Transfer Investigations of Lipophilic Drugs from Lipid Nanoemulsions to Lipophilic Acceptors: Contributing Effects of Cholesteryl Esters and Albumin as Acceptor Structures
<p>Particle size (represented as bars, all values <span class="html-italic">n</span> = 3 measurements ± SD) and lipid concentration (%) as determined by DSC (respective values above bars) of the different lipid-containing hydrogel bead dispersions utilized as acceptors (Acc.) in the respective transfer experiments. Further abbreviations: FFB—fenofibrate, RA—retinyl acetate, ORL—orlistat.</p> "> Figure 2
<p>DSC curves of (<b>a</b>) cholesteryl nonanoate bulk material, (<b>b</b>) nanodispersions of pure cholesteryl nonanoate (CN), mixed cholesteryl nonanoate and trimyristin (CNTM), and the CNTM dispersion incorporated in hydrogel particles (CNTM in GP). The insert shows the transitions in the upper temperature range at a higher magnification. Further abbreviations: sm—smectic, ch—cholesteric, iso—isotropic melt. Scan rate: 5 K/min.</p> "> Figure 3
<p>SAXS patterns of different nanodispersions and hydrogel beads at 20 °C. The values state the peak positions (q) upon which the calculation of the d-spacings was based. Abbreviations: CN—cholesteryl nonanoate, CNTM—cholesteryl nonanoate–trimyristin, GP—gel particle.</p> "> Figure 4
<p>Cryo-SEM cross-sections of hydrogel particles. (<b>a</b>) Pure crosslinked alginate matrix. (<b>b</b>) Hydrogel particle containing mixed cholesteryl nonanoate–trimyristin dispersion.</p> "> Figure 5
<p>Drug transfer into CNTM-containing hydrogel beads. Each value represents mean ± SD (<span class="html-italic">n</span> = 3). Abbreviations: FFB—fenofibrate, RA—retinyl acetate, ORL—orlistat.</p> "> Figure 6
<p>(<b>a</b>) Crystallization temperatures (T<sub>cryst.</sub>) of unloaded trimyristin emulsion (control) and fenofibrate-containing emulsion (FFB), as well as the change of T<sub>cryst.</sub> (ΔT<sub>cryst.</sub>) within 24 h. (<b>b</b>) Transferred percentage of fenofibrate (FFB), retinyl acetate (RA), and orlistat (ORL) to the BSA fraction.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of Donor and Acceptor Particles
2.1.1. Particle Sizes
2.1.2. Drug Load of Donor Emulsions
2.1.3. Determination of Lipid Content
2.1.4. Structure Investigations
2.2. Investigation of Drug Transfer
2.2.1. Transfer into CNTM-Containing Hydrogel Beads as Acceptor
2.2.2. Bovine Serum Albumin (BSA) as Acceptor
3. Materials and Methods
3.1. Materials
3.2. Preparation of Donor and Acceptor Lipid Nanodispersions
3.3. Lipid Quantification via High Performance Liquid Chromatography
3.4. Preparation of Lipid-Containing Alginate Beads
3.5. Particle Size Analysis
3.6. Differential Scanning Calorimetry
3.7. Cryo-SEM
3.8. X-ray Scattering
3.9. Investigation of Drug Transfer
3.9.1. CNTM-Containing Hydrogel Beads as Acceptor
3.9.2. Albumin Solution as Acceptor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bunjes, H. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J. Pharm. Pharmacol. 2010, 62, 1637–1645. [Google Scholar] [CrossRef]
- Fahr, A.; Liu, X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin. Drug Deliv. 2007, 4, 403–416. [Google Scholar] [CrossRef]
- Kuntsche, J.; Koch, M.H.J.; Fahr, A.; Bunjes, H. Supercooled smectic nanoparticles: Influence of the matrix composition and in vitro cytotoxicity. Eur. J. Pharm. Sci. 2009, 38, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Angelova, A.; Garamus, V.M.; Angelov, B.; Tian, Z.; Li, Y.; Zou, A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv. Colloid Interface Sci. 2017, 249, 331–345. [Google Scholar] [CrossRef]
- Shen, J.; Burgess, D.J. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: Recent developments and challenges. Drug. Deliv. Transl. Res. 2013, 3, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Landry, F.B.; Bazile, D.V.; Spenlehauer, G.; Veillard, M.; Kreuter, J. Release of the fluorescent marker Prodan® from poly(D,L-lactic acid) nanoparticles coated with albumin or polyvinyl alcohol in model digestive fluids (USP XXII). J. Control. Release 1997, 44, 227–236. [Google Scholar] [CrossRef]
- Washington, C.; Evans, K. Release rate measurements of model hydrophobic solutes hydrophobic solutes from submicron triglyceride emulsions. J. Control. Release 1994, 33, 383–390. [Google Scholar] [CrossRef]
