Confocal Microscopy and Anterior Segment Optical Coherence Tomography Imaging of the Ocular Surface and Bleb Morphology in Medically and Surgically Treated Glaucoma Patients: A Review
<p>In vivo confocal microscopy (IVCM) of the ocular surface tissues in multi-treated medically controlled glaucoma. (<b>A</b>–<b>E</b>) Confocal frames taken from a patient controlled with a preserved fixed combination of timolol and dorzolamide and a preservative-free prostaglandin analog (PGA) (three eyedrops per day). (<b>A</b>) Goblet cells (GCs). GCs appear as hyper-reflective elements (black arrowhead) dispersed within the epithelium, and often appear scattered with an evident reduction of their density. (<b>B</b>) Inflammatory infiltrates. Inflammatory infiltrates appear as clusters of small hyper-reflective and mono-nucleate elements (presumably lymphocytes) infiltrating the epithelium of the tarsal or bulbar conjunctiva. (<b>C</b>) Epithelial microcysts. These structures (white asterisk) represent hallmarks of aqueous humor outflow stimulation through the uveo-scleral route, rather than detrimental effects induced by medications. (<b>D</b>) Meibomian glands. These glands appear markedly reduced in their dimension, with hyper-reflectivity of acinar wall and interstice; the black arrow indicates a glandular acinus. (<b>E</b>) CALT. Roundish immune follicles (black asterisk) appear infiltrated by numerous small hyper-reflective mono-nucleate cells (presumably lymphocytes). (<b>F</b>–<b>L</b>) Confocal frames taken from a patient controlled with a preserved fixed combination of timolol and dorzolamide, PGA, and brimonidine (five preserved eyedrops per day). (<b>F</b>,<b>L</b>) Limbal transition epithelium. The transition epithelium of the limbus appears irregular with scattered and highly hyper-reflective inflammatory elements (<b>L</b>), and with evident features of cellular polymegathism (undulated white arrow). (<b>G</b>–<b>I</b>) Cornea. The sub-epithelial layer and the Bowman’s membrane (<b>G</b>,<b>H</b>) present infiltration and activation of numerous dendritic cells (white arrowhead), with alterations of sub-basal nerve plexus morphology (white arrow). The corneal epithelium (<b>I</b>) appears markedly irregular with a higher degree of cellular polymorphism and polymegatysm. Bar represents 50 µm.</p> "> Figure 2
<p>Anterior segment-optical coherence tomography (AS-OCT) of tear meniscus in medically controlled glaucoma. Fluorescein appearance of the tear meniscus and tear film in patients controlled with a preservative-free or preserved PGA mono-therapy (<b>A</b>,<b>B</b>), or with two or more drugs per day (<b>C</b>,<b>D</b>). AS-OCT shows the progressive reduction of the tear meniscus height (arrowhead) with increasing the number of medications, and the cumulative daily dose of preservative, required to control the disease (<b>E</b>–<b>H</b>).</p> "> Figure 3
<p>AS-OCT and IVCM conjunctival bleb features after glaucoma filtration surgery. (<b>A</b>–<b>D</b>) Filtration bleb imaged by AS-OCT. Diffuse (<b>A</b>) or cystic (<b>B</b>) filtration bleb after completely successful trabeculectomy, showing numerous, differently sized hypo-reflective spaces filled with aqueous humor; incapsulated (<b>C</b>) and flat (<b>D</b>) filtration bleb after a failed trabeculectomy without evidence of hypo-reflective intra-bleb wall spaces. (<b>E</b>–<b>N</b>) Bleb-wall imaged by IVCM. In diffuse (<b>E</b>,<b>F</b>) or cystic (<b>G</b>,<b>H</b>) functioning filtration blebs, the bleb-wall epithelium (<b>E</b>,<b>G</b>) shows several microcysts with a loosely arranged stroma (<b>F</b>,<b>H</b>), indicating a good aqueous humor percolation and a minimal hydraulic resistivity through the bleb-wall layers. Opposite features are present in incapsulated (<b>I</b>,<b>L</b>) or flat (<b>M</b>,<b>N</b>) non-functioning filtration blebs: the bleb-wall epithelium (<b>I</b>,<b>M</b>) shows rare microcysts, whereas the stroma (<b>L</b>,<b>N</b>) appears densely arranged. These features indicate an inefficient aqueous humor percolation through the bleb-wall layers. Bar represents 50 µm.</p> ">
Abstract
:1. Introduction
2. Methods
3. Medical Treatment
3.1. Ocular Surface and Medical Therapy: Subclinical Inflammation
3.2. Morphologic Changes: In Vivo Confocal Microscopy
3.2.1. Conjunctiva
3.2.2. Cornea
3.2.3. Meibomian Glands
3.3. Morphologic Changes: Anterior Segment Optical Coherence Tomography
3.3.1. Tear Meniscus
3.3.2. Corneal Epithelial Thickness
Ocular Tissue | Authors | Year | Technique | Study Population | Specific Therapy (Preserved/Unpreserved) | Main Results |
---|---|---|---|---|---|---|
Conjunctiva | Ciancaglini M. et al. [38] | 2008 | IVCM a | Untreated OH b POAG c Healthy controls | Preserved timolol 0.5% | In glaucoma patients with respect to healthy controls:
|
Preserved levobunolol 0.5% | ||||||
