Inter-Ligand STD NMR: An Efficient 1D NMR Approach to Probe Relative Orientation of Ligands in a Multi-Subsite Protein Binding Pocket
<p>Cartoon representing the IL-STD NMR approach. (<b>a</b>) STD NMR with selective irradiation (<math display="inline"><semantics> <mrow> <msup> <mi>δ</mi> <mn>0</mn> </msup> </mrow> </semantics></math>) on protein protons. (<b>b</b>) STD NMR with selective irradiation (<math display="inline"><semantics> <mrow> <msup> <mi>δ</mi> <mo>*</mo> </msup> </mrow> </semantics></math> ) on “<span class="html-italic">reporter ligand</span>” proton γ (supposed to be close to proton C of the adjacent “<span class="html-italic">ligand of interest</span>”) as well as on protein protons. The analysis of the IL-STD NMR experiment is focused exclusively on the protons of the ligand of interest (<b>A</b>, <b>B</b>, <b>C</b> in the cartoon). Significant differences in binding epitope mapping on the ligand of interest will indicate proximity between both ligands.</p> "> Figure 2
<p>(<b>Top left</b>): <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">η</mi> <msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>mf</mi> <mo>−</mo> <mi>STD</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>0.60</mn> </mrow> <mrow> <mn>1.46</mn> </mrow> </msubsup> </mrow> </semantics></math> histogram for the system BSA/NPX at 500 MHz, determined using the initial slopes of the build-up curves acquired at <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="sans-serif">δ</mi> <mn>0</mn> </msup> </mrow> </semantics></math> = 0.60 ppm (standard STD NMR), and <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="sans-serif">δ</mi> <mo>*</mo> </msup> </mrow> </semantics></math> = 1.46 ppm (<span class="html-italic">on-ligand</span> methyl group irradiation). The arrows highlight the trend along the NPX molecule (blue indicate decreases in <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">η</mi> <msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>mf</mi> <mo>−</mo> <mi>STD</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>0.60</mn> </mrow> <mrow> <mn>1.46</mn> </mrow> </msubsup> </mrow> </semantics></math>, and red increases). The <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">η</mi> <msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>mf</mi> <mo>−</mo> <mi>STD</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>0.60</mn> </mrow> <mrow> <mn>1.46</mn> </mrow> </msubsup> </mrow> </semantics></math> bar for the methoxy protons has been boxed in a dotted square with an asterisk, to highlight the unexpected increase in <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">η</mi> <msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>mf</mi> <mo>−</mo> <mi>STD</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>0.60</mn> </mrow> <mrow> <mn>1.46</mn> </mrow> </msubsup> </mrow> </semantics></math> for the methoxy group, as this is the furthest group from the irradiated moiety. The results report on the proximity of the two bound NPX molecules in the binding sites NPS2 and NPS3, as observed in the crystal structure of the complex (PDB ID: 4OR0, <a href="#app1-pharmaceuticals-15-01030" class="html-app">Figure S1a</a>) [<a href="#B12-pharmaceuticals-15-01030" class="html-bibr">12</a>]. In the absence of inter-ligand saturation transfer from NSP2 and NSP3, the <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">η</mi> <msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>mf</mi> <mo>−</mo> <mi>STD</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>0.60</mn> </mrow> <mrow> <mn>1.46</mn> </mrow> </msubsup> </mrow> </semantics></math> values would monotonically decrease from the irradiated methyl group to the furthest methoxy group. (<b>Bottom left</b>): <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">η</mi> <msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>mf</mi> <mo>−</mo> <mi>STD</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>0.60</mn> </mrow> <mrow> <mn>1.46</mn> </mrow> </msubsup> </mrow> </semantics></math> values represented on the NPX chemical structure circles of sizes proportional to the <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">η</mi> <msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>mf</mi> <mo>−</mo> <mi>STD</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>0.60</mn> </mrow> <mrow> <mn>1.46</mn> </mrow> </msubsup> </mrow> </semantics></math> values. Spectra and raw data are reported in the <a href="#app1-pharmaceuticals-15-01030" class="html-app">Supplementary Materials, Figure S4 and Table S1</a>. (<b>Right</b>): NPX binding sites NPS2 and NPS3 in the crystal structure of the BSA/NPX complex, PDB ID: 4OR0 [<a href="#B12-pharmaceuticals-15-01030" class="html-bibr">12</a>]. In the cartoon, red rays indicate the position of the α-methyl protons directly irradiated in the STD NMR experiment (<math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">δ</mi> <mrow> <mi>ON</mi> </mrow> <mo>*</mo> </msubsup> </mrow> </semantics></math> = 1.46 ppm).</p> "> Figure 3
