Synthesis and Anti-Inflammatory and Analgesic Potentials of Ethyl 2-(2,5-Dioxo-1-Phenylpyrrolidin-3-yl)-2-Methylpropanoate
<p>Chemical structure of the compound MAK01.</p> "> Figure 2
<p>The percentage inhibition of COX-1 activity by various concentrations of the compound MAK01; data points represent the mean inhibition observed at each concentration, highlighting the compound’s potential as a COX-1 inhibitor.</p> "> Figure 3
<p>The percentage inhibition of COX-2 activity at different concentrations of the compound MAK01, showing a dose-dependent inhibition of COX-2 enzymes.</p> "> Figure 4
<p>The percentage inhibition of 5-LOX by the compound MAK01 in vitro is presented here; each data point reflects the inhibition level achieved with increasing concentrations of MAK01, indicating its potential as a 5-LOX inhibitor.</p> "> Figure 5
<p>(<b>A</b>–<b>C</b>)<b>:</b> Interaction of synthesized compound (MAK01) with COX-1, COX-2, and 5-LOX.</p> "> Figure 6
<p>Ramachandran plot showing the behavior of the synthesized compound (MAK01) inside the active site of cyclooxygenase-I. Pink lines indicating the Allowed region, while blue lines indicate the appearance of <b>MAK01</b> in allowed regions.</p> "> Scheme 1
<p>Chemical synthesis of ethyl-2-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-methylpropanoate MAK01.</p> ">
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals and Instruments
4.2. Synthesis of Pivalate-Based Michael Product
4.3. In Vitro Studies
4.3.1. Cyclooxygenase-1 (COX-1) Inhibitory Potential
4.3.2. Cyclooxygenase-2 (COX-2) Inhibitory Potential
4.3.3. Evaluation of Selectivity Index
4.3.4. 5-Lipooxygenase (5-LOX) Inhibitory Assay
4.4. Molecular Docking Study
4.5. Physiochemical Property Prediction and ADMET Properties
4.6. In Vivo Studies on the Pivalate-Based Michael Product
4.6.1. Experimental Animals
4.6.2. Acute Toxicity
4.6.3. Anti-Inflammatory Potential of the Pivalate-Based Michael Product
4.6.4. Antinociceptive Potential of the Pivalate-Based Michael Product
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell 2010, 140, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Pritzker, K.P.H. Blood-based biomarkers of chronic inflammation. Expert Rev. Mol. Diagn. 2023, 23, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Rahman, K.; Ali, G.; Khan, R.; Khan, I.; Ali, I.; Mosa, O.F.; Ahmed, A.; Ayaz, M.; Nawaz, A.; Murthy, H.A. Analagesic and anti-inflammatory potentials of a less ulcerogenic thiadiazinethione derivative in animal models: Biochemical and histochemical correlates. Drug Des. Dev. Ther. 2022, 16, 1143–1157. [Google Scholar] [CrossRef]
- Mizgerd, J.P. Inflammation and pneumonia: Why are some more susceptible than others? Clin. Chest Med. 2018, 39, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, M.; Sherk, V.D.; Bemben, D.A.; Bemben, M.G. Inflammation marker, damage marker and anabolic hormone responses to resistance training with vascular restriction in older males. Clin. Physiol. Funct. Imaging 2013, 33, 393–399. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Rashid, U.; Almasoudi, H.H.; Nahari, M.H.; Ahmad, I.; Binshaya, A.S.; Abdulaziz, O.; Alsuwat, M.A.; Jan, M.S.; Sadiq, A. Modification of 4-(4-chlorothiophen-2-yl) thiazol-2-amine derivatives for the treatment of analgesia and inflammation: Synthesis and in vitro, in vivo, and in silico studies. Front. Pharmacol. 2024, 15, 1366695. [Google Scholar] [CrossRef]