- Kontoyannis, C.G.; Douroumis, D. Release study of drugs from liposomic dispersions using differential pulse polarography. Anal. Chim. Acta 2001, 449, 135–141. [Google Scholar] [CrossRef]
- Magenheim, B.; Levy, M.Y.; Benita, S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers- ultrafiltration technique at low pressure. Int. J. Pharm. 1993, 94, 115–123. [Google Scholar] [CrossRef]
- Danhier, F.; Lecouturier, N.; Vroman, B.; Jérôme, C.; Marchand-Brynaert, J.; Feron, O.; Préat, V. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J. Control. Release 2009, 133, 11–17. [Google Scholar] [CrossRef]
- Levy, M.Y.; Benita, S. Drug release from submicronized o/w emulsion: A new in vitro kinetic evaluation model. Int. J. Pharm. 1990, 66, 29–37. [Google Scholar] [CrossRef]
- Chidambaram, N.; Burgess, D.J. A novel in vitro release method for submicron-sized dispersed systems. AAPS PharmSci 1999, 1, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriksen, I.; Sande, S.A.; Smistad, G.; Ågren, T.; Karlsen, J. In vitro evaluation of drug release kinetics from liposomes by fractional dialysis. Int. J. Pharm. 1995, 119, 231–238. [Google Scholar] [CrossRef]
- Bhardwaj, U.; Burgess, D.J. A novel USP apparatus 4 based release testing method for dispersed systems. Int. J. Pharm. 2010, 388, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Salmela, L.; Washington, C. A continuous flow method for estimation of drug release rates from emulsion formulations. Int. J. Pharm. 2014, 472, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Wallace, S.J.; Li, J.; Nation, R.L.; Boyd, B.J. Drug release from nanomedicines: Selection of appropriate encapsulation and release methodology. Drug. Deliv. Transl. Res. 2012, 2, 284–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Washington, C. Drug release from microdisperse systems: A critical review. Int. J. Pharm. 1990, 58, 1–12. [Google Scholar] [CrossRef]
- Washington, C.; Koosha, F. Drug release from microparticulates; deconvolution of measurement errors. Int. J. Pharm. 1990, 59, 79–82. [Google Scholar] [CrossRef]
- D’Souza, S.S.; DeLuca, P.P. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm. Res. 2006, 23, 460–474. [Google Scholar] [CrossRef]
- Petersen, S.; Fahr, A.; Bunjes, H. Flow cytometry as a new approach to investigate drug transfer between lipid particles. Mol. Pharm. 2010, 7, 350–363. [Google Scholar] [CrossRef]
- Hinna, A.; Steiniger, F.; Hupfeld, S.; Brandl, M.; Kuntsche, J. Asymmetrical flow field-flow fractionation with on-line detection for drug transfer studies: A feasibility study. Anal. Bioanal. Chem. 2014, 406, 7827–7839. [Google Scholar] [CrossRef] [PubMed]
- Roese, E.; Bunjes, H. Drug release studies from lipid nanoparticles in physiological media by a new DSC method. J. Control. Release 2017, 256, 92–100. [Google Scholar] [CrossRef]
- Anderson, N.L.; Anderson, N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell. Proteom. 2002, 1, 845–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasan, K.M.; Cassidy, G.M. Role of plasma lipoproteins in modifying the biological activity of hydrophobic drugs. J. Pharm. Sci. 1998, 87, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Decker, C.; Steiniger, F.; Fahr, A. Transfer of a lipophilic drug (temoporfin) between small unilamellar liposomes and human plasma proteins: Influence of membrane composition on vesicle integrity and release characteristics. J. Liposome Res. 2013, 23, 154–165. [Google Scholar] [CrossRef]
- Holzschuh, S.; Kaeß, K.; Bossa, G.V.; Decker, C.; Fahr, A.; May, S. Investigations of the influence of liposome composition on vesicle stability and drug transfer in human plasma: A transfer study. J. Liposome Res. 2018, 28, 22–34. [Google Scholar] [CrossRef]
- Wasan, K.M.; Brazeau, G.A.; Keyhani, A.; Hayman, A.C.; Lopez-Berestein, G. Roles of liposome composition and temperature in distribution of amphotericin B in serum lipoproteins. Antimicrob. Agents Chemother. 1993, 37, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Gurusinghe, A.; de Niese, M.; Renaud, J.F.; Austin, L. The binding of lipoproteins to human muscle cells: Binding and uptake of LDL, HDL, and alpha-tocopherol. Muscle Nerve 1988, 11, 1231–1239. [Google Scholar] [CrossRef]
- Knoke, S.; Bunjes, H. Transfer of lipophilic drugs from nanoemulsions into lipid-containing alginate microspheres. Pharmaceutics 2021, 13, 173. [Google Scholar] [CrossRef]