Latanoprost 0.005% | ||||||
Travoprost 0.004% | ||||||
Bimatoprost 0.03% | ||||||
Ciancaglini M. et al. [42] | 2008 | IVCM a, IC g | OH b | Preserved levobunolol | ||
POAG c | PF h levobunolol | |||||
Mastropasqua L. et al. [45] | 2013 | LSCM k, IC g | POAG c | Preserved latanoprost | ||
Healthy controls | PF h tafluprost | |||||
Figus M. et al. [46] | 2014 | LSCM k | POAG c | Bimatoprost 0.01% | ||
Bimatoprost 0.03% | ||||||
Frezzotti P. et al. [43] | 2014 | IVCM a | OH b POAG c Healthy controls | Preserved timolol | ||
PF h timolol | ||||||
Zhu W. et al. [47] | 2015 | IVCM a | POAG c | Carteolol hydrochloride 2% | ||
Healthy controls | Travoprost 0.004% | |||||
Cornea | Baratz K. et al. [58] | 2006 | IVCM a | OH b (medication group) OH b (observation group) | timolol 0.5% | In glaucoma patients with respect to healthy controls:
|
betaxolol 0.25% | ||||||
Latanoprost 0.005% | ||||||
Unoprostone 0.15% | ||||||
Martone G. et al. [54] | 2009 | IVCM a | OH b POAG c Healthy controls | Preserved timolol 0.5% | ||
PF h timolol 0.5% | ||||||
Bergonzi C. et al. [57] | 2010 | IVCM a | POAG c | BB i (not specified) | ||
PGA j (not specified) | ||||||
Ranno S. et al. [56] | 2011 | IVCM a | POAG c | BB i (not specified) | ||
Healthy controls | PGA j (not specified) | |||||
Rossi G.C.M. et al. [61] | 2013 | IVCM a | OH b OAG m Healthy controls | PF h Tafluprost | ||
Fogagnolo P. et al. [59] | 2015 | IVCM a | OH b POAG c PXG o NTG p | Unpreserved tafluprost 0.0015% | ||
Preserved latanoprost 0.005% + BAK q 0.02% | ||||||
Mastropasqua R. et al. [64] | 2015 | LSCM k, IC g | POAG c Sjogren syndrome-dry eye Healthy controls | Preserved timolol 0.5% | ||
PF h timolol 0.5% | ||||||
Preserved bimatoprost 0.001% | ||||||
PF h tafluprost 0.015% | ||||||
Mastropasqua R. et al. [55] | 2016 | IVCM a | OAG m Sjogren syndrome-dry eye Healthy controls | Preserved timolol 0.5% | ||
PF h timolol 0.5% | ||||||
Preserved bimatoprost 0.001% | ||||||
PF h tafluprost 0.015% | ||||||
Rolle T. et al. [63] | 2017 | IVCM a | OH b POAG c Healthy controls | PF h Timolol 0.1% | ||
Tafluprost 0.0015% | ||||||
Rossi G.C.M. et al. [62] | 2019 | IVCM a | OH b OAG m Healthy controls | Preserved BB i (not specified) | ||
PF h Tafluprost | ||||||
Preserved bimatoprost 0.003% | ||||||
Preserved travoprost 0.004% | ||||||
Cennamo G. et al. [75] | 2018 | AS-OCT r, SEM s | OAG m Healthy controls | Preserved monotherapy (not specified) | ||
Batawi H. et al. [76] | 2018 | AS-OCT r | POAG c | Timolol 0.005% | ||
Healthy controls | Latanoprost | |||||
Montorio D. et al. [77] | 2020 | AS-OCT r | POAG c | BB i (not specified) | ||
Healthy controls | PGA j (not specified) | |||||
Dogan E. et al. [78] | 2020 | AS-OCT r | POAG c PACG t PXG o Healthy controls | BB i (not specified) | ||
PGA j (not specified) | ||||||
Tear Meniscus | Agnifili L. et al. [26] | 2020 | AS-OCT r | POAG c EDE u Healthy controls | BB i (not specified) | Decrease in TMH v and TMA w in glaucoma patients with respect to healthy subjects |
PGA j (not specified) | TMH v and TMA w negatively correlated with OSDI x score |
Ocular Tissue | Authors | Year | Technique | Study Population | Specific Therapy | Main Results |
---|---|---|---|---|---|---|
Conjunctiva | Ciancaglini M. et al. [38] | 2008 | IVCM a | Untreated OH b POAG c Healthy controls | Unfixed CT d: | In the case of multitherapy with respect to monotherapy:Less MGs’ k and GCs’ g modifications in the case of fixed CT d and PF l formulation [68] |
latanoprost/timolol | ||||||
travoprost/timolol | ||||||
bimatoprost/timolol | ||||||
Zhu W. et al. [47] | 2015 | IVCM a | POAG c | CT d: | ||
Healthy controls | Two or three drugs (not specified) | |||||
Di Staso S. et al. [41] | 2018 | IVCM a | POAG c PXG h PG i DED j Healthy controls | Fixed CT d: | ||
latanoprost/timolol | ||||||
travoprost/timolol | ||||||
bimatoprost/timolol | ||||||
Unfixed CT d: | ||||||
bimatoprost/timolol | ||||||
Agnifili L. et al. [68] | 2018 | IVCM a | POAG c | Fixed CT d: | ||
PXG h | prostaglandin/timolol | |||||
PG i | Unfixed CT d: | |||||
Healthy controls | latanoprost + timolol | |||||
Cornea | Baratz K. et al. [58] | 2006 | IVCM a | OH b (medication group) | Fixed CT d: | In the case of multitherapy with respect to healthy controls:
|
OH b (observation group) | Dorzolamide/timolol | |||||
Mastropasqua R. et al. [64] | 2015 | LSCM m IC n | POAG c Sjogren syndrome-dry eye Healthy controls | Fixed CT d: | ||
preserved latanoprost/timolol | ||||||
preserved dorzolamide/timolol | ||||||
preserved bimatroprost/brimonidine/timolol | ||||||
preserved latanoprost/dorzolamide/timolol | ||||||
Unfixed CT d: | ||||||
preserved bimatoprost/timolol | ||||||
preserved brimonidine/timolol | ||||||
Mastropasqua R. et al. [55] | 2016 | IVCM a | OAG p Sjogren syndrome-dry eye Healthy controls | Fixed CT d: | ||
preserved latanoprost/timolol | ||||||
