Residual Microscopic Peritoneal Metastases after Macroscopic Complete Cytoreductive Surgery for Advanced High-Grade Serous Ovarian Carcinoma: A Target for Folate Receptor Targeted Photodynamic Therapy?
<p>Anatomopathological examination of primary and peritoneal lesions of high-grade serous ovarian carcinoma (HES: Hematein, Eosin, Saffron), and expression of folate receptor alpha (FRα) by immunohistochemistry. (<b>A1</b>): primary cancer × 10/(<b>A2</b>): FRα (75%; 3), (<b>B1</b>): macroscopic peritoneal metastase × 20/(<b>B2</b>): FRα (30%; 3), (<b>C1</b>): microscopic peritoneal metastases × 10/(<b>C2</b>): FRα (30%; 2), FRα (percentage of FRα positive tumor cells; staining intensity).</p> "> Figure 2
<p>Intraperitoneal photodynamic therapy protocol for peritoneal metastases of advanced ovarian cancer. (<b>A</b>) Administration of the photosensitizer, (<b>B</b>) open approach (laparotomy) to perform macroscopic complete cytoreductive surgery, (<b>C</b>) cytoreductive surgery (hysterectomy, bilateral adnexectomy, omentectomy, appendectomy +/- pelvic and para-aortic lymphadenectomies, removal of all visible peritoneal metastases), (<b>D</b>) end of the cytoreductive surgery, (<b>E</b>) illumination of the peritoneal cavity to treat by photodynamic therapy microscopic peritoneal metastases, (<b>F</b>) end of the procedure.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Population Characteristics
2.2. Analysis of Peritoneal Biopsies in Macroscopically Healthy Peritoneum
2.3. Tissue Expression of the Folate Receptor α Isoform (FRα)
- -
- Diagnostic biopsy sampled during initial exploratory laparoscopy if available;
- -
- Macroscopic PM sampled during CRS;
- -
- mPM if identified.
3. Discussion
4. Methods
4.1. Design
4.2. Funding
4.3. Patients
4.4. Sampling Protocol and Pathological Analysis
4.5. Primary Endpoint
4.6. Statistical Analysis
4.7. Ethics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian Cancer. Lancet 2014, 384, 1376–1388. [Google Scholar] [CrossRef]
- Chang, S.-J.; Hodeib, M.; Chang, J.; Bristow, R.E. Survival Impact of Complete Cytoreduction to No Gross Residual Disease for Advanced-Stage Ovarian Cancer: A Meta-Analysis. Gynecol. Oncol. 2013, 130, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Collinson, F.; Qian, W.; Fossati, R.; Lissoni, A.; Williams, C.; Parmar, M.; Ledermann, J.; Colombo, N.; Swart, A. Optimal Treatment of Early-Stage Ovarian Cancer. Ann. Oncol. 2014, 25, 1165–1171. [Google Scholar] [CrossRef]
- Al Rawahi, T.; Lopes, A.D.; Bristow, R.E.; Bryant, A.; Elattar, A.; Chattopadhyay, S.; Galaal, K. Surgical cytoreduction for recurrent epithelial ovarian cancer. Cochrane Database Syst. Rev. 2013, 2013, CD008765. [Google Scholar] [CrossRef] [PubMed]
- Fagotti, A. Peritoneal Carcinosis of Ovarian Origin. World J. Gastrointest. Oncol. WJGO 2010, 2, 102–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azaïs, H.; Estevez, J.P.; Foucher, P.; Kerbage, Y.; Mordon, S.; Collinet, P. Dealing with Microscopic Peritoneal Metastases of Epithelial Ovarian Cancer. A Surgical Challenge. Surg. Oncol. 2017, 26, 46–52. [Google Scholar] [CrossRef]
- Eisenkop, S.M.; Spirtos, N.M.; Lin, W.-C.M. “Optimal” Cytoreduction for Advanced Epithelial Ovarian Cancer: A Commentary. Gynecol. Oncol. 2006, 103, 329–335. [Google Scholar] [CrossRef]
