3,4-Difluorobenzocurcumin Inhibits Vegfc-Vegfr3-Erk Signalling to Block Developmental Lymphangiogenesis in Zebrafish
<p>3,4-Difluorobenzocurcumin treatment inhibits trunk and facial lymphatic development in zebrafish. (<b>A</b>–<b>D</b>) Lateral fluorescent images of 6 dpf <span class="html-italic">Tg(-5.2lyve1b:DsRed2)</span> larvae treated with either 0.1% DMSO (<b>A</b>), 20 μM sunitinib malate (SM, <b>B</b>), 10 μM curcumin (CM, <b>C</b>), or 2.5 μM 3,4-Difluorobenzocurcumin (CDF, <b>D</b>). CDF inhibits lymphatic development in a dose-dependent manner in zebrafish. (<b>E</b>) Quantification of somites with thoracic duct (TD) tissue fragments in 6 dpf <span class="html-italic">Tg(-5.2lyve1b:DsRed2)</span> larvae treated with either 0.1% DMSO (n = 49 larvae), 20 μM SM (n = 51 larvae), 10 μM CM (n = 32 larvae), or CDF at 0.5 μM (n = 34 larvae), 1 μM (n = 37 larvae), 2.5 μM (n = 48 larvae), or 5 μM (n = 46 larvae). (<b>F</b>–<b>H’</b>) Lateral confocal images of 5 dpf <span class="html-italic">Tg(fli1a:nEGFP);Tg(-5.2lyve1b:DsRed2)</span> larvae treated with either 0.1% DMSO (<b>F</b>,<b>F’</b>), 10 μM CRM (<b>G</b>,<b>G’</b>), or 2.5 μM CDF (<b>H</b>,<b>H’</b>). Images (<b>F’</b>–<b>H’)</b> represent the <span class="html-italic">Tg(-5.2lyve1b:DsRed2)</span> expression of images (<b>F</b>–<b>H)</b>. (<b>I,J</b>) Quantification of TD (<b>I</b>) or dorsal longitudinal lymphatic vessel (DLLV, J) nuclei across 9 somites in 5 dpf <span class="html-italic">Tg(fli1a:nEGFP);Tg(-5.2lyve1b:DsRed2)</span> larvae treated with either 0.1% DMSO (n = 20 larvae), 10 μM CM (n = 20 larvae), or 2.5 μM CDF (n = 24 larvae). (<b>K</b>) Quantification of somites with intersegmental vessels (ISVs) in 48 hpf <span class="html-italic">Tg(fli1a:EGFP)</span> embryos treated with either 0.1% DMSO (n = 47 embryos), 20 μM SM (n = 56 embryos), or CDF at 2.5 μM (n = 35 embryos), 5 μM (n = 39 embryos), or 10 μM (n = 27 embryos). CDF at 2.5 μM does not inhibit primary angiogenesis. Representative fluorescent images of graph K can be found in <a href="#app1-pharmaceuticals-14-00614" class="html-app">Figure S2A–E</a>. (<b>L–O’</b>) Lateral confocal images of <span class="html-italic">Tg(fli1a:nEGFP);Tg(-5.2lyve1b:DsRed2)</span> larvae treated with either 0.1% DMSO (<b>L</b>,<b>L’</b>), 20 μM SM (<b>M</b>,<b>M’</b>), 10 μM CM (<b>N</b>,<b>N’</b>), or 2.5 μM CDF (<b>O</b>,<b>O’</b>). CDF at 2.5 μM blocks facial lymphatic development. Images (<b>L’–O’</b>) represent the <span class="html-italic">Tg(-5.2lyve1b:DsRed2)</span> expression of images (<b>L–O</b>). (<b>P</b>–<b>R</b>) Quantification of lateral facial lymphatic (LFL, <b>P</b>), medial facial lymphatic (MFL, <b>Q</b>), or otolithic lymphatic vessel (OLV, <b>R</b>) nuclei in 5 dpf <span class="html-italic">Tg(fli1a:nEGFP);Tg(-5.2lyve1b:DsRed2)</span> larvae treated with either 0.1% DMSO (n = 14 larvae), 20 μM SM (n = 16 larvae), 10 μM CM (n = 14 larvae), or 2.5 μM CDF (n = 15 larvae). Statistical test: Kruskal-Wallis test were conducted for graphs (<b>E</b>,<b>I</b>–<b>K</b>,<b>P</b>–<b>R</b>). PCV: posterior cardinal vein. <span class="html-italic">p</span> ≤ 0.001 (***) and n.s. indicates not significant. Scale bars: 100 μm.</p> "> Figure 2