preserved dorzolamide/timolol | ||||||
preserved brimonidine/timolol | ||||||
preserved bimatroprost/brimonidine/timolol | ||||||
Unfixed CT d: | ||||||
preserved bimatoprost/timolol | ||||||
Saini M. et al. [60] | 2017 | IVCM a | OH b POAG c PACG q JOAG r NTG s Healthy controls | Preserved CT d: | ||
timolol/brimonidine | ||||||
timolol/latanoprost | ||||||
latanoprost/brimonidine | ||||||
Batawi H. et al. [76] | 2018 | AS-OCT o | POAG c Healthy controls | CT d (not specified) | ||
Montorio D. et al. [77] | 2020 | AS-OCT o | POAG c Healthy controls | CT d (not specified) | ||
Dogan E. et al. [78] | 2020 | AS-OCT o | POAG c PACG q PXG h Healthy controls | CT d (not specified) | ||
Tear Meniscus | Agnifili L. et al. [26] | 2020 | AS-OCT o | POAG c EDE t Healthy controls | Two or more drugs (not specified) | Smaller TMH u and TMA v in the case of multitherapy with respect to monotherapy |
4. Surgical Treatment
4.1. Ocular Surface and Surgical Therapy
4.2. Morphologic Changes: In Vivo Confocal Microscopy
4.3. Morphologic Changes: Anterior Segment Optical Coherence Tomography
4.4. Vascular Changes: Optical Coherence Tomography Angiography
Authors | Year | Technique | Study Population | Surgical Procedure | Main Results |
---|---|---|---|---|---|
Labbè A. et al. [87] | 2005 | IVCM a | OAG b | Trabeculectomy | Functioning filtering bleb at IVCM a:
|
Guthoff R. et al. [95] | 2006 | IVCM a | OAG b CACG c | Trabeculectomy | |
Messmer E. et al. [96] | 2006 | IVCM a | POAG e PXG f NTG g Secondary glaucoma | Trabeculectomy | |
Amar N. et al. [92] | 2008 | IVCM a IC h | OAG b | Trabeculectomy | |
Ciancaglini M. et al. [88] | 2008 | IVCM a AS-OCT j | POAG e PXG f | Trabeculectomy | |
Sbeity Z. et al. [89] | 2009 | IVCM a | POAG e Secondary glaucoma | Trabeculectomy | |
Ciancaglini M. et al. [90] | 2009 | IVCM a | POAG e | Trabeculectomy | |
Morita K. et al. [91] | 2012 | IVCM a UBM k | POAG e PXG f | Trabeculectomy | |
Agnifili L. et al. [93] | 2016 | IVCM a IC h | OAG b Healthy controls | Trabeculectomy | |
Fea A. et al. [97] | 2017 | IVCM a AS-OCT j | POAG e | XEN 45 gel stent implant | |
Olate-Perez A. et al. [109] | 2017 | AS-OCT j | POAG e | XEN 45 gel stent implant + cataract surgery | |
Yin X. et al. [112] | 2018 | OCT-A l | Primary Glaucoma | Trabeculectomy | |
Hayek S. et al. [115] | 2019 | OCT-A l | OAG b CACG c | Trabeculectomy | |
Lenzhofer M. et al. [110] | 2019 | AS-OCT j | OAG b | XEN 45 gel stent implant | |
Teus M.A. et al. [111] | 2019 | AS-OCT j | POAG e Healthy controls | XEN 45 gel stent implant Trabeculectomy | |
Seo J.H. et al. [116] | 2019 | OCT-A l | POAG e Secondary glaucoma | Trabeculectomy | |
Seo J.H. et al. [114] | 2019 | OCT-A l | POAG e PACG n Secondary glaucoma | Trabeculectomy Phacotrabeculectomy | |
Baiocchi S. et al. [85] | 2020 | IVCM a | POAG e | XEN 45 gel stent implant Trabeculectomy | |
Sacchi M. et al. [98] | 2020 | AS-OCT j IVCM a | POAG e PXG f NTG g | XEN 45 gel stent implant Trabeculectomy | |
Mastropasqua R. et al. [113] | 2020 | OCT-A l | POAG e PXG f PG o | XEN gel stent implant |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AS-OCT | anterior segment optical coherence tomography |
BAK | benzalkonium chloride |
CALT | conjunctiva-associated lymphoid tissue |
DCs | dendritic cells |
GCs | goblet cells |
IOP | intraocular pressure |
IVCM | in vivo confocal microscopy |
MGs | Meibomian glands |
MIGS | minimally-invasive glaucoma surgeries |
MMC | mitomycin C |
OCT | optical coherence tomography angiography |
OH | ocular hypertension |
OSD | ocular surface disease |
PF | preservative-free |
PGA | prostaglandin analogs |
POAG | primary open angle glaucoma |
QoL | quality of life |
References
- Quigley, H.A. Glaucoma. Lancet 2011, 377, 1367–1377. [Google Scholar] [CrossRef]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Agis Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am. J. Ophthalmol. 2000, 130, 429–440. [Google Scholar] [CrossRef]
- Leske, M.C.; Heijl, A.; Hussein, M.; Bengtsson, B.; Hyman, L.; Komaroff, E.; Early Manifest Glaucoma Trial Group. Factors for glaucoma progression and the effect of treatment: The early manifest glaucoma trial. Arch. Ophthalmol. 2003, 121, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Lichter, P.R.; Musch, D.C.; Gillespie, B.W.; Guire, K.E.; Janz, N.K.; Wren, P.A.; Mills, R.P.; CIGTS Study Group. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology 2001, 108, 1943–1953. [Google Scholar] [CrossRef]
- Maier, P.C.; Funk, J.; Schwarzer, G.; Antes, G.; Falck-Ytter, Y.T. Treatment of ocular hypertension and open angle glaucoma: Meta-analysis of randomised controlled trials. BMJ 2005, 331, 134. [Google Scholar] [CrossRef] [Green Version]
- European Glaucoma Society. Terminology and Guidelines for Glaucoma. 5th Edition. Available online: https://www.eugs.org/eng/egs_guidelines_reg.asp?l=1 (accessed on 18 June 2021).