- Vergote, I.; Amant, F.; Kristensen, G.; Ehlen, T.; Reed, N.S.; Casado, A. Primary Surgery or Neoadjuvant Chemotherapy Followed by Interval Debulking Surgery in Advanced Ovarian Cancer. Eur. J. Cancer 2011, 47, S88–S92. [Google Scholar] [CrossRef]
- Chang, S.-J.; Bristow, R.E. Evolution of Surgical Treatment Paradigms for Advanced-Stage Ovarian Cancer: Redefining ‘Optimal’ Residual Disease. Gynecol. Oncol. 2012, 125, 483–492. [Google Scholar] [CrossRef]
- Chang, S.-J.; Bristow, R.E.; Ryu, H.-S. Impact of Complete Cytoreduction Leaving No Gross Residual Disease Associated with Radical Cytoreductive Surgical Procedures on Survival in Advanced Ovarian Cancer. Ann. Surg. Oncol. 2012, 19, 4059–4067. [Google Scholar] [CrossRef]
- Bristow, R.E.; Tomacruz, R.S.; Armstrong, D.K.; Trimble, E.L.; Montz, F.J. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: A meta-analysis. J. Clin. Oncol. 2002, 20, 1248–1259. [Google Scholar] [CrossRef] [PubMed]
- Du Bois, A.; Reuss, A.; Pujade-Lauraine, E.; Harter, P.; Ray-Coquard, I.; Pfisterer, J. Role of Surgical Outcome as Prognostic Factor in Advanced Epithelial Ovarian Cancer: A Combined Exploratory Analysis of 3 Prospectively Randomized Phase 3 Multicenter Trials: By the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux Pour Les Etudes Des Cancers de l’Ovaire (GINECO). Cancer 2009, 115, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- Chi, D.S.; Eisenhauer, E.L.; Zivanovic, O.; Sonoda, Y.; Abu-Rustum, N.R.; Levine, D.A.; Guile, M.W.; Bristow, R.E.; Aghajanian, C.; Barakat, R.R. Improved Progression-Free and Overall Survival in Advanced Ovarian Cancer as a Result of a Change in Surgical Paradigm. Gynecol. Oncol. 2009, 114, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Elattar, A.; Bryant, A.; Winter-Roach, B.A.; Hatem, M.; Naik, R. Optimal primary surgical treatment for advanced epithelial ovarian cancer. Cochrane Database Syst. Rev. 2011, 2011, CD007565. [Google Scholar] [CrossRef] [PubMed]
- Azaïs, H.; Vignion-Dewalle, A.-S.; Carrier, M.; Augustin, J.; Da Maïa, E.; Penel, A.; Belghiti, J.; Nikpayam, M.; Gonthier, C.; Ziane, L.; et al. Microscopic Peritoneal Residual Disease after Complete Macroscopic Cytoreductive Surgery for Advanced High Grade Serous Ovarian Cancer. J. Clin. Med. JCM 2020, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Azaïs, H.; Canlorbe, G.; Kerbage, Y.; Grabarz, A.; Collinet, P.; Mordon, S. Image-Guided Surgery in Gynecologic Oncology. Future Oncol. 2017, 13, 2321–2328. [Google Scholar] [CrossRef]
- Delaney, T.F.; Sindelar, W.F.; Tochner, Z.; Smith, P.D.; Friauf, W.S.; Thomas, G.; Dachowski, L.; Cole, J.W.; Steinberg, S.M.; Glatstein, E. Phase I Study of Debulking Surgery and Photodynamic Therapy for Disseminated Intraperitoneal Tumors. Int. J. Radiat. Oncol. Biol. Phys. 1993, 25, 445–457. [Google Scholar] [CrossRef]
- Hahn, S.M.; Fraker, D.L.; Mick, R.; Metz, J.; Busch, T.M.; Smith, D.; Zhu, T.; Rodriguez, C.; Dimofte, A.; Spitz, F.; et al. A Phase II Trial of Intraperitoneal Photodynamic Therapy for Patients with Peritoneal Carcinomatosis and Sarcomatosis. Clin. Cancer Res. 2006, 12, 2517–2525. [Google Scholar] [CrossRef] [Green Version]