<p>3,4-Difluorobenzocurcumin treatment inhibits lymphatic migration. (<b>A</b>) Schematic representation of the treatment schedule for larvae in images (<b>B</b>–<b>E’</b>). (<b>B</b>–<b>E’</b>) Lateral confocal images of 3 (1 days post-treatment (dpt), <b>B</b>,<b>B’</b>,<b>D</b>,<b>D’</b>) and 4 (2 dpt, <b>C</b>,<b>C’</b>,<b>E</b>,<b>E’</b>) dpf <span class="html-italic">Tg(fli1a:nEGFP);Tg(-5.2lyve1b:DsRed2)</span> larvae treated from 2.5 dpf with either 0.1% DMSO (<b>B</b>–<b>C’</b>) or 2.5 μM 3,4-Difluorobenzocurcumin (CDF, <b>D</b>-<b>E’</b>). LEC migration is stalled in larvae treated with CDF. Images (<b>B’</b>–<b>E’</b>) represent the <span class="html-italic">Tg(-5.2lyve1b:DsRed2)</span> expression of images (<b>B</b>–<b>E</b>). (<b>F</b>–<b>H</b>) Quantification of parachordal LECs (PL, <b>F</b>), thoracic duct (TD, <b>G</b>) or dorsal longitudinal lymphatic vessel (DLLV, <b>H</b>) nuclei per somite in <span class="html-italic">Tg(fli1a:nEGFP);Tg(-5.2lyve1b:DsRed2)</span> larvae treated with either 0.1% DMSO or 2.5 μM CDF at indicated timepoints (n = 20 embryos/larvae). Statistical test: Kruskal-Wallis test was conducted for graph F and Mann-Whitney test were conducted for graphs G and H. <span class="html-italic">p</span> ≤ 0.001 (***), <span class="html-italic">p</span> ≤ 0.05 (*), n.s. indicates not significant. Scale bars: 100 μm.</p> "> Figure 3
<p>3,4-Difluorobenzocurcumin treatment attenuates VEGFC-induced phosphorylation of ERK in endothelial cells. (<b>A</b>) Western blot analysis of lysates isolated from human dermal lymphatic microvascular endothelial cells (HMVECs) treated with either 0.05% DMSO, 5 μM sunitinib malate (SM), 3,4-Difluorobenzocurcumin (CDF) at indicated concentrations, or 5 μM curcumin (CM) for 2 h and stimulated with vascular endothelial growth factor C (VEGFC) for 20 min (n ≥ 4). Protein levels of pERK1/2, total ERK1/2, pAKT, total AKT, and Tubulin were assessed. CDF treatment results in a dose-dependent reduction of phosphorylated ERK (pERK) level. The full-length blots are presented in <a href="#app1-pharmaceuticals-14-00614" class="html-app">Figure S4</a>. (<b>B</b>–<b>C’</b>) Lateral confocal images of 32 hpf <span class="html-italic">Tg(fli1a:nEGFP)</span> embryos treated with either 0.1% DMSO (<b>B</b>) or 2.5 μM CDF (<b>C</b>) immunostained with anti-pErk (red) and anti-GFP (green) antibodies. CDF blocks phosphorylation of Erk in venous endothelial cells in vivo. Images (<b>B’</b>,<b>C</b>); represent the anti-pErk staining of images (<b>B</b>,<b>C</b>). (<b>D</b>) Quantification of pErk and <span class="html-italic">fli1a:EGFP</span>-positive nuclei per somite in the posterior cardinal vein (PCV) of 32 hpf <span class="html-italic">Tg(fli1a:nEGFP)</span> embryos treated with either 0.1% DMSO (n = 19 embryos) or 2.5 μM CDF (n = 21 embryos). (<b>E</b>) Western blot analysis of lysates isolated from 3 dpf zebrafish larvae treated with either 0.1% DMSO, 20 μM SM, 2 μM PD0325901, CDF at indicated concentrations, or 10 μM CM (n = 4). CDF is not a general inhibitor of Erk phosphorylation. Protein levels of pErk1/2, total Erk1/2, and Actin were assessed. The full-length blots are presented in <a href="#app1-pharmaceuticals-14-00614" class="html-app">Figure S5</a>. Statistical test: Mann-Whitney test was conducted for graph (<b>D</b>). <span class="html-italic">p</span> ≤ 0.001 (***). Scale bar: 50 μm.</p> "> Figure 4
<p>3,4-Difluorobenzocurcumin inhibits pathological phenotypes associated with <span class="html-italic">vegfc</span> overexpression. (<b>A</b>–<b>G’</b>) Lateral confocal images of either a 3 dpf <span class="html-italic">Tg(prox1a:KALTA4,4xUAS-E1B:TagRFP);Tg(fli1a:nEGFP)</span> larva (Non<span class="html-italic">-vegfc-induced</span>) treated with 0.1% DMSO (<b>A</b>,<b>A’</b>), or 3 dpf <span class="html-italic">Tg(prox1a:KALTA4,4xUAS-E1B:TagRFP);Tg(10XUAS:vegfc);Tg(fli1a:nEGFP)</span> larvae (<span class="html-italic">vegfc-induced</span>) treated with either 0.1% DMSO (<b>B</b>,<b>B’</b>), 4 μM SL327 (<b>C</b>,<b>C’</b>), 20 μM sunitinib malate (SM, <b>D</b>,<b>D’</b>), 10 μM curcumin (CM, <b>E</b>,<b>E’</b>), 2,5 μM 3,4-Difluorobenzocurcumin (CDF, <b>F</b>,<b>F’</b>), or 5 μM CDF (<b>G</b>,<b>G’</b>). Pathological vascular phenotypes in <span