- Roberti, G.; Tanga, L.; Manni, G.; Riva, I.; Verticchio, A.C.; Berardo, F.; Carnevale, C.; Oddone, F. Tear Film, Conjunctival and Corneal Modifications Induced by Glaucoma Treatment. Curr. Med. Chem. 2019, 26, 4253–4261. [Google Scholar] [CrossRef]
- Boso, A.L.M.; Gasperi, E.; Fernandes, L.; Costa, V.P.; Alves, M. Impact of Ocular Surface Disease Treatment in Patients with Glaucoma. Clin. Ophthalmol. 2020, 14, 103–111. [Google Scholar] [CrossRef]
- Skalicky, S.E.; Goldberg, I.; McCluskey, I. Ocular surface disease and quality of life in patients with glaucoma. Am. J. Ophthalmol. 2012, 153, 1–9.e2. [Google Scholar] [CrossRef]
- Kaštelan, S.; Tomic, M.; Soldo, K.; Salopek-Rabatic, J. How ocular surface disease impacts the glaucoma treatment outcome. BioMed Res. Int. 2013, 2013, 696328. [Google Scholar] [CrossRef] [Green Version]
- Stalmans, I.; Lemij, H.; Clarke, J.; Baudouin, C.; GOAL study group. Signs and Symptoms of Ocular Surface Disease: The Reasons for Patient Dissatisfaction with Glaucoma Treatments. Clin. Ophthalmol. 2020, 14, 3675–3680. [Google Scholar] [CrossRef]
- Baudouin, C. Ocular surface and external filtration surgery: Mutual relationships. Dev. Ophthalmol. 2012, 50, 64–78. [Google Scholar]
- Ji, H.; Zhu, Y.; Zhang, Y.; Li, Z.; Ge, J.; Zhuo, Y. Dry Eye Disease in Patients with Functioning Filtering Blebs after Trabeculectomy. PLoS ONE 2016, 11, e0152696. [Google Scholar] [CrossRef]
- Villani, E.; Sacchi, M.; Magnani, F.; Nicodemo, A.; Williams, S.E.I.; Rossi, A.; Ratiglia, R.; De Cillà, S.; Nucci, P. The Ocular Surface in Medically Controlled Glaucoma: An In Vivo Confocal Study. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1003–1010. [Google Scholar] [CrossRef]
- Zhang, X.; Vadoothker, S.; Munir, W.M.; Saeedi, O. Ocular Surface Disease and Glaucoma Medications: A Clinical Approach. Eye Contact Lens 2019, 45, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Schein, O.D.; Muñoz, B.; Tielsch, J.M.; Bandeen-Roche, K.; West, S. Prevalence of dry eye among the elderly. Am. J. Ophthalmol. 1997, 124, 723–728. [Google Scholar] [CrossRef]
- Leung, E.W.; Medeiros, F.A.; Weinreb, R.N. Prevalence of ocular surface disease in glaucoma patients. J. Glaucoma 2008, 17, 350–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fechtner, R.D.; Godfrey, D.G.; Budenz, D.; Stewart, J.A.; Stewart, W.C.; Jasek, M.C. Prevalence of ocular surface complaints in patients with glaucoma using topical intraocular pressure-lowering medications. Cornea 2010, 29, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.B.C.; Wang, M.T.M.; Liu, K.; Prime, Z.K.; Danesh-Meyer, H.V.; Craig, J.P. Exploring topical anti-glaucoma medication effects on the ocular surface in the context of the current understanding of dry eye. Ocul. Surf. 2018, 16, 289–293. [Google Scholar] [CrossRef]
- Baudouin, C.; Kolko, M.; Melik-Parsadaniantz, S.; Messmer, E.M. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog. Retin. Eye Res. 2020, 100916. [Google Scholar] [CrossRef]
- Yazdani, M.; Fiskådal, J.; Chen, X.; Utheim, O.A.; Ræder, S.; Vitelli, V.; Utheim, T.P. Tear Film Break-Up Time and Dry Eye Disease Severity in a Large Norwegian Cohort. J. Clin. Med. 2021, 10, 884. [Google Scholar] [CrossRef]
- Begley, C.; Caffery, B.; Chalmers, R.; Situ, P.; Simpson, T.; Nelson, J.D. Review and analysis of grading scales for ocular surface staining. Ocul. Surf. 2019, 17, 208–220. [Google Scholar] [CrossRef]
- Villani, E.; Baudouin, C.; Efron, N.; Hamrah, P.; Kojima, T.; Patel, S.V.; Pflugfelder, S.C.; Zhivov, A.; Dogru, M. In vivo confocal microscopy of the ocular surface: From bench to bedside. Curr. Eye Res. 2014, 39, 213–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastropasqua, L.; Agnifili, L.; Mastropasqua, R.; Fasanella, V.; Nubile, M.; Toto, L.; Carpineto, P.; Ciancaglini, M. In vivo laser scanning confocal microscopy of the ocular surface in glaucoma. Microsc. Microanal. 2014, 20, 879–894. [Google Scholar] [CrossRef]
- Agnifili, L.; Brescia, L.; Scatena, B.; Oddone, F.; Figus, M.; Perna, F.; Doronzo, E.; D’Ugo, E.; Mastropasqua, L. Tear Meniscus Imaging by Anterior Segment-Optical Coherence Tomography in Medically Controlled Glaucoma. J. Glaucoma 2020, 29, 374–380. [Google Scholar] [CrossRef]
- Steven, D.W.; Alaghband, P.; Lim, K.S. Preservatives in glaucoma medication. Br. J. Ophthalmol. 2018, 102, 1497–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudouin, C. Detrimental effect of preservatives in eyedrops: Implications for the treatment of glaucoma. Acta Ophthalmol. 2008, 86, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Tressler, C.S.; Beatty, R.; Lemp, M.A. Preservative use in topical glaucoma medications. Ocul. Surf. 2011, 9, 140–158. [Google Scholar] [CrossRef]
- Baudouin, C. Ocular Surface and External Filtration Surgery: Mutual Relationships. Dev. Ophthalmol. 2017, 59, 67–79. [Google Scholar] [PubMed]
- Baudouin, C.; Liang, H.; Hamard, P.; Riancho, L.; Creuzot-Garcher, C.; Warnet, J.M.; Brignole-Baudouin, F. The ocular surface of glaucoma patients treated over the long term expresses inflammatory markers related to both T-helper 1 and T-helper 2 pathways. Ophthalmology 2008, 115, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Pisella, P.J.; Debbasch, C.; Hamard, P.; Creuzot-Garcher, C.; Rat, P.; Brignole, F.; Baudouin, C. Conjunctival proinflammatory and proapoptotic effects of latanoprost and preserved and unpreserved timolol: An ex vivo and in vitro study. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1360–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydin Kurna, S.; Acikgoz, S.; Altun, A.; Ozbay, N.; Sengor, T.; Okan Olcaysu, O. The effects of topical antiglaucoma drugs as monotherapy on the ocular surface: A prospective study. J. Ophthalmol. 2014, 2014, 460483. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, I.; Kulkarni, B.; Faraj, L.A.; Abbas, A.; Dua, H.S.; King, A.J. Profiling ocular surface responses to preserved and non-preserved topical glaucoma medications: A 2-year randomized evaluation study. Clin. Exp. Ophthalmol. 2020, 48, 973–982. [Google Scholar] [CrossRef]