- Hendren, S.K.; Hahn, S.M.; Spitz, F.R.; Bauer, T.W.; Rubin, S.C.; Zhu, T.; Glatstein, E.; Fraker, D.L. Phase II Trial of Debulking Surgery and Photodynamic Therapy for Disseminated Intraperitoneal Tumors. Ann. Surg. Oncol. 2001, 8, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Hahn, S.M.; Putt, M.E.; Metz, J.; Shin, D.B.; Rickter, E.; Menon, C.; Smith, D.; Glatstein, E.; Fraker, D.L.; Busch, T.M. Photofrin Uptake in the Tumor and Normal Tissues of Patients Receiving Intraperitoneal Photodynamic Therapy. Clin. Cancer Res. 2006, 12, 5464–5470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cengel, K.A.; Glatstein, E.; Hahn, S.M. Intraperitoneal Photodynamic Therapy. Cancer Treat. Res. 2007, 134, 493–514. [Google Scholar] [PubMed]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; Schmitt, F.; Frochot, C.; Fort, Y.; Lourette, N.; Guillemin, F.; Müller, J.-F.; Barberi-Heyob, M. Design, Synthesis, and Biological Evaluation of Folic Acid Targeted Tetraphenylporphyrin as Novel Photosensitizers for Selective Photodynamic Therapy. Bioorg. Med. Chem. 2005, 13, 2799–2808. [Google Scholar] [CrossRef]
- Parker, N.; Turk, M.J.; Westrick, E.; Lewis, J.D.; Low, P.S.; Leamon, C.P. Folate Receptor Expression in Carcinomas and Normal Tissues Determined by a Quantitative Radioligand Binding Assay. Anal. Biochem. 2005, 338, 284–293. [Google Scholar] [CrossRef]
- Low, P.S.; Henne, W.A.; Doorneweerd, D.D. Discovery and Development of Folic-Acid-Based Receptor Targeting for Imaging and Therapy of Cancer and Inflammatory Diseases. Acc. Chem. Res. 2008, 41, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Stallivieri, A.; Baros, F.; Jetpisbayeva, G.; Myrzakhmetov, B.; Frochot, C. The Interest of Folic Acid in Targeted Photodynamic Therapy. Curr. Med. Chem. 2015, 22, 3185–3207. [Google Scholar] [CrossRef]
- Karges, J.; Díaz-García, D.; Prashar, S.; Gómez-Ruiz, S.; Gasser, G. Ru(II) Polypyridine Complex Functionalized Mesoporous Silica Nanoparticles as Photosensitizers for Cancer Targeted Photodynamic Therapy. ACS Appl. Bio Mater. 2021, 4, 4394–4405. [Google Scholar] [CrossRef]
- Potara, M.; Nagy-Simon, T.; Focsan, M.; Licarete, E.; Soritau, O.; Vulpoi, A.; Astilean, S. Folate-Targeted Pluronic-Chitosan Nanocapsules Loaded with IR780 for near-Infrared Fluorescence Imaging and Photothermal-Photodynamic Therapy of Ovarian Cancer. Colloids Surf. B Biointerfaces 2021, 203, 111755. [Google Scholar] [CrossRef]
- Wang, H.; Hou, L.; Li, H.; Wang, X.; Cao, Y.; Zhang, B.; Wang, J.; Wei, S.; Dang, H.; Ran, H. A Nanosystem Loaded with Perfluorohexane and Rose Bengal Coupled Upconversion Nanoparticles for Multimodal Imaging and Synergetic Chemo-Photodynamic Therapy of Cancer. Biomater. Sci. 2020, 8, 2488–2506. [Google Scholar] [CrossRef]
- Bazylińska, U.; Kulbacka, J.; Chodaczek, G. Nanoemulsion Structural Design in Co-Encapsulation of Hybrid Multifunctional Agents: Influence of the Smart PLGA Polymers on the Nanosystem-Enhanced Delivery and Electro-Photodynamic Treatment. Pharmaceutics 2019, 11, 405. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yao, S.; Wang, K.; Lu, Z.; Su, X.; Li, L.; Yuan, C.; Feng, J.; Yan, S.; Kong, B.; et al. Hypocrellin B-Loaded, Folate-Conjugated Polymeric Micelle for Intraperitoneal Targeting of Ovarian Cancer in Vitro and in Vivo. Cancer Sci. 2018, 109, 1958–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doshi, M.; Krienke, M.; Khederzadeh, S.; Sanchez, H.; Copik, A.; Oyer, J.; Gesquiere, A.J. Conducting Polymer Nanoparticles for Targeted Cancer Therapy. RSC Adv. 2015, 5, 37943–37956. [Google Scholar] [CrossRef] [Green Version]