class="html-italic">vegfc-induced</span> embryos are rescued by CDF treatment. Images (<b>A’</b>–<b>G’</b>) represent the <span class="html-italic">Tg(prox1a:KALTA4,4xUAS-E1B:TagRFP)</span> expression of images (<b>A</b>–<b>G</b>). To avoid the robust <span class="html-italic">prox1a</span> expression in muscle cells, (<b>A’</b>–<b>G’</b>) are maximum projection images of only the z stacks that contain the posterior cardinal vein. Images (<b>B’</b>) (21/22 embryos), (<b>E’</b>) (23/23 embryos) and (<b>F’</b>) (14/20 embryos) show embryos with increased <span class="html-italic">prox1a:KALTA4,4xUAS-E1B:TagRFP</span> expression in venous endothelial cells. This pathological phenotype is rescued in images (<b>C’</b>) (20/20 embryos), (<b>D’</b>) (27/27 embryos) and (<b>G’</b>) (21/24 embryos). (<b>H</b>) Quantification of <span class="html-italic">fli1a:EGFP</span>-positive ECs across 4.5 somites in either 3 dpf <span class="html-italic">non-vegfc-induced</span> treated with 0.1% DMSO (n = 21 embryos) or 3 dpf <span class="html-italic">vegfc-induced</span> larvae treated with either 0.1% DMSO (n = 22 embryos), 4 μM SL327 (n = 20 embryos), 20 μM SM (n = 27 embryos), 10 μM CM (n = 23 embryos), or CDF at 2.5 μM (n = 20 embryos) or 5 μM (n = 24 embryos). PCV: posterior cardinal vein. Statistical test: Kruskal-Wallis test was conducted for graph H. <span class="html-italic">p</span> ≤ 0.001 (***) and n.s. indicates not significant. Scale bar: 100 μm.</p> "> Figure 5
<p>Brief treatment of 3,4-Difluorobenzocurcumin is sufficient to completely inhibit trunk and facial lymphatic development. (<b>A</b>) Schematic representation of the treatment schedule for larvae in images (<b>B</b>–<b>F</b>) and images (<b>I</b>,<b>J</b>). (<b>B</b>–<b>F’</b>) Lateral confocal images of 5 dpf <span class="html-italic">Tg(fli1a:nEGFP);Tg(-5.2lyve1b:DsRed2)</span> larvae either continuously treated with 0.1% DMSO (<b>B</b>,<b>B’</b>), 20 μM sunitinib malate (SM, <b>C</b>,<b>C’</b>) or 2.5 μM 3,4-Difluorobenzocurcumin (CDF, <b>E</b>,<b>E’</b>), or treated for 12 h with 20 μM SM (<b>D</b>,<b>D’</b>) or 2.5 μM CDF (<b>F</b>,<b>F’</b>). 12 h treatment of CDF inhibits trunk lymphatic development. Images (<b>B’</b>–<b>F’</b>) represent the <span class="html-italic">Tg(-5.2lyve1b:DsRed2)</span> expression of images (<b>B</b>–<b>F</b>). (<b>G</b>,<b>H</b>) Quantification of thoracic duct (TD, <b>G</b>) or dorsal longitudinal lymphatic vessel (DLLV, <b>H</b>) nuclei across 9 somites in 5 dpf <span class="html-italic">Tg(fli1a:nEGFP);Tg(-5.2lyve1b:DsRed2)</span> larvae treated with either 0.1% DMSO (n = 19 larvae), 20 μM SM (n = 24 larvae) or 2.5 μM CDF (n = 21 larvae), or treated for 12 h with 20 μM SM (n = 21 larvae) or 2.5 μM CDF (n = 21 larvae). (<b>I</b>–<b>J’</b>) Lateral confocal images of <span class="html-italic">Tg(fli1a:nEGFP);Tg(-5.2lyve1b:DsRed2)</span> larvae treated with either 0.1% DMSO (<b>I</b>,<b>I’</b>) or with 2.5 μM CDF for 12 h, then with 0.1% DMSO up to 5 dpf (<b>J</b>,<b>J’</b>). 12 h treatment of CDF inhibits facial lymphatic development. Images (<b>I’</b>,<b>J’</b>) represent the <span class="html-italic">Tg(-5.2lyve1b:DsRed2)</span> expression of images (<b>I</b>,<b>J</b>). (<b>K</b>–<b>M</b>) Quantification of lateral facial lymphatic (LFL, <b>K</b>, n ≥ 14), medial facial lymphatic (MFL, <b>L</b>, n ≥ 14), or otolithic lymphatic vessel (OLV, <b>M</b>, n ≥ 14) nuclei in 5 dpf <span class="html-italic">Tg(fli1a:nEGFP);Tg(-5.2lyve1b:DsRed2)</span> larvae either continuously treated with 0.1% DMSO (n = 14 larvae) or treated for 12 h with 2.5 μM CDF (n = 15 larvae). Datasets for 0.1% DMSO-treated 5 dpf <span class="html-italic">Tg(fli1a:nEGFP);Tg(-5.2lyve1b:DsRed2)</span> larvae are taken from <a