- Baudouin, C.; Hamard, P.; Liang, H.; Creuzot-Garcher, C.; Bensoussan, L.; Brignole, F. Conjunctival epithelial cell expression of interleukins and inflammatory markers in glaucoma patients treated over the long term. Ophthalmology 2004, 111, 2186–2192. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, C.; Lin, X.; Wu, Y.; Ouyang, W.; Tang, L.; Ye, S.; Wang, Y.; Li, W.; Zhang, X.; et al. 0.005% Preservative-Free Latanoprost Induces Dry Eye-Like Ocular Surface Damage via Promotion of Inflammation in Mice. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3375–3384. [Google Scholar] [CrossRef] [Green Version]
- Schmidl, D.; Schlatter, A.; Chua, J.; Tan, B.; Garhöfer, G.; Schmetterer, L. Novel Approaches for Imaging-Based Diagnosis of Ocular Surface Disease. Diagnostics 2020, 10, 589. [Google Scholar] [CrossRef]
- Ciancaglini, M.; Carpineto, P.; Agnifili, L.; Nubile, M.; Fasanella, V.; Mastropasqua, L. Conjunctival modifications in ocular hypertension and primary open angle glaucoma: An in vivo confocal microscopy study. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3042–3048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudouin, C.; Labbé, A.; Liang, H.; Pauly, A.; Brignole-Baudouin, F. Preservatives in eyedrops: The good, the bad and the ugly. Prog. Retin. Eye Res. 2010, 29, 312–334. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Agnifili, L.; Mastropasqua, R.; Fasanella, V. Conjunctival modifications induced by medical and surgical therapies in patients with glaucoma. Curr. Opin. Pharmacol. 2013, 13, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Di Staso, S.; Agnifili, L.; Ciancaglini, M.; Murano, G.; Borrelli, E.; Mastropasqua, L. In Vivo Scanning Laser Confocal Microscopy of Conjunctival Goblet Cells in Medically-controlled Glaucoma. In Vivo 2018, 32, 437–443. [Google Scholar]
- Ciancaglini, M.; Carpineto, P.; Agnifili, L.; Nubile, M.; Fasanella, V.; Lanzini, M.; Calienno, R.; Mastropasqua, L. An in vivo confocal microscopy and impression cytology analysis of preserved and unpreserved levobunolol-induced conjunctival changes. Eur. J. Ophthalmol. 2008, 18, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Frezzotti, P.; Fogagnolo, P.; Haka, G.; Motolese, I.; Iester, M.; Bagaglia, S.A.; Mittica, P.; Menicacci, C.; Rossetti, L.; Motolese, E. In vivo confocal microscopy of conjunctiva in preservative-free timolol 0.1% gel formulation therapy for glaucoma. Acta Ophthalmol. 2014, 92, e133–e140. [Google Scholar] [CrossRef] [PubMed]
- Di Staso, S.; Agnifili, L.; Cecannecchia, S.; Di Gregorio, A.; Ciancaglini, M. In Vivo Analysis of Prostaglandins-induced Ocular Surface and Periocular Adnexa Modifications in Patients with Glaucoma. In Vivo 2018, 32, 211–220. [Google Scholar] [PubMed] [Green Version]
- Mastropasqua, L.; Agnifili, L.; Fasanella, V.; Curcio, C.; Ciabattoni, C.; Mastropasqua, R.; Toto, L.; Ciancaglini, M. Conjunctival goblet cells density and preservative-free tafluprost therapy for glaucoma: An in vivo confocal microscopy and impression cytology study. Acta Ophthalmol. 2013, 91, e397–e405. [Google Scholar] [CrossRef]
- Figus, M.; Nardi, M.; Piaggi, P.; Sartini, M.; Guidi, G.; Martini, L.; Lazzeri, S. Bimatoprost 0.01% vs bimatoprost 0.03%: A 12-month prospective trial of clinical and in vivo confocal microscopy in glaucoma patients. Eye 2014, 28, 422–429. [Google Scholar] [CrossRef]
- Zhu, W.; Kong, X.; Xu, J.; Sun, X. Effects of Long-Term Antiglaucoma Eye Drops on Conjunctival Structures: An In Vivo Confocal Microscopy Study. J. Ophthalmol. 2015, 2015, 165475. [Google Scholar] [CrossRef]
- Mastropasqua, R.; Agnifili, L.; Fasanella, V.; Nubile, M.; Gnama, A.A.; Falconio, G.; Perri, P.; Di Staso, S.; Mariotti, C. The Conjunctiva-Associated Lymphoid Tissue in Chronic Ocular Surface Diseases. Microsc. Microanal. 2017, 23, 697–707. [Google Scholar] [CrossRef]
- Agnifili, L.; Mastropasqua, R.; Fasanella, V.; Di Staso, S.; Mastropasqua, A.; Brescia, L.; Mastropasqua, L. In vivo confocal microscopy of conjunctiva-associated lymphoid tissue in healthy humans. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5254–5262. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Baudouin, C.; Pauly, A.; Brignole-Baudouin, F. Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02% benzalkonium chloride. Br. J. Ophthalmol. 2008, 92, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Baudouin, C.; Labbe, A.; Riancho, L.; Brignole-Baudouin, F. Conjunctiva-associated lymphoid tissue (CALT) reactions to antiglaucoma prostaglandins with or without BAK-preservative in rabbit acute toxicity study. PLoS ONE 2012, 7, e33913. [Google Scholar] [CrossRef]
- Liang, H.; Brignole-Baudouin, F.; Riancho, L.; Baudouin, C. Reduced in vivo ocular surface toxicity with polyquad-preserved travoprost versus benzalkonium-preserved travoprost or latanoprost ophthalmic solutions. Ophthalmic Res. 2012, 48, 89–101. [Google Scholar] [CrossRef]
- Baghdasaryan, E.; Tepelus, T.C.; Vickers, L.A.; Huang, P.; Chopra, V.; Sadda, S.R.; Lee, O.L. Assessment of Corneal Changes Associated with Topical Antiglaucoma Therapy Using In Vivo Confocal Microscopy. Ophthalmic Res. 2019, 61, 51–59. [Google Scholar] [CrossRef]