- Azaïs, H.; Schmitt, C.; Tardivel, M.; Kerdraon, O.; Stallivieri, A.; Frochot, C.; Betrouni, N.; Collinet, P.; Mordon, S. Assessment of the Specificity of a New Folate-Targeted Photosensitizer for Peritoneal Metastasis of Epithelial Ovarian Cancer to Enable Intraperitoneal Photodynamic Therapy. A Preclinical Study. Photodiagn. Photodyn. Ther. 2016, 13, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baydoun, M.; Moralès, O.; Frochot, C.; Ludovic, C.; Leroux, B.; Thecua, E.; Ziane, L.; Grabarz, A.; Kumar, A.; de Schutter, C.; et al. Photodynamic Therapy Using a New Folate Receptor-Targeted Photosensitizer on Peritoneal Ovarian Cancer Cells Induces the Release of Extracellular Vesicles with Immunoactivating Properties. J. Clin. Med. JCM 2020, 9, 1185. [Google Scholar] [CrossRef] [PubMed]
- Prat, J.; FIGO Committee on Gynecologic Oncology Staging. Classification for Cancer of the Ovary, Fallopian Tube, and Peritoneum. Int. J. Gynecol. Obstet. 2014, 124, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Sugarbaker, P.H. Cytoreductive Surgery and Perioperative Intraperitoneal Chemotherapy for the Treatment of Advanced Primary and Recurrent Ovarian Cancer. Curr. Opin. Obstet. Gynecol. 2009, 21, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Fagotti, A.; Ferrandina, G.; Fanfani, F.; Garganese, G.; Vizzielli, G.; Carone, V.; Salerno, M.G.; Scambia, G. Prospective Validation of a Laparoscopic Predictive Model for Optimal Cytoreduction in Advanced Ovarian Carcinoma. Am. J. Obstet. Gynecol. 2008, 199, 642.e1–642.e6. [Google Scholar] [CrossRef]
- Lavoue, V.; Huchon, C.; Akladios, C.; Alfonsi, P.; Bakrin, N.; Ballester, M.; Bendifallah, S.; Bolze, P.A.; Bonnet, F.; Bourgin, C.; et al. Management of Epithelial Cancer of the Ovary, Fallopian Tube, Primary Peritoneum. Long Text of the Joint French Clinical Practice Guidelines Issued by FRANCOGYN, CNGOF, SFOG, GINECO-ARCAGY, Endorsed by INCa. (Part 2: Systemic, Intraperitoneal Treatment, Elderly Patients, Fertility Preservation, Follow-Up). J. Gynecol. Obstet. Hum. Reprod. 2019, 48, 379–386. [Google Scholar] [CrossRef]
- Harter, P.; Sehouli, J.; Lorusso, D.; Reuss, A.; Vergote, I.; Marth, C.; Kim, J.-W.; Raspagliesi, F.; Lampe, B.; Aletti, G.; et al. A Randomized Trial of Lymphadenectomy in Patients with Advanced Ovarian Neoplasms. N. Engl. J. Med. 2019, 380, 822–832. [Google Scholar] [CrossRef]
Overall Population N = 26 | without mPM N = 19 | with mPM N = 7 | p | |
---|---|---|---|---|
Age (mean +/- SD)~years | 65.3 +/- 11.1 | 63.6 +/- 11.6 | 69.9 +/- 9.1 | 0.17 |
BMI (mean +/- SD)~kg/m2 | 22.9 +/- 3.7 | 23.2 +/- 3.8 | 22.3 +/- 3.5 | 0.64 |
Body surface (mean +/- SD)~m2 | 1.65 +/- 0.13 | 1.65 +/- 0.15 | 1.62 +/- 0.04 | 0.91 |
Follow-up (after CRS), median [range]~days | 492 [262–862] | 495 [301–862] | 376 [262–714] | 0.27 |
Recurrence~n (%) | 8 (30.8) | 6 (31.6) | 2 (28.6) | NA |
RFS (median [range])~days | 356 [213–862] | 359 [292–862] | 307 [213–400] | NA |
Death~n (%) | 3 (11.5) | 2 (10.5) | 1 (14.3) | NA |
Peritoneal metastases spread at diagnosis | ||||
| 13 [3–31] | 11 [3–31] | 21.5 [10–31] | 0.16 |
| 6 [0–12] | 4 [0–10] | 8 [6–12] | 0.26 |