- Pahwa, R.; Goyal, A.; Jialal, I. Chronic inflammation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Ward, P.A. Acute and chronic inflammation. In Fundamentals of Inflammation; Cambridge University Press: Cambridge, UK, 2010; Volume 3, pp. 1–16. [Google Scholar] [CrossRef]
- Brostjan, C.; Oehler, R. The role of neutrophil death in chronic inflammation and cancer. Cell Death Discov. 2020, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Faugere, M.; Micoulaud-Franchi, J.A.; Faget-Agius, C.; Lancon, C.; Cermolacce, M.; Richieri, R. Quality of life is associated with chronic inflammation in depression: A cross-sectional study. J. Affect. Disord. 2018, 227, 494–497. [Google Scholar] [CrossRef]
- Kantor, E.D.; Lampe, J.W.; Kratz, M.; White, E. Lifestyle factors and inflammation: Associations by body mass index. PLoS ONE 2013, 8, e67833. [Google Scholar] [CrossRef]
- Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clin. Exp. Immunol. 2007, 147, 227–235. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.; Schenk, S.; Genent, D.; Zernikow, B.; Wager, J. A scoping review of chronic pain in emerging adults. Pain Rep. 2021, 6, e920. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J. What is this thing called pain? J. Clin. Investig. 2010, 120, 3742–3744. [Google Scholar] [CrossRef] [PubMed]
- Świeboda, P.; Filip, R.; Prystupa, A.; Drozd, M. Assessment of pain: Types, mechanism and treatment. Pain 2013, 2, 2–7. [Google Scholar]
- Baron, R. Mechanisms of disease: Neuropathic pain—A clinical perspective. Nat. Clin. Pract. Neurol. 2006, 2, 95–106. [Google Scholar] [CrossRef]
- Kidd, B.L.; Urban, L.A. Mechanisms of inflammatory pain. Br. J. Anaesth. 2001, 87, 3–11. [Google Scholar] [CrossRef]
- Abbott, P.V. Present status and future directions: Managing endodontic emergencies. Int. Endod. J. 2022, 55, 778–803. [Google Scholar] [CrossRef]
- Javed, M.A.; Ashraf, N.; Mahnashi, M.H.; Alqahtani, Y.S.; Alyami, B.A.; Alqarni, A.O.; Asiri, Y.I.; Ikram, M.; Sadiq, A.; Rashid, U. Structural modification, in vitro, in vivo, ex vivo, and in silico exploration of pyrimidine and pyrrolidine cores for targeting enzymes associated with neuroinflammation and cholinergic deficit in Alzheimer’s disease. ACS Chem. Neurosci. 2021, 12, 4123–4143. [Google Scholar] [CrossRef]
- Antoni, M.H.; Baggett, L.; Ironson, G.; LaPerriere, A.; August, S.; Klimas, N.; Schneiderman, N.; Fletcher, M.A. Cognitive-behavioral stress management intervention buffers distress responses and immunologic changes following notification of HIV-1 seropositivity. J. Consult. Clin. Psychol. 1991, 59, 906. [Google Scholar] [CrossRef]
- Rikard, S.M. Chronic pain among adults—United States, 2019–2021. Morb. Mortal. Wkly. Rep. 2023, 72, 379–385. [Google Scholar] [CrossRef]
- Shipton, E.A. Physical therapy approaches in the treatment of low back pain. Pain Ther. 2018, 7, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Yong, R.J.; Mullins, P.M.; Bhattacharyya, N. Prevalence of chronic pain among adults in the United States. Pain 2022, 163, e328–e332. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.; McNamara, C.L.; Balaj, M.; Huijts, T.; Akhter, N.; Thomson, K.; Kasim, A.; Eikemo, T.A.; Bambra, C. The European epidemic: Pain prevalence and socioeconomic inequalities in pain across 19 European countries. Eur. J. Pain 2019, 23, 1425–1436. [Google Scholar] [CrossRef] [PubMed]