- Martone, G.; Frezzotti, P.; Tosi, G.M.; Traversi, C.; Mittica, V.; Malandrini, A.; Pichierri, P.; Balestrazzi, A.; Motolese, P.A.; Motolese, I.; et al. An in vivo confocal microscopy analysis of effects of topical antiglaucoma therapy with preservative on corneal innervation and morphology. Am. J. Ophthalmol. 2009, 147, 725–735.e1. [Google Scholar] [CrossRef]
- Mastropasqua, R.; Agnifili, L.; Fasanella, V.; Lappa, A.; Brescia, L.; Lanzini, M.; Oddone, F.; Perri, P.; Mastropasqua, L. In Vivo Distribution of Corneal Epithelial Dendritic Cells in Patients with Glaucoma. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5996–6002. [Google Scholar] [CrossRef] [PubMed]
- Ranno, S.; Fogagnolo, P.; Rossetti, L.; Orzalesi, N.; Nucci, P. Changes in corneal parameters at confocal microscopy in treated glaucoma patients. Clin. Ophthalmol. 2011, 5, 1037–1042. [Google Scholar] [CrossRef] [Green Version]
- Bergonzi, C.; Giani, A.; Blini, M.; Marchi, S.; Luccarelli, S.; Staurenghi, G. Evaluation of prostaglandin analogue effects on corneal keratocyte density using scanning laser confocal microscopy. J. Glaucoma 2010, 19, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Baratz, K.H.; Nau, C.H.; Winter, E.J.; McLaren, J.W.; Hodge, D.O.; Herman, D.C.; Bourne, W.M. Effects of glaucoma medications on corneal endothelium, keratocytes, and subbasal nerves among participants in the ocular hypertension treatment study. Cornea 2006, 25, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Fogagnolo, P.; Dipinto, A.; Vanzulli, E.; Maggiolo, E.; De Cilla’, S.; Autelitano, A.; Rossetti, L. A 1-year randomized study of the clinical and confocal effects of tafluprost and latanoprost in newly diagnosed glaucoma patients. Adv. Ther. 2015, 32, 356–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, M.; Vanathi, M.; Dada, T.; Agarwal, T.; Dhiman, R.; Khokhar, S. Ocular surface evaluation in eyes with chronic glaucoma on long term topical antiglaucoma therapy. Int. J. Ophthalmol. 2017, 10, 931–938. [Google Scholar]
- Rossi, G.C.M.; Blini, M.; Scudeller, L.; Ricciardelli, G.; Depolo, L.; Amisano, A.; Bossolesi, L.; Pasinetti, G.M.; Bianchi, P.E. Effect of preservative-free tafluprost on keratocytes, sub-basal nerves, and endothelium: A single-blind one-year confocal study on naïve or treated glaucoma and hypertensive patients versus a control group. J. Ocul. Pharmacol. Ther. 2013, 29, 821–825. [Google Scholar] [CrossRef]
- Rossi, G.C.M.; Scudeller, L.; Lumini, C.; Mirabile, A.V.; Picasso, E.; Bettio, F.; Pasinetti, G.M.; Bianchi, P.E. An in vivo confocal, prospective, masked, 36 months study on glaucoma patients medically treated with preservative-free or preserved monotherapy. Sci. Rep. 2019, 9, 4282. [Google Scholar] [CrossRef] [Green Version]
- Rolle, T.; Spinetta, R.; Nuzzi, R. Long term safety and tolerability of Tafluprost 0.0015% vs Timolol 0.1% preservative-free in ocular hypertensive and in primary open-angle glaucoma patients: A cross sectional study. BMC Ophthalmol. 2017, 17, 136. [Google Scholar] [CrossRef] [Green Version]
- Mastropasqua, R.; Agnifili, L.; Fasanella, V.; Curcio, C.; Brescia, L.; Lanzini, M.; Fresina, M.; Mastropasqua, L.; Marchini, G. Corneoscleral limbus in glaucoma patients: In vivo confocal microscopy and immunocytological study. Investig. Ophthalmol. Vis. Sci. 2015, 56, 2050–2058. [Google Scholar] [CrossRef]
- Binotti, W.W.; Bayraktutar, B.; Cuneyt Ozmen, M.; Cox, S.M.; Hamrah, P. A Review of Imaging Biomarkers of the Ocular Surface. Eye Contact Lens 2020, 46 (Suppl. 2), S84–S105. [Google Scholar] [CrossRef]
- Fasanella, V.; Agnifili, L.; Mastropasqua, R.; Brescia, L.; Di Staso, F.; Ciancaglini, M.; Mastropasqua, L. In Vivo Laser Scanning Confocal Microscopy of Human Meibomian Glands in Aging and Ocular Surface Diseases. BioMed Res. Int. 2016, 2016, 7432131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnifili, L.; Fasanella, V.; Costagliola, C.; Ciabattoni, C.; Mastropasqua, R.; Frezzotti, P.; Mastropasqua, L. In vivo confocal microscopy of meibomian glands in glaucoma. Br. J. Ophthalmol. 2013, 97, 343–349. [Google Scholar] [CrossRef]
- Agnifili, L.; Mastropasqua, R.; Fasanella, V.; Brescia, L.; Scatena, B.; Oddone, F.; Mastropasqua, L. Meibomian Gland Features and Conjunctival Goblet Cell Density in Glaucomatous Patients Controlled with Prostaglandin/Timolol Fixed Combinations: A Case Control, Cross-sectional Study. J. Glaucoma 2018, 27, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.; Hill, L.J.; Downie, L.E.; Chinnery, H.R. Anterior segment optical coherence tomography: Its application in clinical practice and experimental models of disease. Clin. Exp. Optom. 2019, 102, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hommer, A.; Schmidl, D.; Kromus, M.; Bata, A.M.; Fondi, K.; Werkmeister, R.M.; Baar, C.; Schmetterer, L.; Garhöfer, G. Effect of changing from preserved prostaglandins to preservative-free tafluprost in patients with glaucoma on tear film thickness. Eur. J. Ophthalmol. 2018, 28, 385–392. [Google Scholar] [CrossRef]
- Ang, M.; Baskaran, M.; Werkmeister, R.M.; Chua, J.; Schmidl, D.; Dos Santos, V.A.; Garhöfer, G.; Mehta, J.S.; Schmetterer, L. Anterior segment optical coherence tomography. Prog. Retin. Eye Res. 2018, 66, 132–156. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.; Dhasmana, R.; Nagpal, R.C. Anterior Segment Optical Coherence Tomography for Tear Meniscus Evaluation and its Correlation with other Tear Variables in Healthy Individuals. J. Clin. Diagn. Res. 2016, 10, NC01–NC04. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, R.; Usui, T.; Yamagami, S. Diagnosis of Dry Eye by Tear Meniscus Measurements Using Anterior Segment Swept Source Optical Coherence Tomography. Cornea 2015, 34 (Suppl. 11), S115–S120. [Google Scholar] [CrossRef] [PubMed]
