Adenine Combined with Cisplatin Promotes Anticancer Activity against Hepatocellular Cancer Cells through AMPK-Mediated p53/p21 and p38 MAPK Cascades
<p>Inhibitory effects of adenine, cisplatin, and their combination on cell viability of HCC cells. (<b>A</b>,<b>B</b>) Cells were treated with adenine or cisplatin alone at the indicated concentrations for 24 h, or (<b>C</b>) treated with 40 µM cisplatin alone or 40 µM cisplatin combined with adenine at the indicated concentrations for 24 h, and then subjected to cell viability assessment using SRB assay. Cell viability is presented as mean ± SD. Statistics analysis was carried out by three independent experiments. *, **, and ***, <span class="html-italic">p</span> < 0.05, 0.01, and 0.001 as compared to control; <span class="html-italic">a</span>, <span class="html-italic">p</span> < 0.05 as compare to control; <span class="html-italic">b</span> and <span class="html-italic">c</span>, <span class="html-italic">p</span> < 0.05 and 0.01 as compared to cisplatin alone.</p> "> Figure 2
<p>Adenine promoted cisplatin-induced apoptosis of HCC cells. Cells were treated with cisplatin (CDDP), adenine, or their combination for 24 h and then subjected to (<b>A</b>) cell cycle distribution assay or (<b>B</b>) apoptosis assay using Annexin V-PI staining. Cell cycle phase ratios are presented as mean ± SD. <span class="html-italic">a</span>, <span class="html-italic">p</span> < 0.05 as compared to the control; <span class="html-italic">b</span>, <span class="html-italic">p</span> < 0.05 as compared to cisplatin alone.</p> "> Figure 3
<p>Adenine triggered AMPK activation and enhanced cisplatin-induced p53/p21 expression in HCC cells. Cells were treated with cisplatin (CDDP), adenine, or their combination for 24 h and then subjected to immunodetection of the AMPK and p53 cascade by Western blotting. The signals in Western blots were semi-quantitated by densitometric analysis using β-actin as an internal control. Quantitative data are presented as mean ± SD. <span class="html-italic">a</span>, <span class="html-italic">p</span> < 0.05 as compared to the control; <span class="html-italic">b</span>, <span class="html-italic">p</span> < 0.05 as compared to cisplatin alone.</p> "> Figure 4
<p>Adenine reduced Bcl-2 expression and promoted the cisplatin-induced apoptotic cascade in HCC cells. Cells were treated with cisplatin (CDDP), adenine, or their combination for 24 h and then subjected to immunodetection of the Bcl-2 and apoptotic cascade by using Western blotting. The signals in Western blots were semi-quantitated by densitometric analysis using β-actin as an internal control. Quantitative data are presented as mean ± SD. <span class="html-italic">a</span>, <span class="html-italic">p <</span> 0.05 as compared to the control; <span class="html-italic">b</span>, <span class="html-italic">p <</span> 0.05 as compared to cisplatin alone.</p> "> Figure 5
<p>Adenine synergized p53-mediated pro-apoptotic gene expression in HCC cells in response to cisplatin by AMPK. (<b>A</b>) Cells were treated with cisplatin (CDDP), adenine, or their combination for 6 h and then subjected to qPCR analysis for assessing gene expression. (<b>B</b>,<b>C</b>) Cells were transfected with siControl or siAMPK for 72 h, treated with CDDP, adenine, or their combination for 6 h, and then subjected to (<b>B</b>) immunodetection of AMPK or (<b>C</b>) qPCR analysis for assessing gene expression. **, <span class="html-italic">p <</span> 0.01 as compared to control; #, <span class="html-italic">p <</span> 0.05 as compared to CDDP alone; &, <span class="html-italic">p <</span> 0.05 as compared to CDDP + ADE.</p> "> Figure 6
