, 364–372. [Google Scholar] [CrossRef]
No. | Compounds | Chemical Formula | Molecular Weight |
---|---|---|---|
1 | Gamabufotalin | C24H34O5 | 402.5 |
2 | Arenobufagin | C24H32O6 | 416.5 |
3 | Hellebrigenin | C24H32O6 | 416.5 |
4 | Telocinobufagin | C24H34O5 | 402.5 |
5 | Bufotalin | C26H36O6 | 444.6 |
6 | Cinobufotalin | C26H34O7 | 458.5 |
7 | Bufalin | C24H34O4 | 386.5 |
8 | Cinobufagin | C26H34O6 | 442.5 |
9 | Resibufogenin | C24H32O4 | 384.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Jin, Y.; Gao, J.; Wang, D.; Wang, Y.; Shan, L.; Yang, M.; Li, X.; Ma, K. Bufadienolides from Chansu Injection Synergistically Enhances the Antitumor Effect of Erlotinib by Inhibiting the KRAS Pathway in Pancreatic Cancer. Pharmaceuticals 2024, 17, 1696. https://doi.org/10.3390/ph17121696
Guo Y, Jin Y, Gao J, Wang D, Wang Y, Shan L, Yang M, Li X, Ma K. Bufadienolides from Chansu Injection Synergistically Enhances the Antitumor Effect of Erlotinib by Inhibiting the KRAS Pathway in Pancreatic Cancer. Pharmaceuticals. 2024; 17(12):1696. https://doi.org/10.3390/ph17121696
Chicago/Turabian StyleGuo, Yanli, Yu Jin, Jie Gao, Ding Wang, Yanming Wang, Liya Shan, Mengyu Yang, Xinzhi Li, and Ketao Ma. 2024. "Bufadienolides from Chansu Injection Synergistically Enhances the Antitumor Effect of Erlotinib by Inhibiting the KRAS Pathway in Pancreatic Cancer" Pharmaceuticals 17, no. 12: 1696. https://doi.org/10.3390/ph17121696
APA StyleGuo, Y., Jin, Y., Gao, J., Wang, D., Wang, Y., Shan, L., Yang, M., Li, X., & Ma, K. (2024). Bufadienolides from Chansu Injection Synergistically Enhances the Antitumor Effect of Erlotinib by Inhibiting the KRAS Pathway in Pancreatic Cancer. Pharmaceuticals, 17(12), 1696. https://doi.org/10.3390/ph17121696