href="#pharmaceuticals-14-00614-f001" class="html-fig">Figure 1</a>P–R. (<b>N</b>–<b>O’</b>) Lateral confocal images of 3 dpf <span class="html-italic">Tg(prox1a:KALTA4,4xUAS-E1B:TagRFP);Tg(10XUAS:vegfc);Tg(fli1a:nEGFP)</span> larvae (<span class="html-italic">vegfc-induced</span>) treated with either 0.1% DMSO (<b>N</b>,<b>N’</b>) or with 5 μM CDF for 12 h, then with 0.1% DMSO up to 3 dpf (<b>O</b>,<b>O’</b>). Pathological vascular phenotypes in <span class="html-italic">vegfc-induced</span> embryos are rescued by 12 h treatment of CDF. Images (<b>N’</b>,<b>O’</b>) represent the <span class="html-italic">Tg(prox1a:KALTA4,4xUAS-E1B:TagRFP)</span> expression of images (<b>N</b>,<b>O</b>). To avoid the robust <span class="html-italic">prox1a</span> expression in muscle cells, (<b>N’</b>,<b>O’</b>) are maximum projection images of only the z stacks that contain the posterior cardinal vein. Image (<b>N’</b>) (21/22 embryos) shows an embryo with increased <span class="html-italic">prox1a:KALTA4,4xUAS-E1B:TagRFP</span> expression in venous endothelial cells. This pathological phenotype is rescued in image (<b>O’</b>) (24/27 embryos). (<b>P</b>) Quantification of <span class="html-italic">fli1a:EGFP</span>-positive ECs across 4.5 somites in either 3 dpf Non<span class="html-italic">-vegfc-induced</span> (n = 21 embryos) or 3 dpf <span class="html-italic">vegfc-induced</span> larvae treated with either 0.1% DMSO (n = 22 embryos), or for 12 h with 5 μM CDF (n = 27 embryos). Datasets for 0.1% DMSO-treated 3 dpf Non<span class="html-italic">-vegfc induced</span> and <span class="html-italic">vegfc-induced</span> larvae are taken from <a href="#pharmaceuticals-14-00614-f004" class="html-fig">Figure 4</a>H. PCV: posterior cardinal vein. Statistical test: Mann-Whitney test were conducted for graph (<b>K</b>–<b>M</b>). Kruskal-Wallis test were conducted for graphs (<b>G</b>,<b>H</b>,<b>P</b>). <span class="html-italic">p</span> ≤ 0.001 (***) and n.s. indicates not significant. Scale bars: 100 μm.</p> ">
Abstract
:1. Introduction
2. Results
2.1. CDF Inhibits Lymphangiogenesis in Zebrafish
2.2. CDF Inhibits Lymphatic and Venous Sprouting and Lymphatic Endothelial Cell Migration in Zebrafish
2.3. CDF Inhibits VEGFC-Induced ERK Signalling in Human Endothelial Cells In Vitro and Zebrafish Endothelial Cells In Vivo
2.4. CDF Rescues Vascular Hyperplasia in a Zebrafish Model of Vegfc-Overexpression
2.5. Brief Treatment of CDF Displays Prolonged Inhibition of Lymphangiogenesis
3. Discussion
4. Materials and Methods
4.1. Zebrafish Maintenance
4.2. Chemical Administration
4.3. Quantification of Angiogenesis and Lymphangiogenesis in Zebrafish
4.4. Alcian Blue Staining
4.5. Cell Culture
4.6. Western Blot and qPCR Analysis
4.7. Immunofluorescence Staining of Phosphorylated Erk in Zebrafish
4.8. Kinase Assay
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrova, T.V.; Koh, G.Y. Biological functions of lymphatic vessels. Science 2020, 369, eaax4063. [Google Scholar] [CrossRef] [PubMed]
- Alitalo, K. The lymphatic vasculature in disease. Nat. Med. 2011, 17, 1371–1380. [Google Scholar] [CrossRef]
- Yamakawa, M.; Doh, S.J.; Santosa, S.M.; Montana, M.; Qin, E.C.; Kong, H.; Han, K.Y.; Yu, C.; Rosenblatt, M.I.; Kazlauskas, A.; et al. Potential lymphangiogenesis therapies: Learning from current antiangiogenesis therapies—A review. Med. Res. Rev. 2018, 38, 1769–1798. [Google Scholar] [CrossRef]
- Oliver, G.; Kipnis, J.; Randolph, G.J.; Harvey, N.L. The Lymphatic Vasculature in the 21st Century: Novel Functional Roles in Homeostasis and Disease. Cell 2020, 182, 270–296. [Google Scholar] [CrossRef]