- Mathews, P.M.; Ramulu, P.Y.; Friedman, D.S.; Utine, C.A.; Akpek, E.K. Evaluation of ocular surface disease in patients with glaucoma. Ophthalmology 2013, 120, 2241–2248. [Google Scholar] [CrossRef] [Green Version]
- Cennamo, G.; Montorio, D.; Del Prete, S.; Del Prete, A.; Cennamo, G. Anterior-Segment Optical Coherence Tomography and Scanning Electron Microscopy to Evaluate Corneal Epithelial Changes in Patients Undergoing Glaucoma Therapy. Cornea 2018, 37, 1522–1526. [Google Scholar] [CrossRef]
- Batawi, H.; Lollett, I.V.; Maliakal, C.; Wellik, S.R.; Anderson, M.G.; Feuer, W.; Karp, C.L.; Galor, A. A Comparative Study of Central Corneal Epithelial, Stromal, and Total Thickness in Males with and Without Primary Open-Angle Glaucoma. Cornea 2018, 37, 712–719. [Google Scholar] [CrossRef]
- Montorio, D.; Cennamo, G.; Breve, M.A.; Fiore, U.; Reibaldi, M.; Brescia Morra, V.; Cennamo, G. Evaluation of corneal epithelial thickness in glaucomatous patients using anterior-segment optical coherence tomography. J. Biophotonics 2020, 13, e201900095. [Google Scholar] [CrossRef]
- Dogan, E.; Çakir, B.K.; Aksoy, N.O.; Celik, E.; Erkorkmaz, U. Effects of topical antiglaucomatous medications on central corneal epithelial thickness by anterior segment optical coherence tomography. Eur. J. Ophthalmol. 2020, 30, 1519–1524. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razeghinejad, M.R.; Fudemberg, S.J.; Spaeth, G.L. The changing conceptual basis of trabeculectomy: A review of past and current surgical techniques. Surv. Ophthalmol. 2012, 57, 1–25. [Google Scholar] [CrossRef]
- Cvenkel, B.; Kopitar, A.N.; Ihan, A. Correlation between filtering bleb morphology, expression of inflammatory marker HLA-DR by ocular surface, and outcome of trabeculectomy. J. Glaucoma 2013, 22, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Budenz, D.L.; Hoffman, K.; Zacchei, A. Glaucoma filtering bleb dysesthesia. Am. J. Ophthalmol. 2001, 131, 626–630. [Google Scholar] [CrossRef]
- Neves Mendes, C.R.; Yudi Hida, R.; Kasahara, N. Ocular surface changes in eyes with glaucoma filtering blebs. Curr. Eye Res. 2012, 37, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Agnifili, L.; Brescia, L.; Oddone, F.; Sacchi, M.; D’Ugo, E.; Di Marzio, G.; Perna, F.; Costagliola, C.; Mastropasqua, R. The ocular surface after successful glaucoma filtration surgery: A clinical, in vivo confocal microscopy, and immune-cytology study. Sci. Rep. 2019, 9, 11299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baiocchi, S.; Mazzotta, C.; Sgheri, A.; Di Maggio, A.; Bagaglia, S.A.; Posarelli, M.; Ciompi, L.; Meduri, A.; Tosi, G.M. In vivo confocal microscopy: Qualitative investigation of the conjunctival and corneal surface in open angle glaucomatous patients undergoing the XEN-Gel implant, trabeculectomy or medical therapy. Eye Vis. 2020, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Kymionis, G.D.; Diakonis, V.F.; Shehadeh, M.M.; Pallikaris, A.I.; Pallikaris, I.G. Anterior segment applications of in vivo confocal microscopy. Semin. Ophthalmol. 2015, 30, 243–251. [Google Scholar] [CrossRef]
- Labbé, A.; Dupas, B.; Hamard, P.; Baudouin, C. In vivo confocal microscopy study of blebs after filtering surgery. Ophthalmology 2005, 112, 1979. [Google Scholar] [CrossRef]
- Ciancaglini, M.; Carpineto, P.; Agnifili, L.; Nubile, M.; Lanzini, M.; Fasanella, V.; Mastropasqua, L. Filtering bleb functionality: A clinical, anterior segment optical coherence tomography and in vivo confocal microscopy study. J. Glaucoma 2008, 17, 308–317. [Google Scholar] [CrossRef]
- Sbeity, Z.; Palmiero, P.M.; Tello, C.; Liebmann, J.M.; Ritch, R. Noncontact in vivo scanning laser microscopy of filtering blebs. J. Glaucoma 2009, 18, 479–483. [Google Scholar] [CrossRef]
- Ciancaglini, M.; Carpineto, P.; Agnifili, L.; Nubile, M.; Fasanella, V.; Mattei, P.A.; Mastropasqua, L. Conjunctival characteristics in primary open-angle glaucoma and modifications induced by trabeculectomy with mitomycin C: An in vivo confocal microscopy study. Br. J. Ophthalmol. 2009, 93, 1204–1209. [Google Scholar] [CrossRef] [Green Version]
- Morita, K.; Gao, Y.; Saito, Y.; Higashide, T.; Kobayashi, A.; Ohkubo, S.; Sugiyama, K. In vivo confocal microscopy and ultrasound biomicroscopy study of filtering blebs after trabeculectomy: Limbus-based versus fornix-based conjunctival flaps. J. Glaucoma 2012, 21, 383–391. [Google Scholar] [CrossRef]
- Amar, N.; Labbé, A.; Hamard, P.; Dupas, B.; Baudouin, C. Filtering blebs and aqueous pathway an immunocytological and in vivo confocal microscopy study. Ophthalmology 2008, 115, 1154–1161.e4. [Google Scholar] [CrossRef]
- Agnifili, L.; Fasanella, V.; Mastropasqua, R.; Frezzotti, P.; Curcio, C.; Brescia, L.; Marchini, G. In Vivo Goblet Cell Density as a Potential Indicator of Glaucoma Filtration Surgery Outcome. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2928–2935. [Google Scholar] [CrossRef] [Green Version]
- Mastropasqua, R.; Fasanella, V.; Brescia, L.; Oddone, F.; Mariotti, C.; Di Staso, S.; Agnifili, L. In Vivo Confocal Imaging of the Conjunctiva as a Predictive Tool for the Glaucoma Filtration Surgery Outcome. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO114–BIO120. [Google Scholar] [CrossRef] [PubMed]