- Sarzi-Puttini, P.; Vellucci, R.; Zuccaro, S.M.; Cherubino, P.; Labianca, R.; Fornasari, D. The appropriate treatment of chronic pain. Clin. Drug Investig. 2012, 32, 21–33. [Google Scholar] [CrossRef]
- Kennedy, R.; Abd-Elsayed, A. The international association for the study of pain (IASP) classification of chronic pain syndromes. In Pain: A Review Guide; Springer: Cham, Switzerland, 2019; pp. 1101–1103. [Google Scholar] [CrossRef]
- Meacham, K.; Shepherd, A.; Mohapatra, D.P.; Haroutounian, S. Neuropathic pain: Central vs. peripheral mechanisms. Curr. Pain Headache Rep. 2017, 21, 28. [Google Scholar] [CrossRef]
- Karateev, A.E.; Nasonov, E.L.; Ivashkin, V.T.; Chichasova, N.V.; Evseev, M.A.; Danilov, A.B.; Vorobyeva, O.V.; Amelin, A.V.; Novikova, D.S.; Abuzarova, G.R.; et al. Clinical guidelines «Rational use of nonsteroidal anti-inflammatory drugs (NSAIDs) in clinical practice». Mod. Rheumatol. J. 2015, 9, 4–23. [Google Scholar] [CrossRef]
- Varrassi, G.; Alon, E.; Bagnasco, M.; Lanata, L.; Mayoral-Rojals, V.; Paladini, A.; Pergolizzi, J.V.; Perrot, S.; Scarpignato, C.; Tölle, T. Towards an effective and safe treatment of inflammatory pain: A Delphi-guided expert consensus. Adv. Ther. 2019, 36, 2618–2637. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.Y.; Cardosa, M.S.; Chaiamnuay, S.; Hidayat, R.; Ho, H.Q.T.; Kamil, O.; A Mokhtar, S.; Nakata, K.; Navarra, S.V.; Nguyen, V.H.; et al. Practice advisory on the appropriate use of NSAIDs in primary care. J. Pain Res. 2020, 13, 1925–1939. [Google Scholar] [CrossRef]
- Nalamachu, S. An overview of pain management: The clinical efficacy and value of treatment. Am. J. Manag. Care 2013, 19 (Suppl. 14), s261-6. [Google Scholar]
- Liaras, K.; Fesatidou, M.; Geronikaki, A. Thiazoles and thiazolidinones as COX/LOX inhibitors. Molecules 2018, 23, 685. [Google Scholar] [CrossRef]
- Frölich, J.C. A classification of NSAIDs according to the relative inhibition of cyclooxygenase isoenzymes. Trends Pharmacol. Sci. 1997, 18, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Dray, A. Inflammatory mediators of pain. Br. J. Anaesth. 1995, 75, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F.; Finotto, S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev. 2011, 22, 83–89. [Google Scholar] [CrossRef]
- Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2014, 69 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Engelen, S.E.; Robinson, A.J.; Zurke, Y.X.; Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: How to proceed? Nat. Rev. Cardiol. 2022, 19, 522–542. [Google Scholar] [CrossRef]
- Whitehouse, M.W. Drugs to treat inflammation: A historical introduction. Curr. Med. Chem. 2005, 12, 2931–2942. [Google Scholar] [CrossRef]
- Germano, V.; Cattaruzza, M.S.; Osborn, J.; Tarantino, A.; Di Rosa, R.; Salemi, S.; D’amelio, R. Infection risk in rheumatoid arthritis and spondyloarthropathy patients under treatment with DMARDs, corticosteroids and TNF-α antagonists. J. Transl. Med. 2014, 12, 77. [Google Scholar] [CrossRef]