- Dieterich, L.C.; Detmar, M. Tumor lymphangiogenesis and new drug development. Adv. Drug Deliv. Rev. 2016, 99, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Saif, M.W.; Knost, J.A.; Chiorean, E.G.; Kambhampati, S.R.P.; Yu, D.; Pytowski, B.; Qin, A.; Kauh, J.S.; O’Neil, B.H. Phase 1 study of the anti-vascular endothelial growth factor receptor 3 monoclonal antibody LY3022856/IMC-3C5 in patients with advanced and refractory solid tumors and advanced colorectal cancer. Cancer Chemother. Pharmacol. 2016, 78, 815–824. [Google Scholar] [CrossRef]
- Bottsford-Miller, J.N.; Coleman, R.L.; Sood, A.K. Resistance and Escape from Antiangiogenesis Therapy: Clinical Implications and Future Strategies. J. Clin. Oncol. 2012, 30, 4026–4034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadus, M.C.; Lau, C.; Bikhchandani, J.; Lynch, H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med. 2017, 7, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Sukamtoh, E.; Xiao, H.; Zhang, G. Curcumin inhibits lymphangiogenesis in vitro and in vivo. Mol. Nutr. Food Res. 2015, 59, 2345–2354. [Google Scholar] [CrossRef] [PubMed]
- Da, W.; Zhu, J.; Wang, L.; Sun, Q. Curcumin suppresses lymphatic vessel density in an in vivo human gastric cancer model. Tumor Biol. 2015, 36, 5215–5223. [Google Scholar] [CrossRef]
- Da, W.; Zhang, J.; Zhang, R.; Zhu, J. Curcumin inhibits the lymphangiogenesis of gastric cancer cells by inhibiton of HMGB1/VEGF-D signaling. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419861600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stacker, S.A.; Achen, M.G. Emerging Roles for VEGF-D in Human Disease. Biomolecules 2018, 8, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Zhai, Y.; Heng, X.; Che, F.Y.; Chen, W.; Sun, D.; Zhai, G. Oral bioavailability of curcumin: Problems and advancements. J. Drug Target. 2016, 24, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Padhye, S.; Yang, H.; Jamadar, A.; Cui, Q.C.; Chavan, D.; Dominiak, K.; McKinney, J.; Banerjee, S.; Dou, Q.P.; Sarkar, F.H. New Difluoro Knoevenagel Condensates of Curcumin, Their Schiff Bases and Copper Complexes as Proteasome Inhibitors and Apoptosis Inducers in Cancer Cells. Pharm. Res. 2009, 26, 1874–1880. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Ali, S.; Banerjee, S.; Wang, Z.; Logna, F.; Azmi, A.S.; Kong, D.; Ahmad, A.; Li, Y.; Padhye, S.; et al. Curcumin Analogue CDF Inhibits Pancreatic Tumor Growth by Switching on Suppressor microRNAs and Attenuating EZH2 Expression. Cancer Res. 2012, 72, 335–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luong, D.; Sau, S.; Kesharwani, P.; Iyer, A.K. Polyvalent Folate-Dendrimer-Coated Iron Oxide Theranostic Nanoparticles for Simultaneous Magnetic Resonance Imaging and Precise Cancer Cell Targeting. Biomacromolecules 2017, 18, 1197–1209. [Google Scholar] [CrossRef]
- Gawde, K.A.; Sau, S.; Tatiparti, K.; Kashaw, S.K.; Mehrmohammadi, M.; Azmi, A.S.; Iyer, A.K. Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids Surf. B Biointerfaces 2018, 167, 8–19. [Google Scholar] [CrossRef]
- Roy, S.; Yu, Y.; Padhye, S.B.; Sarkar, F.H.; Majumdar, A.P. Difluorinated-Curcumin (CDF) Restores PTEN Expression in Colon Cancer Cells by Down-Regulating miR-21. PLoS ONE 2013, 8, e68543. [Google Scholar] [CrossRef] [PubMed]
- Tatiparti, K.; Rauf, M.A.; Sau, S.; Iyer, A.K. Carbonic Anhydrase-IX Guided Albumin Nanoparticles for Hypoxia-mediated Triple-Negative Breast Cancer Cell Killing and Imaging of Patient-derived Tumor. Molecules 2020, 25, 2362. [Google Scholar] [CrossRef]
- Hogan, B.M.; Schulte-Merker, S. How to Plumb a Pisces: Understanding Vascular Development and Disease Using Zebrafish Embryos. Dev. Cell 2017, 42, 567–583. [Google Scholar] [CrossRef] [Green Version]
- Mauri, C.; Wang, G.; Schulte-Merker, S. From fish embryos to human patients: Lymphangiogenesis in development and disease. Curr. Opin. Immunol. 2018, 53, 167–172. [Google Scholar] [CrossRef]