| 590 [19–8000] | 579 [19–4042] | 600 [40–8000] | 0.57 |
Peritoneal metastases spread at CRS | ||||
| 11 [0–20] | 11 [0–20] | 4 [1–15] | 0.40 |
| 4 [0–8] | 4 [0–8] | 2 [2–8] | 0.97 |
| 20 [10–1162] | 20 [10–1162] | 253 [11–904] | 0.30 |
FIGO Stage | ||||
| 18 (69.2) | 13 (68.4) | 5 (71.4) | NA |
| 8 (30.8) | 6 (31.6) | 2 (28.6) | NA |
Number of biopsies (median [range]) | 7 [3–13] | 7 [3–13] | 6 [3–12] | 0.41 |
NACT~n (%) | 23 (88.5) | 16 (84.2) | 7 (100) | NA |
Number of courses before CRS (median [range]) | 5 [3–9] | 6 [3–9] | 4 [3–9] | 0.84 |
Diagnostic Biopsy (Exploratory Laparoscopy) | Macroscopic Peritoneal Metastases (Cytoreductive Surgery) | Microscopic Peritoneal Metastases (Cytoreductive Surgery) | |
---|---|---|---|
1 | (0%; 0) | (1%; 1) (5%; 2) | (0%; 0) |
2 | (5%; 1) | (0%; 0) | - |
3 | (20%; 2) | (50%; 2) | - |
4 | (0%; 0) | (60%; 3) | (20%; 1) |
5 | (60%; 2) | (30%; 3) (75%; 3) | (40%; 2) |
6 | (10%; 1) | (5%; 1) (0%; 0) | (25%; 1) |
7 | - | (5%; 1) (0%; 0) | - |
Diagnostic Biopsy (Exploratory Laparoscopy) | Macroscopic Peritoneal Metastases (Cytoreductive Surgery) | |
---|---|---|
1 | (75%; 3) | (10%; 1) |
2 | (0%; 0) | (0%; 0) |
3 | - | (70%; 3) |
4 | - | (10%; 2) |
5 | - | (3%; 1) |
6 | - | (0%; 0) |
7 | - | (0%; 0) |
8 | (0%; 0) | (0%; 0) |
9 | - | (60%; 3) |
10 | - | (60%; 2) |
11 | - | (5%; 1) |
12 | - | (70%; 3) |
13 | (0%; 0) | (0%; 0) (15%; 1) |
14 | - | (40%; 1) |
15 | - | - |
16 | (30%; 2) | (0%; 0) (15%; 1) |
17 | (0%; 0) | (90%; 3) |
18 | - | (60%;2) (5%; 1) |
19 | (0%; 0) | (30%; 3) (5%; 1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moinard, M.; Augustin, J.; Carrier, M.; Da Maïa, E.; Penel, A.; Belghiti, J.; Nikpayam, M.; Gonthier, C.; Canlorbe, G.; Acherar, S.; et al. Residual Microscopic Peritoneal Metastases after Macroscopic Complete Cytoreductive Surgery for Advanced High-Grade Serous Ovarian Carcinoma: A Target for Folate Receptor Targeted Photodynamic Therapy? Pharmaceuticals 2022, 15, 1034. https://doi.org/10.3390/ph15081034
Moinard M, Augustin J, Carrier M, Da Maïa E, Penel A, Belghiti J, Nikpayam M, Gonthier C, Canlorbe G, Acherar S, et al. Residual Microscopic Peritoneal Metastases after Macroscopic Complete Cytoreductive Surgery for Advanced High-Grade Serous Ovarian Carcinoma: A Target for Folate Receptor Targeted Photodynamic Therapy? Pharmaceuticals. 2022; 15(8):1034. https://doi.org/10.3390/ph15081034
Chicago/Turabian StyleMoinard, Morgane, Jeremy Augustin, Marine Carrier, Elisabeth Da Maïa, Alix Penel, Jérémie Belghiti, Maryam Nikpayam, Clémentine Gonthier, Geoffroy Canlorbe, Samir Acherar, and et al. 2022. "Residual Microscopic Peritoneal Metastases after Macroscopic Complete Cytoreductive Surgery for Advanced High-Grade Serous Ovarian Carcinoma: A Target for Folate Receptor Targeted Photodynamic Therapy?" Pharmaceuticals 15, no. 8: 1034. https://doi.org/10.3390/ph15081034
APA StyleMoinard, M., Augustin, J., Carrier, M., Da Maïa, E., Penel, A., Belghiti, J., Nikpayam, M., Gonthier, C., Canlorbe, G., Acherar, S., Delhem, N., Frochot, C., Uzan, C., & Azaïs, H. (2022). Residual Microscopic Peritoneal Metastases after Macroscopic Complete Cytoreductive Surgery for Advanced High-Grade Serous Ovarian Carcinoma: A Target for Folate Receptor Targeted Photodynamic Therapy? Pharmaceuticals, 15(8), 1034. https://doi.org/10.3390/ph15081034