- Pereira-Leite, C.; Nunes, C.; Jamal, S.K.; Cuccovia, I.M.; Reis, S. Nonsteroidal anti-inflammatory therapy: A journey toward safety. Med. Res. Rev. 2017, 37, 802–859. [Google Scholar] [CrossRef]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Suleyman, H.; Demircan, B.; Karagoz, Y. Anti-inflammatory and side effects of cyclo-oxygenase inhibitors. Pharmacol. Rep. 2007, 59, 247. [Google Scholar]
- Fries, J.F.; Miller, S.R.; Spitz, P.W.; Williams, C.A.; Hubert, H.B.; Bloch, D.A. Toward an epidemiology of gastropathy associated with nonsteroidal antiinflammatory drug use. Gastroenterology 1989, 96, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.M.; Jamali, F. COX-2 selective inhibitors cardiac toxicity: Getting to the heart of the matter. J. Pharm. Pharm. Sci. 2004, 7, 332–336. [Google Scholar] [PubMed]
- Coruzzi, G.; Venturi, N.; Spaggiari, S. Gastrointestinal safety of novel nonsteroidal antiinflammatory drugs: Selective COX-2 inhibitors and beyond. Acta Biomed.-Ateneo Parm. 2007, 78, 96. [Google Scholar]
- Sadiq, A.; Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Alqarni, A.O.; Rashid, U. Tailoring the substitution pattern of Pyrrolidine-2, 5-dione for discovery of new structural template for dual COX/LOX inhibition. Bioorganic Chem. 2021, 112, 104969. [Google Scholar] [CrossRef]
- Khan, A.A.; Iadarola, M.; Yang, H.-Y.T.; Dionne, R.A. Expression of COX-1 and COX-2 in a clinical model of acute inflammation. J. Pain 2007, 8, 349–354. [Google Scholar] [CrossRef]
- Bialer, M. Chemical properties of antiepileptic drugs (AEDs). Adv. Drug Deliv. Rev. 2012, 64, 887–895. [Google Scholar] [CrossRef]
- Sadiq, A.; Nugent, T.C. Catalytic access to succinimide products containing stereogenic quaternary carbons. ChemistrySelect 2020, 5, 11934–11938. [Google Scholar] [CrossRef]
- Qayyum, M.I.; Ullah, S.; Rashid, U.; Sadiq, A.; Obaidullah; Mahnashi, M.H.; Alshehri, O.M.; Jalal, M.M.; Alzahrani, K.J.; Halawani, I.F. Synthesis, molecular docking, and preclinical evaluation of a new succinimide derivative for cardioprotective, hepatoprotective and lipid-lowering effects. Molecules 2022, 27, 6199. [Google Scholar] [CrossRef]
- Alqahtani, Y.S.; Jan, M.S.; Mahnashi, M.H.; Alyami, B.A.; Alqarni, A.O.; Rashid, U.; Mahmood, F.; Tariq, M.; Sadiq, A. Anti-inflammatory potentials of β-ketoester derivatives of N-ary succinimides: In vitro, in vivo, and molecular docking studies. J. Chem. 2022, 2022, 8040322. [Google Scholar] [CrossRef]
- Sadiq, A.; Mahmood, F.; Ullah, F.; Ayaz, M.; Ahmad, S.; Haq, F.U.; Khan, G.; Jan, M.S. Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: A possible role in the management of Alzheimer’s. Chem. Cent. J. 2015, 9, 31. [Google Scholar] [CrossRef]
- Qayyum, M.I.; Ullah, S.; Rashid, U.; Sadiq, A.; Mahnashi, M.H.; Khalil, S.U.K.; Akhtar, M.M. N-phenyl and N-benzyl substituted succinimides: Preclinical evaluation for their antihypertensive effect and underlying mechanism. Eur. J. Pharmacol. 2024, 964, 176195. [Google Scholar] [CrossRef] [PubMed]