<p>Cartoon representing the IL-STD NMR approach for a system consisting of two ligands binding to a protein in adjacent subsites. (<b>a</b>,<b>b</b>) In black, STD NMR experiments with selective irradiation (δ<sup>0</sup>) on protein protons, where the experiments are run with the protein containing either both ligands (<b>a</b>), ternary complex, “+” giving rise to <math display="inline"><semantics> <mrow> <msubsup> <mi>STD</mi> <mo>+</mo> <mn>0</mn> </msubsup> </mrow> </semantics></math>, or just the <span class="html-italic">ligand of interest</span> (<b>b</b>), binary complex, “−”, giving rise to <math display="inline"><semantics> <mrow> <msubsup> <mi>STD</mi> <mo>−</mo> <mn>0</mn> </msubsup> </mrow> </semantics></math>. The “+” or “–” sign refers to the presence or absence of the <span class="html-italic">reporter ligand</span> of known orientation in the binding subsite-I adjacent to the <span class="html-italic">ligand of interest</span> (subsite-II). (<b>c</b>,<b>d</b>) In red, STD NMR experiments with selective irradiation (δ*) on both, the <span class="html-italic">reporter ligand</span> proton γ (expected to be spatially close to proton/s of the <span class="html-italic">ligand of interest</span>, e.g., proton C), as well as the protein protons, again with the samples of protein containing either both ligands (<b>c</b>), ternary complex, “+”, giving rise to <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>+</mo> <mo>*</mo> </msubsup> </mrow> </semantics></math>, or just the <span class="html-italic">ligand of interest</span> (<b>d</b>), binary complex, “−”, giving rise to <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>−</mo> <mo>*</mo> </msubsup> </mrow> </semantics></math>. Delta-STD values (<math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mrow> <mi>STD</mi> </mrow> <mo>+</mo> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>+</mo> <mo>*</mo> </msubsup> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>+</mo> <mn>0</mn> </msubsup> </mrow> </semantics></math> or <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mrow> <mi>STD</mi> </mrow> <mo>−</mo> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>−</mo> <mo>*</mo> </msubsup> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>−</mo> <mn>0</mn> </msubsup> </mrow> </semantics></math> ) identify differences in STD intensities of the <span class="html-italic">ligand of interest</span> as a consequence of irradiating at the frequency δ* of the <span class="html-italic">reporter ligand</span> in the adjacent subsite, in comparison to δ<sup>0</sup>, whether the <span class="html-italic">reporter ligand</span> is present or not, respectively. <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">η</mi> <mrow> <mo>(</mo> <mrow> <mi>IL</mi> <mo>−</mo> <mi>STD</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> additionally removes potential contributions from the presence or absence of the <span class="html-italic">reporter ligand</span> and normalizes values against variations in the binding epitope of the <span class="html-italic">ligand of interest</span> simply due to to different levels of protein saturation between δ<sup>0</sup> and δ*, readily unveiling the existence of inter-ligand contacts in the bound state.</p> "> Figure 4
<p>(<b>a</b>) Chemical structure and nomenclature of the CTB ligands 3NPG and <b>1</b>. (<b>b</b>) 3D model of the 3NPG/CTB/<b>1</b> ternary complex.</p> "> Figure 5