- Okuda, K.S.; Hogan, B.M. Endothelial Cell Dynamics in Vascular Development: Insights from Live-Imaging in Zebrafish. Front. Physiol. 2020, 11, 842. [Google Scholar] [CrossRef] [PubMed]
- Astin, J.W.; Jamieson, S.M.; Eng, T.C.; Flores, M.V.; Misa, J.P.; Chien, A.; Crosier, K.E.; Crosier, P.S. An In Vivo Antilymphatic Screen in Zebrafish Identifies Novel Inhibitors of Mammalian Lymphangiogenesis and Lymphatic-Mediated Metastasis. Mol. Cancer Ther. 2014, 13, 2450–2462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Caballero, M.; Blacher, S.; Paupert, J.; Quesada, A.R.; Medina, M.A.; Noël, A. Novel application assigned to toluquinol: Inhibition of lymphangiogenesis by interfering with VEGF-C/VEGFR-3 signalling pathway. Br. J. Pharmacol. 2016, 173, 1966–1987. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; March, M.E.; Gutierrez-Uzquiza, A.; Kao, C.; Seiler, C.; Pinto, E.; Matsuoka, L.S.; Battig, M.R.; Bhoj, E.J.; Wenger, T.L.; et al. ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor. Nat. Med. 2019, 25, 1116–1122. [Google Scholar] [CrossRef]
- Okuda, K.S.; Astin, J.W.; Misa, J.P.; Flores, M.V.; Crosier, K.E.; Crosier, P.S. lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development 2012, 139, 2381–2391. [Google Scholar] [CrossRef] [Green Version]
- Yaniv, K.; Isogai, S.; Castranova, D.; Dye, L.; Hitomi, J.; Weinstein, B.M. Live imaging of lymphatic development in the zebrafish. Nat. Med. 2006, 12, 711–716. [Google Scholar] [CrossRef]
- Kodera, Y.; Katanasaka, Y.; Kitamura, Y.; Tsuda, H.; Nishio, K.; Tamura, T.; Koizumi, F. Sunitinib inhibits lymphatic endothelial cell functions and lymph node metastasis in a breast cancer model through inhibition of vascular endothelial growth factor receptor 3. Breast Cancer Res. 2011, 13, R66. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, M.; Sakurai, H.; Koizumi, K.; Saiki, I. Curcumin inhibits the formation of capillary-like tubes by rat lymphatic endothelial cells. Cancer Lett. 2007, 251, 288–295. [Google Scholar] [CrossRef]
- Koltowska, K.; Lagendijk, A.K.; Pichol-Thievend, C.; Fischer, J.C.; Francois, M.; Ober, E.A.; Yap, A.S.; Hogan, B.M. Vegfc Regulates Bipotential Precursor Division and Prox1 Expression to Promote Lymphatic Identity in Zebrafish. Cell Rep. 2015, 13, 1828–1841. [Google Scholar] [CrossRef] [Green Version]
- Okuda, K.S.; Baek, S.; Hogan, B.M. Visualization and Tools for Analysis of Zebrafish Lymphatic Development. Methods Mol. Biol. 2018, 1846, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Covassin, L.D.; Villefranc, J.A.; Kacergis, M.C.; Weinstein, B.M.; Lawson, N.D. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc. Natl. Acad. Sci. USA 2006, 103, 6554–6559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogan, B.M.; Bos, F.L.; Bussmann, J.; Witte, M.; Chi, N.C.; Duckers, H.J.; Schulte-Merker, S. ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet. 2009, 41, 396–398. [Google Scholar] [CrossRef] [PubMed]
- Villefranc, J.A.; Nicoli, S.; Bentley, K.; Jeltsch, M.; Zarkada, G.; Moore, J.C.; Gerhardt, H.; Alitalo, K.; Lawson, N.D. A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development. Development 2013, 140, 1497–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogan, B.M.; Herpers, R.; Witte, M.; Heloterä, H.; Alitalo, K.; Duckers, H.J.; Schulte-Merker, S. Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries. Development 2009, 136, 4001–4009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Muhl, L.; Padberg, Y.; Dupont, L.; Peterson-Maduro, J.; Stehling, M.; Le Noble, F.; Colige, A.; Betsholtz, C.; Schulte-Merker, S.; et al. Specific fibroblast subpopulations and neuronal structures provide local sources of Vegfc-processing components during zebrafish lymphangiogenesis. Nat. Commun. 2020, 11, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Astin, J.W.; Haggerty, M.J.; Okuda, K.S.; Le Guen, L.; Misa, J.P.; Tromp, A.; Hogan, B.; Crosier, K.E.; Crosier, P.S. Vegfd can compensate for loss of Vegfc in zebrafish facial lymphatic sprouting. Development 2014, 141, 2680–2690. [Google Scholar] [CrossRef] [Green Version]