- Deckelbaum, R.J.; Shipley, G.G.; Small, D.M. Structure and interactions of lipids in human plasma low density lipoproteins. J. Biol. Chem. 1977, 252, 744–754. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Bunjes, H.; Unruh, T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv. Drug Delivery Rev. 2007, 59, 379–402. [Google Scholar] [CrossRef]
- Strasdat, B.; Bunjes, H. Development of a new approach to investigating the drug transfer from colloidal carrier systems applying lipid nanosuspension-containing alginate microbeads as acceptor. Int. J. Pharm. 2015, 489, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, G.S.; Atkinson, D.; Small, D.M. Physical properties of cholesteryl esters. Prog. Lipid Res. 1984, 23, 135–167. [Google Scholar] [CrossRef]
- Kuntsche, J.; Koch, M.H.J.; Steiniger, F.; Bunjes, H. Influence of stabilizer systems on the properties and phase behavior of supercooled smectic nanoparticles. J. Colloid Interface Sci. 2010, 350, 229–239. [Google Scholar] [CrossRef]
- Kumar, V.; Butcher, S.J.; Öörni, K.; Engelhardt, P.; Heikkonen, J.; Kaski, K.; Ala-Korpela, M.; Kovanen, P.T. Three-dimensional cryoEM reconstruction of native LDL particles to 16Å resolution at physiological body temperature. PLoS ONE 2011, 6, e18841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reshetov, V.; Zorin, V.; Siupa, A.; D’Hallewin, M.-A.; Guillemin, F.; Bezdetnaya, L. Interaction of liposomal formulations of meta-tetra(hydroxyphenyl)chlorin (temoporfin) with serum proteins: Protein binding and liposome destruction. Photochem. Photobiol. 2012, 88, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Tiss, A.; Lengsfeld, H.; Hadváry, P.; Cagna, A.; Verger, R. Transfer of orlistat through oil-water interfaces. Chem. Phys. Lipids 2002, 19, 41–49. [Google Scholar] [CrossRef]
- Pas, T.; Struyf, A.; Vergauwen, B.; van den Mooter, G. Ability of gelatin and BSA to stabilize the supersaturated state of poorly soluble drugs. Eur. J. Pharm. Biopharm. 2018, 131, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Era, S.; Ozaki, Y.; Sogami, M.; Hayashi, T.; Murakami, M. Conformational changes in seventeen cystine disulfide bridges of bovine serum albumin proved by Raman spectroscopy. FEBS Lett. 1997, 417, 375–378. [Google Scholar] [CrossRef] [Green Version]
- Majorek, K.A.; Porebski, P.J.; Dayal, A.; Zimmerman, M.D.; Jablonska, K.; Stewart, A.J.; Chruszcz, M.; Minor, W. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol. 2012, 52, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nanodispersion | Z-Average (nm) | PdI | Lipid Content (%) DSC | Lipid Content (%) HPLC | Drug Load Related to Trimyristin (%) |
---|---|---|---|---|---|
Trimyristin donor emulsions | |||||
FFB donor | 126 | 0.09 | 9.66 | - | 2.89 |
RA donor | 113 | 0.10 | 9.97 | - | 2.94 |
ORL donor | 115 | 0.09 | 9.36 | - | 3 |
Acceptor dispersions (n = 3 batches ± SD) | |||||
Trimyristin (TM) | 118 ± 4 | <0.10 | 9.60 ± 1.01 | 9.53 ± 1.07 | - |
Cholesteryl nonanoate (CN) | 133 ± 0.8 | <0.11 | - | 9.08 ± 0.16 | - |
Mixed trimyristin– cholesteryl nonanoate (CNTM) | 132 ± 0.2 | <0.10 | 8.91 ± 0.30 | 9.03 ± 0.16 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knoke, S.; Bunjes, H. Transfer Investigations of Lipophilic Drugs from Lipid Nanoemulsions to Lipophilic Acceptors: Contributing Effects of Cholesteryl Esters and Albumin as Acceptor Structures. Pharmaceuticals 2021, 14, 865. https://doi.org/10.3390/ph14090865
Knoke S, Bunjes H. Transfer Investigations of Lipophilic Drugs from Lipid Nanoemulsions to Lipophilic Acceptors: Contributing Effects of Cholesteryl Esters and Albumin as Acceptor Structures. Pharmaceuticals. 2021; 14(9):865. https://doi.org/10.3390/ph14090865
Chicago/Turabian StyleKnoke, Sabrina, and Heike Bunjes. 2021. "Transfer Investigations of Lipophilic Drugs from Lipid Nanoemulsions to Lipophilic Acceptors: Contributing Effects of Cholesteryl Esters and Albumin as Acceptor Structures" Pharmaceuticals 14, no. 9: 865. https://doi.org/10.3390/ph14090865
APA StyleKnoke, S., & Bunjes, H. (2021). Transfer Investigations of Lipophilic Drugs from Lipid Nanoemulsions to Lipophilic Acceptors: Contributing Effects of Cholesteryl Esters and Albumin as Acceptor Structures. Pharmaceuticals, 14(9), 865. https://doi.org/10.3390/ph14090865