<p>IL-STD difference spectra of (<b>Top</b>): the ternary complex 3NPG/CTB/<b>1</b> (<math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>+</mo> <mo>*</mo> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>+</mo> <mn>0</mn> </msubsup> </mrow> </semantics></math> ) and (<b>Bottom</b>): the control binary complex CTB/<b>1</b> in the absence of 3NPG (<math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>−</mo> <mo>*</mo> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>−</mo> <mn>0</mn> </msubsup> </mrow> </semantics></math> ), with irradiation at δ<sup>0</sup> = 0.6 ppm (in black) and at δ* = 7.27 ppm, on resonance at the frequency of protons Hc and Hd of 3NPG (in red). The assignment of all peaks is given and the signal of Htriaz is squared in turquoise and magnified on the left, showing the increased intensity when irradiating at δ* = 7.27 ppm, whereas all the other protons (with the exceptions discussed in the main text) decreased their intensities. A saturation time of 2 s was employed, and a line broadening factor of 0.3 Hz was applied to the FID before FT.</p> "> Figure 6
<p>Quantitation of the STD<sup>0</sup> and STD* results (left and right panels, respectively; δ<sup>0</sup> = 0 ppm (in black) and at δ* = 7.27 ppm (in red)) for the IL-STD NMR study of the binding of 3NPG and <b>1</b> to CTB. Dark and light black bars show the STD<sup>0</sup> values in samples containing the binary (<math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>−</mo> <mn>0</mn> </msubsup> <mo> </mo> </mrow> </semantics></math>, 3NPG absent) or the ternary complex (<math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>+</mo> <mn>0</mn> </msubsup> </mrow> </semantics></math>, both ligands present), whereas dark and light red bars show the STD* values in samples containing the binary (<math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>−</mo> <mo>*</mo> </msubsup> </mrow> </semantics></math>) or the ternary complex (<math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>STD</mi> </mrow> <mo>+</mo> <mo>*</mo> </msubsup> </mrow> </semantics></math>). Asterisks mark the STD intensities significantly increased under direct irradiation of 3NPG. Panels at the bottom represent schematically the 4xSTD NMR experiments. <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">η</mi> <mrow> <mo>(</mo> <mrow> <mi>IL</mi> <mo>−</mo> <mi>STD</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> values are reported in <a href="#app1-pharmaceuticals-15-01030" class="html-app">Table S4</a>. *: direct irradiation.</p> "> Figure 7
<p>(<b>Left</b>): <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">η</mi> <mrow> <mo>(</mo> <mrow> <mi>IL</mi> <mo>−</mo> <mi>STD</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> factors of protons of <b>1</b>, indicating spatial proximity of protons Htriaz, 3″, 2″ and 4″b with proton Hc of 3NPG bound in the adjacent galactose subsite. (<b>Right</b>): 3D molecular model of the 3NPG/CTB/<b>1</b> ternary complex highlighting the H-H spatial correlations observed by IL-STD NMR.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Observation of IL-STD NMR in a Binary Protein-Ligand Interaction: Naproxen Binding to Bovine Serum Albumin
2.2. IL-STD NMR to Study Multi-Ligand Binding: Definitions
2.3. IL-STD NMR Applied to Fragments Inhibitors of Cholera Toxin Subunit B (CTB)
3. Discussion
4. Materials and Methods
4.1. Materials and Sample Preparation
4.2. Nuclear Magnetic Resonance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luca Unione, S.G.; Dolores Díaz, F. Javier Cañada and Jesús Jiménez-Barbero, NMR and molecular recognition. The application of ligand-based NMR methods to monitor molecular interactions. MedChemComm 2014, 5, 9. [Google Scholar]
- Mayer, M.; Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 1999, 38, 1784–1788. [Google Scholar] [CrossRef]
- Mayer, M.; Meyer, B. Group Epitope Mapping by Saturation Transfer Difference NMR To Identify Segments of a Ligand in Direct Contact with a Protein Receptor. J. Am. Chem. Soc. 2001, 123, 6108–6117. [Google Scholar] [CrossRef] [PubMed]
- Angulo, J.; Nieto, P.M. STD-NMR: Application to transient interactions between biomolecules—A quantitative approach. Eur. Biophys. J. 2011, 40, 1357–1369. [Google Scholar] [CrossRef] [PubMed]
- Monaco, S.; Tailford, L.E.; Juge, N.; Angulo, J. Differential Epitope Mapping by STD NMR Spectroscopy To Reveal the Nature of Protein-Ligand Contacts. Angew. Chem. Int. Ed. 2017, 56, 15289–15293. [Google Scholar] [CrossRef] [PubMed]
- Watt, J.E.; Hughes, G.R.; Walpole, S.; Monaco, S.; Stephenson, G.R.; Page, P.C.B.; Hemmings, A.M.; Angulo, J.; Chantry, A. Discovery of Small Molecule WWP2 Ubiquitin Ligase Inhibitors. Chem.–A Eur. J. 2018, 24, 17677–17680. [Google Scholar] [CrossRef] [PubMed]