- Balboa-Beltran, E.; Fernández-Seara, M.J.; Pérez-Muñuzuri, A.; Lago, R.; Garcia-Magan, C.; Couce, M.L.; Sobrino, B.; Amigo, J.; Carracedo, A.; Barros, F. A novel stop mutation in the vascular endothelial growth factor-C gene (VEGFC) results in Milroy-like disease. J. Med. Genet. 2014, 51, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Bower, N.I.; Vogrin, A.J.; Le Guen, L.; Chen, H.; Stacker, S.A.; Achen, M.G.; Hogan, B.M. Vegfd modulates both angiogenesis and lymphangiogenesis during zebrafish embryonic development. Development 2017, 144, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Karkkainen, M.J.; Haiko, P.; Sainio, K.; Partanen, J.; Taipale, J.; Petrova, T.V.; Jeltsch, M.; Jackson, D.G.; Talikka, M.; Rauvala, H.; et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 2003, 5, 74–80. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, X.; Simons, M. Molecular Controls of Lymphatic VEGFR3 Signaling. Arter. Thromb. Vasc. Biol. 2015, 35, 421–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Guen, L.; Karpanen, T.; Schulte, D.; Harris, N.C.; Koltowska, K.; Roukens, G.; Bower, N.I.; van Impel, A.; Stacker, S.A.; Achen, M.G.; et al. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 2014, 141, 1239–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, M.; Male, I.; Beane, T.J.; Villefranc, J.A.; Kok, F.O.; Zhu, L.J.; Lawson, N.D. Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors. Development 2016, 143, 3785–3795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, M.; Beane, T.J.; Quillien, A.; Male, I.; Zhu, L.J.; Lawson, N.D. Vegfa signals through ERK to promote angiogenesis, but not artery differentiation. Development 2016, 143, 3796–3805. [Google Scholar] [CrossRef] [Green Version]
- Karpanen, T.; Egeblad, M.; Karkkainen, M.J.; Kubo, H.; Ylä-Herttuala, S.; Jaattela, M.; Alitalo, K. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 2001, 61, 1786–1790. [Google Scholar]
- Skobe, M.; Hawighorst, T.; Jackson, D.G.; Prevo, R.; Janes, L.; Velasco, P.; Riccardi, L.; Alitalo, K.; Claffey, K.P.; Detmar, M. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 2001, 7, 192–198. [Google Scholar] [CrossRef]
- Goyal, S.; Chauhan, S.K.; El Annan, J.; Nallasamy, N.; Zhang, Q.; Dana, R. Evidence of corneal lymphangiogenesis in dry eye disease: A potential link to adaptive immunity? Arch. Ophthalmol. 2010, 128, 819–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baluk, P.; Tammela, T.; Ator, E.; Lyubynska, N.; Achen, M.; Hicklin, D.J.; Jeltsch, M.; Petrova, T.V.; Pytowski, B.; Stacker, S.; et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Investig. 2005, 115, 247–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.-S.; Hos, D.; Blanco, T.; Bock, F.; Reyes, N.J.; Mathew, R.; Cursiefen, C.; Dana, R.; Saban, D.R. Involvement of Corneal Lymphangiogenesis in a Mouse Model of Allergic Eye Disease. Investig. Opthalmology Vis. Sci. 2015, 56, 3140–3148. [Google Scholar] [CrossRef] [Green Version]
- Mendel, D.B.; Schreck, R.E.; West, D.C.; Li, G.; Strawn, L.M.; Tanciongco, S.S.; Vasile, S.; Shawver, L.K.; Cherrington, J.M. The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin. Cancer Res. 2000, 6, 4848–4858. [Google Scholar]
- Bridges, A.J. The rationale and strategy used to develop a series of highly potent, irreversible, inhibitors of the epidermal growth factor receptor family of tyrosine kinases. Curr. Med. Chem. 1999, 6, 825–843. [Google Scholar] [CrossRef] [PubMed]