<p>Involvement of AMPK-mediated p38 MAPK activation in combination of adenine and cisplatin-induced apoptosis of HCC cells. (<b>A</b>) Cells were transfected with siControl or siAMPK for 72 h, treated with combination of adenine and cisplatin, then subjected to immunodetection of p38 MAPK and Bax. (<b>B</b>,<b>C</b>) Cells were transfected with siAMPK for 72 h or pretreated with BIRB-796 for 2 h, treated with combination of adenine and cisplatin, and then subjected to apoptosis assay using Annexin V-PI staining. * and **, <span class="html-italic">p</span> < 0.05 and 0.01 as compared to control; #, and ##, <span class="html-italic">p</span> < 0.05 and 0.01 as compared to CDDP alone; & and &&, <span class="html-italic">p</span> < 0.05 and 0.01 as compared to CDDP + ADE; <span class="html-italic">a</span>, <span class="html-italic">p</span> < 0.05 as compared to the control; <span class="html-italic">b</span>, <span class="html-italic">p</span> < 0.05 as compared to adenine combined with cisplatin.</p> "> Figure 7
<p>Proposed adjuvant activity of adenine on cisplatin-induced apoptosis of HCC cells. Our findings demonstrate that adenine induces activation of AMPK and p38 and increases pro-apoptotic Bax, while downregulating anti-apoptotic Bcl-2 and mTOR. Adenine also synergistically promotes p53/p21/PUMA axis-mediated apoptosis in response to cisplatin.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Inhibitory Effects of Adenine, Cisplatin, and Their Combination on Cell Viability of HCC Cells
2.2. Adenine Promotes the Cisplatin-Induced S Phase Arrest and Apoptosis of HCC Cells
2.3. The Combination of Adenine and Cisplatin Jointly Triggers the AMPK/p53/p21 Cascade in HCC Cells
2.4. The Combination of Adenine and Cisplatin Jointly Triggers the Apoptotic Cascade in HCC Cells
2.5. Adenine in Combination with Cisplatin Jointly Induces Pro-Apoptotic and Suppresses Anti-Apoptotic Gene Expression in HCC Cells through AMPK
2.6. Combination of Adenine and Cisplatin Synergistically Reduced Cell Viability Attributing to AMPK-Mediated p38 MAPK Activation in HCC Cells
3. Discussion
4. Materials and Methods
4.1. Reagents and Antibodies
4.2. Cell Culture and Treatments
4.3. In Vitro Cytotoxicity Assessment
4.4. Cell Cycle Distribution and Apoptosis Assay
4.5. Protein Extraction and Western Blotting
4.6. Knockdown of AMPKα Expression
4.7. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (qPCR)
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, K.; Kokudo, N.; Makuuchi, M.; Izumi, N.; Ichida, T.; Kudo, M.; Ku, Y.; Sakamoto, M.; Nakashima, O.; Matsui, O.; et al. Comparison of resection and ablation for hepatocellular carcinoma: A cohort study based on a Japanese nationwide survey. J. Hepatol. 2013, 58, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.M.; Wang, W.; Jiang, Y.Y.; Feng, J. Patterns of Comorbidity in Hepatocellular Carcinoma: A Network Perspective. Int. J. Environ. Res. Public Health 2020, 17, 3108. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, X.; Fu, B.; Nian, Z.; Qian, Y.; Sun, R.; Tian, Z.; Wei, H. Hepatectomy promotes recurrence of liver cancer by enhancing IL-11-STAT3 signaling. EBioMedicine 2019, 46, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Roche, B.; Coilly, A.; Duclos-Vallee, J.C.; Samuel, D. The impact of treatment of hepatitis C with DAAs on the occurrence of HCC. Liver Int. 2018, 38 (Suppl. 1), 139–145. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, M.; Morizane, C.; Ueno, M.; Okusaka, T.; Ishii, H.; Furuse, J. Chemotherapy for hepatocellular carcinoma: Current status and future perspectives. Jpn. J. Clin. Oncol. 2018, 48, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Cusimano, A.; Soresi, M.; Montalto, G.; Augello, G.; Emma, M.R.; Azzolina, A.; Cervello, M.; Giannitrapani, L. Hepatocellular Carcinoma: A Difficult Cancer to Treat. Crit. Rev. Oncog. 2021, 26, 11–25. [Google Scholar] [CrossRef]
- Jain, A.; Jahagirdar, D.; Nilendu, P.; Sharma, N.K. Molecular approaches to potentiate cisplatin responsiveness in carcinoma therapeutics. Expert Rev. Anticancer Ther. 2017, 17, 815–825. [Google Scholar] [CrossRef]
- Huang, B.P.; Lin, C.H.; Chen, H.M.; Lin, J.T.; Cheng, Y.F.; Kao, S.H. AMPK activation inhibits expression of proinflammatory mediators through downregulation of PI3K/p38 MAPK and NF-kappaB signaling in murine macrophages. DNA Cell Biol. 2015, 34, 133–141. [Google Scholar] [CrossRef]
- Chen, S.Y.; Lin, C.H.; Lin, J.T.; Cheng, Y.F.; Chen, H.M.; Kao, S.H. Adenine causes cell cycle arrest and autophagy of chronic myelogenous leukemia K562 cells via AMP-activated protein kinase signaling. Oncol. Lett. 2017, 14, 5575–5580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, N.X.Y.; Kaczmarek, A.; Hoque, A.; Davie, E.; Ngoei, K.R.W.; Morrison, K.R.; Smiles, W.J.; Forte, G.M.; Wang, T.; Lie, S.; et al. mTORC1 directly inhibits AMPK to promote cell proliferation under nutrient stress. Nat. Metab. 2020, 2, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y. AMPK and Autophagy. Adv. Exp. Med. Biol. 2019, 1206, 85–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, B.; Zhou, J.; Wu, X. Propofol activates AMPK to inhibit the growth of HepG2 cells in vitro and hepatocarcinogenesis in xenograft mouse tumor models by inducing autophagy. J. Gastrointest. Oncol. 2020, 11, 1322–1332. [Google Scholar] [CrossRef]
- Cho, S.Y.; Lee, H.J.; Lee, H.J.; Jung, D.B.; Kim, H.; Sohn, E.J.; Kim, B.; Jung, J.H.; Kwon, B.M.; Kim, S.H. Activation of AMP-Activated Protein Kinase alpha and Extracelluar Signal-Regulated Kinase Mediates CB-PIC-Induced Apoptosis in Hypoxic SW620 Colorectal Cancer Cells. Evid. Based Complement Altern. Med. 2013, 2013, 974313. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Lu, S.; Kivlin, R.; Wallin, B.; Card, E.; Bagdasarian, A.; Tamakloe, T.; Chu, W.M.; Guan, K.L.; Wan, Y. AMP-activated protein kinase contributes to UV- and H2O2-induced apoptosis in human skin keratinocytes. J. Biol. Chem. 2008, 283, 28897–28908. [Google Scholar] [CrossRef] [Green Version]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.W.; Lin, Y.C.; Hung, C.H.; Chen, H.M.; Lin, J.T.; Wang, C.J.; Kao, S.H. Adenine Inhibits the Invasive Potential of DLD-1 Human Colorectal Cancer Cell via the AMPK/FAK Axis. Pharmaceuticals 2021, 14, 860. [Google Scholar] [CrossRef]