- Bibi, A.; Shah, T.; Sadiq, A.; Khalid, N.; Ullah, F.; Iqbal, A. L-isoleucine-catalyzed michael synthesis of N-alkylsuccinimide derivatives and their antioxidant activity assessment. Russ. J. Org. Chem. 2019, 55, 1749–1754. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Alam, W.; Huneif, M.A.; Abdulwahab, A.; Alzahrani, M.J.; Alshaibari, K.S.; Rashid, U.; Sadiq, A.; Jan, M.S. Exploration of succinimide derivative as a multi-target, anti-diabetic agent: In vitro and in vivo approaches. Molecules 2023, 28, 1589. [Google Scholar] [CrossRef] [PubMed]
- Burstein, S.H.; Audette, C.A.; Breuer, A.; Devane, W.A.; Colodner, S.; Doyle, S.A.; Mechoulam, R. Synthetic nonpsychotropic cannabinoids with potent antiinflammatory, analgesic, and leukocyte antiadhesion activities. J. Med. Chem. 1992, 35, 3135–3141. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.O.; Odoh, K.D.; Nwonuma, C.O.; Akinsanmi, A.O.; Adegboyega, A.E. Biochemical evaluation and molecular docking assessment of the anti-inflammatory potential of Phyllanthus nivosus leaf against ulcerative colitis. Heliyon 2020, 6, e03893. [Google Scholar] [CrossRef]
- Matsuda, M.; Huh, Y.; Ji, R.-R. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J. Anesth. 2019, 33, 131–139. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, H.; Wang, J. Metabolism and chronic inflammation: The links between chronic heart failure and comorbidities. Front. Cardiovasc. Med. 2021, 8, 650278. [Google Scholar] [CrossRef]
- Newcombe, E.A.; Camats-Perna, J.; Silva, M.L.; Valmas, N.; Huat, T.J.; Medeiros, R. Inflammation: The link between comorbidities, genetics, and Alzheimer’s disease. J. Neuroinflamm. 2018, 15, 276. [Google Scholar] [CrossRef]
- Del-Ángel, M.; Nieto, A.; Ramírez-Apan, T.; Delgado, G. Anti-inflammatory effect of natural and semi-synthetic phthalides. Eur. J. Pharmacol. 2015, 752, 40–48. [Google Scholar] [CrossRef]
- Johnson, D.S.; Jie, J.L. (Eds.) The Art of Drug Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Nugent, T.C.; Bibi, A.; Sadiq, A.; Shoaib, M.; Umar, M.N.; Tehrani, F.N. Chiral picolylamines for Michael and aldol reactions: Probing substrate boundaries. Org. Biomol. Chem. 2012, 10, 9287–9294. [Google Scholar] [CrossRef]
- Matsui, H.; Shimokawa, O.; Kaneko, T.; Nagano, Y.; Rai, K.; Hyodo, I. The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine. J. Clin. Biochem. Nutr. 2011, 48, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Forones, N.M.; Kawamura, K.Y.; Segreto, H.R.C.; Neto, R.A.; Focchi, G.R.d.A.; Oshima, C.T.F. Expression of COX-2 in stomach carcinogenesis. J. Gastrointest. Cancer 2008, 39, 4–10. [Google Scholar] [CrossRef] [PubMed]
Compounds | COX-I (4O1Z) | COX-II (5F1A) | 5-LOX (3V92) |
---|---|---|---|
MAK01 | −7.7 | −7.2 | −7.1 |
Montelukast | -- | -- | −7.7 |
Celecoxib | -- | −8.3 | -- |
Indomethacin | −7.8 | -- | -- |
Physicochemical Properties | ||
---|---|---|
Properties | MAK01 | Indomethacin |
Molecular weight | 289.33 g/mol | 357.79 g/mol |
No. of heavy atoms | 21 | 25 |
No. of arom. heavy atoms | 6 | 15 |
Fraction of Csp3 | 0.44 | 0.16 |
No. of rotatable bonds | 5 | 5 |
No. of H-bond acceptors | 4 | 4 |
No. of H-bond donors | 0 | 1 |
Molar refractivity | 81.35 | 96.14 |
Topological polar surface area (TPSA) | 63.68 A2 | 68.53 A2 |
Lipophilicity | ||
Consensus log Po/w | 2.17 | 3.28 |
Water Solubility | ||
Log S (ESOL) | −2.69 | −4.25 |
Solubility | 5.95 × 10−1 mg/mL | 2.01 × 10−2 mg/mL |