- Monaco, S.; Walpole, S.; Doukani, H.; Nepravishta, R.; Martínez-Bailén, M.; Carmona, A.T.; Ramos-Soriano, J.; Bergström, M.; Robina, I.; Angulo, J. Exploring Multi-Subsite Binding Pockets in Proteins: DEEP-STD NMR Fingerprinting and Molecular Dynamics Unveil a Cryptic Subsite at the GM1 Binding Pocket of Cholera Toxin B. Chem.–A Eur. J. 2020, 26, 10024–10034. [Google Scholar] [CrossRef] [PubMed]
- Becattini, B.; Pellecchia, M. SAR by ILOEs: An NMR-Based Approach to Reverse Chemical Genetics. Chem.–A Eur. J. 2006, 12, 2658–2662. [Google Scholar] [CrossRef] [PubMed]
- Pîrnău, A.; Bogdan, M. Investigation of the interaction between naproxen and human serum albumin. Rom. J. Biophys. 2008, 18, 49–55. [Google Scholar]
- Fielding, L.; Rutherford, S.; Fletcher, D. Determination of protein-ligand binding affinity by NMR: Observations from serum albumin model systems. Magn. Reson. Chem. 2005, 43, 463–470. [Google Scholar] [CrossRef]
- Angulo, J.; Enríquez-Navas, P.M.; Nieto, P.M. Ligand-Receptor Binding Affinities from Saturation Transfer Difference (STD) NMR Spectroscopy: The Binding Isotherm of STD Initial Growth Rates. Chem.–A Eur. J. 2010, 16, 7803–7812. [Google Scholar] [CrossRef] [PubMed]
- Bujacz, A.; Zielinski, K.; Sekula, B. Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen. Proteins Struct. Funct. Bioinform. 2014, 82, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Simard, J.R.; Zunszain, P.A.; Hamilton, J.A.; Curry, S. Location of High and Low Affinity Fatty Acid Binding Sites on Human Serum Albumin Revealed by NMR Drug-competition Analysis. J. Mol. Biol. 2006, 361, 336–351. [Google Scholar] [CrossRef] [PubMed]
- Honoré, B.; Brodersen, R. Albumin binding of anti-inflammatory drugs. Utility of a site-oriented versus a stoichiometric analysis. Mol. Pharmacol. 1984, 25, 137–150. [Google Scholar] [PubMed]
- Maruthamuthu, M.; Kishore, S. Binding of naproxen to bovine serum albumin and tryptophan-modified bovine serum albumin. J. Chem. Sci. 1987, 99, 273–279. [Google Scholar] [CrossRef]
- Erlanson, D. Poll Results: Affiliation, Metrics, and Fragment-Finding Methods. 2016. Available online: http://practicalfragments.blogspot.co.uk/2016/10/poll-results-affiliation-metrics-and.html (accessed on 24 March 2018).
- Ramos-Soriano, J.; Niss, U.; Angulo, J.; Angulo, M.; Moreno-Vargas, A.J.; Carmona, A.T.; Ohlson, S.; Robina, I. Synthesis, biological evaluation, WAC and NMR studies of S-galactosides and non-carbohydrate ligands of cholera toxin based on polyhydroxyalkylfuroate moieties. Chem.–A Eur. J. 2013, 19, 17989–18003. [Google Scholar] [CrossRef] [PubMed]
- Merritt, E.A.; Zhang, Z.; Pickens, J.C.; Ahn, M.; Hol, W.G.; Fan, E. Characterization and Crystal Structure of a High-Affinity Pentavalent Receptor-Binding Inhibitor for Cholera Toxin and E. coli Heat-Labile Enterotoxin. J. Am. Chem. Soc. 2002, 124, 8818–8824. [Google Scholar] [CrossRef] [PubMed]
- Jayalakshmi, V.; Krishna, N. Complete Relaxation and Conformational Exchange Matrix (CORCEMA) Analysis of Intermolecular Saturation Transfer Effects in Reversibly Forming Ligand–Receptor Complexes. J. Magn. Reson. 2002, 155, 106–118. [Google Scholar] [CrossRef] [PubMed]
Experimental Time | Protein Amount | |
---|---|---|
IL-STD NMR | 2 h | 0.3 mg |
ILOE | 88 h (ca. 3.5 days) | 1.8 mg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monaco, S.; Ramírez-Cárdenas, J.; Carmona, A.T.; Robina, I.; Angulo, J. Inter-Ligand STD NMR: An Efficient 1D NMR Approach to Probe Relative Orientation of Ligands in a Multi-Subsite Protein Binding Pocket. Pharmaceuticals 2022, 15, 1030. https://doi.org/10.3390/ph15081030
Monaco S, Ramírez-Cárdenas J, Carmona AT, Robina I, Angulo J. Inter-Ligand STD NMR: An Efficient 1D NMR Approach to Probe Relative Orientation of Ligands in a Multi-Subsite Protein Binding Pocket. Pharmaceuticals. 2022; 15(8):1030. https://doi.org/10.3390/ph15081030
Chicago/Turabian StyleMonaco, Serena, Jonathan Ramírez-Cárdenas, Ana Teresa Carmona, Inmaculada Robina, and Jesus Angulo. 2022. "Inter-Ligand STD NMR: An Efficient 1D NMR Approach to Probe Relative Orientation of Ligands in a Multi-Subsite Protein Binding Pocket" Pharmaceuticals 15, no. 8: 1030. https://doi.org/10.3390/ph15081030
APA StyleMonaco, S., Ramírez-Cárdenas, J., Carmona, A. T., Robina, I., & Angulo, J. (2022). Inter-Ligand STD NMR: An Efficient 1D NMR Approach to Probe Relative Orientation of Ligands in a Multi-Subsite Protein Binding Pocket. Pharmaceuticals, 15(8), 1030. https://doi.org/10.3390/ph15081030