- Amin, S.; Lux, A.; O’Callaghan, F. The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth. Br. J. Clin. Pharmacol. 2019, 85, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Liu, H.; Chen, Y.; Zhu, C.; Fang, W.; Yu, Z.; Mao, W.; Xiang, J.; Han, Y.; Chen, Z.; et al. Long-term Efficacy of Neoadjuvant Chemoradiotherapy Plus Surgery for the Treatment of Locally Advanced Esophageal Squamous Cell Carcinoma: The NEOCRTEC5010 Randomized Clinical Trial. JAMA Surg. 2021, 156, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Naftaly, M.; Friedman, S.L. Current status of novel antifibrotic therapies in patients with chronic liver disease. Therap. Adv. Gastroenterol. 2011, 4, 391–417. [Google Scholar] [CrossRef] [PubMed]
- Wick, G.; Grundtman, C.; Mayerl, C.; Wimpissinger, T.F.; Feichtinger, J.; Zelger, B.; Sgonc, R.; Wolfram, D. The immunology of fibrosis. Annu. Rev. Immunol. 2013, 31, 107–135. [Google Scholar] [CrossRef] [Green Version]
- Wardhani, B.W.K.; Sundari, N.; Tjandrawinata, R.R.; Jusuf, A.A.; Soetikno, V.; Louisa, M. Antifibrotic Activity of Phaleria macrocarpa Extract in Rat Liver-fibrosis Model: Focus on Oxidative Stress Markers, TGF-β1 and MMP-13. Open Access Maced. J. Med. Sci. 2020, 8, 555–562. [Google Scholar] [CrossRef]
- Nelson, D.R.; Hrout, A.A.; Alzahmi, A.S.; Chaiboonchoe, A.; Amin, A.; Salehi-Ashtiani, K. Molecular Mechanisms behind Safranal’s Toxicity to HepG2 Cells from Dual Omics. Antioxidants 2022, 11, 1125. [Google Scholar] [CrossRef]
- Xie, Z.; Zhong, C.; Shen, J.; Jia, Y.; Duan, S. LINC00963: A potential cancer diagnostic and therapeutic target. Biomed Pharm. 2022, 150, 113019. [Google Scholar] [CrossRef] [PubMed]
- Su, W.W.; Huang, J.Y.; Chen, H.M.; Lin, J.T.; Kao, S.H. Adenine inhibits growth of hepatocellular carcinoma cells via AMPK-mediated S phase arrest and apoptotic cascade. Int. J. Med. Sci. 2020, 17, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M.; Ladilov, Y. Emerging Role of cAMP/AMPK Signaling. Cells 2022, 11, 308. [Google Scholar] [CrossRef]
- Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011, 13, 1016–1023. [Google Scholar] [CrossRef]
- Hu, C.; Cao, Y.; Li, P.; Tang, X.; Yang, M.; Gu, S.; Xiong, K.; Li, T.; Xiao, T. Oleanolic Acid Induces Autophagy and Apoptosis via the AMPK-mTOR Signaling Pathway in Colon Cancer. J. Oncol. 2021, 2021, 8281718. [Google Scholar] [CrossRef]
- Wang, K. Molecular mechanisms of hepatic apoptosis regulated by nuclear factors. Cell Signal. 2015, 27, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, S.K.; Feliciano, C.S.; Najmabadi, F.; Haegebarth, A.; Kandel, E.S.; Tyner, A.L.; Gartel, A.L. Constitutive expression of E2F-1 leads to p21-dependent cell cycle arrest in S phase of the cell cycle. Oncogene 2004, 23, 4173–4176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.D.; Fang, L.; Yu, H.Q.; Zhang, J.; Lin, X.T.; Liu, X.Y.; Wu, D.; Li, G.X.; Huang, D.; Zhang, Y.J.; et al. p53 haploinsufficiency and increased mTOR signalling define a subset of aggressive hepatocellular carcinoma. J. Hepatol. 2021, 74, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Hwang, J.T.; Kwon, D.Y.; Surh, Y.J.; Park, O.J. Induction of apoptosis by quercetin is mediated through AMPKalpha1/ASK1/p38 pathway. Cancer Lett. 2010, 292, 228–236. [Google Scholar] [CrossRef]
- Kim, G.T.; Lee, S.H.; Kim, J.I.; Kim, Y.M. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int. J. Mol. Med. 2014, 33, 863–869. [Google Scholar] [CrossRef] [Green Version]
- Gomes, S.; Bosco, B.; Loureiro, J.B.; Ramos, H.; Raimundo, L.; Soares, J.; Nazareth, N.; Barcherini, V.; Domingues, L.; Oliveira, C.; et al. SLMP53-2 Restores Wild-Type-Like Function to Mutant p53 through Hsp70: Promising Activity in Hepatocellular Carcinoma. Cancers 2019, 11, 1151. [Google Scholar] [CrossRef] [Green Version]