Class | Soluble | Moderately soluble |
Pharmacokinetics | ||
GI absorption | High | High |
BBB permeation | Yes | Yes |
P-gp substrate | No | No |
CYP1A2 inhibitor | No | Yes |
CYP2C19 | Yes | Yes |
CYP2C9 inhibitor | No | Yes |
CYP2D6 inhibitor | No | No |
CYP3A4 inhibitor | No | No |
Log Kp (skin permeation) | −6.74 cm/s | −6.14 cm/s |
Drug Likeness | ||
Lipinski | Yes (0 violations) | Yes (0 violations) |
Ghose | Yes | Yes |
Veber | Yes | Yes |
Egan | Yes | Yes |
Muegge | Yes | Yes |
Bioavailability score | 0.55 | 0.85 |
Dose No. | Animals | Doses | |
---|---|---|---|
Male | Female | ||
I | 3 | 3 | 25 mg/kg |
II | 3 | 3 | 50 mg/kg |
III | 3 | 3 | 100 mg/kg |
IV | 3 | 3 | 200 mg/kg |
V | 3 | 3 | 300 mg/kg |
VI | 3 | 3 | 400 mg/kg |
VII | 3 | 3 | 500 mg/kg |
VIII | 3 | 3 | 1000 mg/kg |
IX | 3 | 3 | 1500 mg/kg |
X | 3 | 3 | 2000 mg/kg |
Administered Sample | Dose | Paw Edema Inhibition in Percent | ||||
---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | ||
Vehicle | 10 mL | 7.11 ± 0.015 | 7.63 ± 0.044 | 7.42 ± 0.032 | 7.84 ± 0.033 | 7.80 ± 0.035 |
Aspirin | 10 mg | 47.46 ± 0.80 | 54.42 ± 1.10 | 55.23 ± 0.73 | 56.22 ± 1.34 | 57.57 ± 1.23 |
MAK01 | 10 mg/kg | 30.3 ± 0.77 ns | 33.34 ± 0.98 * | 19.62 ± 0.64 *** | 31.44 ± 0.74 ** | 31.22 ± 0.84 ** |
20 mg/kg | 34.7 ± 0.74 ns | 34.54 ± 0.76 * | 21.42 ± 0.64 ** | 29.52 ± 0.63 ** | 31.85 ± 0.32 * | |
30 mg/kg | 38.74 ± 0.81 ns | 39.20 ± 0.86 * | 34.4 ± 0.64 ** | 37.64 ± 0.86 ** | 40.58 ± 0.84 ** |
Samples | Dose mg/kg | Latency Time (Seconds) on Hot Plate | ||||
---|---|---|---|---|---|---|
30 min | 60 min | 90 min | 120 min | 150 min | ||
Negative Control | --------- | 03.70 ± 0.42 | 04.35 ± 0.57 | 02.93 ± 0.33 | 02.93 ± 0.50 | 02.70 ± 0.44 |
MAK01 | 50 | 10.32 ± 0.82 * | 9.96 ± 0.16 *** | 9.63 ± 0.26 *** | 9.49 ± 0.25 ** | 9.16 ± 0.81 *** |
100 | 12.16 ± 0.51 ns | 11.92 ± 0.71 ** | 11.76 ± 0.87 ns | 11.14 ± 0.91 ns | 10.96 ± 0.74 * | |
150 | 12.93 ± 0.45 ns | 12.85 ± 0.84 ns | 12.42 ± 0.36 ns | 11.98 ± 0.74 ns | 11.76 ± 0.41 ns | |
Morphine | 5 | 13.83 ± 0.63 | 13.52 ± 0.23 | 13.29 ± 0.78 | 12.92 ± 0.56 | 12.59 ± 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadiq, A.; Khan, M.A.; Zafar, R.; Ullah, F.; Ahmad, S.; Ayaz, M. Synthesis and Anti-Inflammatory and Analgesic Potentials of Ethyl 2-(2,5-Dioxo-1-Phenylpyrrolidin-3-yl)-2-Methylpropanoate. Pharmaceuticals 2024, 17, 1522. https://doi.org/10.3390/ph17111522
Sadiq A, Khan MA, Zafar R, Ullah F, Ahmad S, Ayaz M. Synthesis and Anti-Inflammatory and Analgesic Potentials of Ethyl 2-(2,5-Dioxo-1-Phenylpyrrolidin-3-yl)-2-Methylpropanoate. Pharmaceuticals. 2024; 17(11):1522. https://doi.org/10.3390/ph17111522
Chicago/Turabian StyleSadiq, Abdul, Muhammad Arif Khan, Rehman Zafar, Farhat Ullah, Sajjad Ahmad, and Muhammad Ayaz. 2024. "Synthesis and Anti-Inflammatory and Analgesic Potentials of Ethyl 2-(2,5-Dioxo-1-Phenylpyrrolidin-3-yl)-2-Methylpropanoate" Pharmaceuticals 17, no. 11: 1522. https://doi.org/10.3390/ph17111522
APA StyleSadiq, A., Khan, M. A., Zafar, R., Ullah, F., Ahmad, S., & Ayaz, M. (2024). Synthesis and Anti-Inflammatory and Analgesic Potentials of Ethyl 2-(2,5-Dioxo-1-Phenylpyrrolidin-3-yl)-2-Methylpropanoate. Pharmaceuticals, 17(11), 1522. https://doi.org/10.3390/ph17111522