- Schledzewski, K.; Falkowski, M.; Moldenhauer, G.; Metharom, P.; Kzhyshkowska, J.; Ganss, R.; Demory, A.; Falkowska-Hansen, B.; Kurzen, H.; Ugurel, S.; et al. Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: Implications for the assessment of lymphangiogenesis. J. Pathol. 2006, 209, 67–77. [Google Scholar] [PubMed]
- Gordon, E.J.; Gale, N.W.; Harvey, N.L. Expression of the hyaluronan receptor LYVE-1 is not restricted to the lymphatic vasculature; LYVE-1 is also expressed on embryonic blood vessels. Dev. Dyn. 2008, 237, 1901–1909. [Google Scholar] [CrossRef]
- Vogrin, A.J.; Bower, N.I.; Gunzburg, M.J.; Roufail, S.; Okuda, K.S.; Paterson, S.; Headey, S.J.; Stacker, S.A.; Hogan, B.M.; Achen, M.G. Evolutionary Differences in the Vegf/Vegfr Code Reveal Organotypic Roles for the Endothelial Cell Receptor Kdr in Developmental Lymphangiogenesis. Cell Rep. 2019, 28, 2023–2036.e4. [Google Scholar] [CrossRef] [Green Version]
- Lawson, N.D.; Weinstein, B.M. In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish. Dev. Biol. 2002, 248, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Roman, B.L.; Pham, V.N.; Lawson, N.D.; Kulik, M.; Childs, S.; Lekven, A.C.; Garrity, D.M.; Moon, R.T.; Fishman, M.C.; Lechleider, R.J.; et al. Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 2002, 129, 3009–3019. [Google Scholar] [CrossRef]
- Dunworth, W.P.; Cardona-Costa, J.; Bozkulak, E.C.; Kim, J.-D.; Meadows, S.; Fischer, J.C.; Wang, Y.; Cleaver, O.; Qyang, Y.; Ober, E.A.; et al. Bone Morphogenetic Protein 2 Signaling Negatively Modulates Lymphatic Development in Vertebrate Embryos. Circ. Res. 2014, 114, 56–66. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Chaudhury, S.; Okuda, K.S.; Koltowska, K.; Lagendijk, A.K.; Paterson, S.; Baillie, G.J.; Simons, C.; Smith, K.A.; Hogan, B.M.; Bower, N.I. Localised Collagen2a1 secretion supports lymphatic endothelial cell migration in the zebrafish embryo. Development 2020, 147, 190983. [Google Scholar] [CrossRef] [PubMed]
- Velaithan, V.; Okuda, K.S.; Ng, M.F.; Samat, N.; Leong, S.W.; Faudzi, S.M.M.; Abas, F.; Shaari, K.; Cheong, S.C.; Tan, P.J.; et al. Zebrafish phenotypic screen identifies novel Notch antagonists. Investig. New Drugs 2017, 35, 166–179. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okuda, K.S.; Ng, M.F.; Ruslan, N.F.; Bower, N.I.; Song, D.S.S.; Chen, H.; Baek, S.; Crosier, P.S.; Koltowska, K.; Astin, J.W.; et al. 3,4-Difluorobenzocurcumin Inhibits Vegfc-Vegfr3-Erk Signalling to Block Developmental Lymphangiogenesis in Zebrafish. Pharmaceuticals 2021, 14, 614. https://doi.org/10.3390/ph14070614
Okuda KS, Ng MF, Ruslan NF, Bower NI, Song DSS, Chen H, Baek S, Crosier PS, Koltowska K, Astin JW, et al. 3,4-Difluorobenzocurcumin Inhibits Vegfc-Vegfr3-Erk Signalling to Block Developmental Lymphangiogenesis in Zebrafish. Pharmaceuticals. 2021; 14(7):614. https://doi.org/10.3390/ph14070614
Chicago/Turabian StyleOkuda, Kazuhide S., Mei Fong Ng, Nur Faizah Ruslan, Neil I. Bower, Dedrick Soon Seng Song, Huijun Chen, Sungmin Baek, Philip S. Crosier, Katarzyna Koltowska, Jonathan W. Astin, and et al. 2021. "3,4-Difluorobenzocurcumin Inhibits Vegfc-Vegfr3-Erk Signalling to Block Developmental Lymphangiogenesis in Zebrafish" Pharmaceuticals 14, no. 7: 614. https://doi.org/10.3390/ph14070614
APA StyleOkuda, K. S., Ng, M. F., Ruslan, N. F., Bower, N. I., Song, D. S. S., Chen, H., Baek, S., Crosier, P. S., Koltowska, K., Astin, J. W., Tan, P. J., Hogan, B. M., & Patel, V. (2021). 3,4-Difluorobenzocurcumin Inhibits Vegfc-Vegfr3-Erk Signalling to Block Developmental Lymphangiogenesis in Zebrafish. Pharmaceuticals, 14(7), 614. https://doi.org/10.3390/ph14070614