- Sonntag, R.; Gassler, N.; Bangen, J.M.; Trautwein, C.; Liedtke, C. Pro-apoptotic Sorafenib signaling in murine hepatocytes depends on malignancy and is associated with PUMA expression in vitro and in vivo. Cell Death Dis. 2014, 5, e1030. [Google Scholar] [CrossRef]
- Ju, S.M.; Bae, J.S.; Jeon, B.H. AMP-activated protein kinase contributes to ROS-mediated p53 activation in cisplatin-induced nephrotoxicity. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 6691–6700. [Google Scholar] [CrossRef]
- Bertoli, C.; Skotheim, J.M.; de Bruin, R.A. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 2013, 14, 518–528. [Google Scholar] [CrossRef] [Green Version]
- Erlacher, M.; Labi, V.; Manzl, C.; Bock, G.; Tzankov, A.; Hacker, G.; Michalak, E.; Strasser, A.; Villunger, A. Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J. Exp. Med. 2006, 203, 2939–2951. [Google Scholar] [CrossRef] [Green Version]
- Villunger, A.; Michalak, E.M.; Coultas, L.; Mullauer, F.; Bock, G.; Ausserlechner, M.J.; Adams, J.M.; Strasser, A. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003, 302, 1036–1038. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Banerjee, S.; Acosta, E.P.; Lillard, J.W.; Singh, R. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget 2017, 8, 17216–17228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaitanya, G.V.; Steven, A.J.; Babu, P.P. PARP-1 cleavage fragments: Signatures of cell-death proteases in neurodegeneration. Cell Commun. Signal. 2010, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, E.T.; Pardal, M.A.; Pereira, E.; Monteiro, J.F.; Certal, A.C.; Oliveira, P.J. H9c2(2-1)-based sulforhodamine B assay as a possible alternative in vitro platform to investigate effluent and metals toxicity on fish. Chemosphere 2021, 275, 130009. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhu, S.; Chen, P.; Hou, W.; Wen, Q.; Liu, J.; Xie, Y.; Liu, J.; Klionsky, D.J.; Kroemer, G.; et al. AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System Xc(-) Activity. Curr. Biol. 2018, 28, 2388–2399.e2385. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.-Y.; Lin, Y.-C.; Chen, H.-M.; Lin, J.-T.; Kao, S.-H. Adenine Combined with Cisplatin Promotes Anticancer Activity against Hepatocellular Cancer Cells through AMPK-Mediated p53/p21 and p38 MAPK Cascades. Pharmaceuticals 2022, 15, 795. https://doi.org/10.3390/ph15070795
Huang J-Y, Lin Y-C, Chen H-M, Lin J-T, Kao S-H. Adenine Combined with Cisplatin Promotes Anticancer Activity against Hepatocellular Cancer Cells through AMPK-Mediated p53/p21 and p38 MAPK Cascades. Pharmaceuticals. 2022; 15(7):795. https://doi.org/10.3390/ph15070795
Chicago/Turabian StyleHuang, Jhen-Yu, You-Cian Lin, Han-Min Chen, Jiun-Tsai Lin, and Shao-Hsuan Kao. 2022. "Adenine Combined with Cisplatin Promotes Anticancer Activity against Hepatocellular Cancer Cells through AMPK-Mediated p53/p21 and p38 MAPK Cascades" Pharmaceuticals 15, no. 7: 795. https://doi.org/10.3390/ph15070795
APA StyleHuang, J.-Y., Lin, Y.-C., Chen, H.-M., Lin, J.-T., & Kao, S.-H. (2022). Adenine Combined with Cisplatin Promotes Anticancer Activity against Hepatocellular Cancer Cells through AMPK-Mediated p53/p21 and p38 MAPK Cascades. Pharmaceuticals, 15(7), 795. https://doi.org/10.3390/ph15070795