- Guthoff, R.; Klink, T.; Schlunck, G.; Grehn, F. In vivo confocal microscopy of failing and functioning filtering blebs: Results and clinical correlations. J. Glaucoma 2006, 15, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Messmer, E.M.; Zapp, D.M.; Mackert, M.J.; Thiel, M.; Kampik, A. In vivo confocal microscopy of filtering blebs after trabeculectomy. Arch. Ophthalmol. 2006, 124, 1095–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fea, A.M.; Spinetta, R.; Cannizzo, P.M.L.; Consolandi, G.; Lavia, C.; Aragno, V.; Germinetti, F.; Rolle, T. Evaluation of Bleb Morphology and Reduction in IOP and Glaucoma Medication following Implantation of a Novel Gel Stent. J. Ophthalmol. 2017, 2017, 9364910. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, M.; Agnifili, L.; Brescia, L.; Oddone, F.; Villani, E.; Nucci, P.; Mastropasqua, L. Structural imaging of conjunctival filtering blebs in XEN gel implantation and trabeculectomy: A confocal and anterior segment optical coherence tomography study. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 1763–1770. [Google Scholar] [CrossRef]
- Guthoff, R.; Guthoff, T.; Hensler, D.; Grehn, F.; Klink, T. Bleb needling in encapsulated filtering blebs: Evaluation by optical coherence tomography. Ophthalmologica 2010, 224, 204–208. [Google Scholar] [CrossRef]
- Singh, M.; Aung, T.; Friedman, D.S.; Zheng, C.; Foster, P.J.; Nolan, W.P.; See, J.L.; Smith, S.D.; Chew, P.T.K. Anterior segment optical coherence tomography imaging of trabeculectomy blebs before and after laser suture lysis. Am. J. Ophthalmol. 2007, 143, 873–875. [Google Scholar] [CrossRef]
- Sng, C.C.A.; Singh, M.; Chew, P.T.K.; Ngo, C.S.; Zheng, C.; Tun, T.A.; See, J.L.S.; Ang, M.; Loon, S.C.; Aung, T. Quantitative assessment of changes in trabeculectomy blebs after laser suture lysis using anterior segment coherence tomography. J. Glaucoma 2012, 21, 313–317. [Google Scholar] [CrossRef]
- Shan, J.; DeBoer, C.; Xu, B.Y. Anterior Segment Optical Coherence Tomography: Applications for Clinical Care and Scientific Research. Asia Pac. J. Ophthalmol. 2019, 8, 146–157. [Google Scholar] [CrossRef]
- Raj, A.; Bahadur, H. Morphological analysis of functional filtering blebs with anterior segment optical coherence tomography: A short-term prediction for success of trabeculectomy. Eur. J. Ophthalmol. 2020, 1120672120924340. [Google Scholar] [CrossRef]
- Kawana, K.; Kiuchi, T.; Yasuno, Y.; Oshika, T. Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography. Ophthalmology 2009, 116, 848–855. [Google Scholar] [CrossRef]
- Mastropasqua, R.; Fasanella, V.; Agnifili, L.; Curcio, C.; Ciancaglini, M.; Mastropasqua, L. Anterior segment optical coherence tomography imaging of conjunctival filtering blebs after glaucoma surgery. BioMed Res. Int. 2014, 2014, 610623. [Google Scholar] [CrossRef]
- Kokubun, T.; Tsuda, S.; Kunikata, H.; Himori, N.; Yokoyama, Y.; Kunimatsu-Sanuki, S.; Nakazawa, T. Anterior-Segment Optical Coherence Tomography for Predicting Postoperative Outcomes after Trabeculectomy. Curr. Eye Res. 2018, 43, 762–770. [Google Scholar] [CrossRef]
- Meziani, L.; Hassani, R.T.J.; El Sanharawi, M.; Brasnu, E.; Liang, H.; Hamard, P.; Baudouin, C.; Labbe, A. Evaluation of Blebs After Filtering Surgery with En-Face Anterior-Segment Optical Coherence Tomography: A Pilot Study. J. Glaucoma 2016, 25, e550–e558. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi-Kuroda, U.; Kojima, S.; Fukushima, A.; Nakashima, K.I.; Iwao, K.; Tanihara, H.; Inoue, T. Early bleb parameters as long-term prognostic factors for surgical success: A retrospective observational study using three-dimensional anterior-segment optical coherence tomography. BMC Ophthalmol. 2019, 19, 155. [Google Scholar] [CrossRef] [Green Version]
- Olate-Pérez, A.; Pérez-Torregrosa, V.T.; Gargallo-Benedicto, A.; Neira-Ibáñez, P.; Cerdà-Ibáñez, M.; Osorio-Alayo, V.; Barreiro-Rego, A.; Duch-Samper, A. Prospective study of filtering blebs after XEN45 surgery. Arch. Soc. Esp. Oftalmol. 2017, 92, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Lenzhofer, M.; Strohmaier, C.; Hohensinn, M.; Hitzl, W.; Sperl, P.; Gerner, M.; Steiner, V.; Moussa, S.; Krall, E.; Reitsamer, H.A. Longitudinal bleb morphology in anterior segment OCT after minimally invasive transscleral ab interno Glaucoma Gel Microstent implantation. Acta Ophthalmol. 2019, 97, e231–e237. [Google Scholar] [CrossRef]
- Teus, M.A.; Moreno-Arrones, J.P.; Castaño, B.; Castejon, M.A.; Bolivar, G. Optical coherence tomography analysis of filtering blebs after long-term, functioning trabeculectomy and XEN® stent implant. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 1005–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Cai, Q.; Song, R.; He, X.; Lu, P. Relationship between filtering bleb vascularization and surgical outcomes after trabeculectomy: An optical coherence tomography angiography study. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 2399–2405. [Google Scholar] [CrossRef] [PubMed]
- Mastropasqua, R.; Brescia, L.; Di Antonio, L.; Guarini, D.; Giattini, D.; Zuppardi, E.; Agnifili, L. Angiographic biomarkers of filtering bleb function after XEN gel implantation for glaucoma: An optical coherence tomography-angiography study. Acta Ophthalmol. 2020, 98, e761–e767. [Google Scholar] [CrossRef]
- Seo, J.H.; Lee, Y.; Shin, J.H.; Kim, Y.A.; Park, K.H. Comparison of conjunctival vascularity changes using optical coherence tomography angiography after trabeculectomy and phacotrabeculectomy. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 2239–2255. [Google Scholar] [CrossRef]
- Hayek, S.; Labbé, A.; Brasnu, E.; Hamard, P.; Baudouin, C. Optical Coherence Tomography Angiography Evaluation of Conjunctival Vessels During Filtering Surgery. Transl. Vis. Sci. Technol. 2019, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, J.H.; Kim, Y.A.; Park, K.H.; Lee, Y. Evaluation of Functional Filtering Bleb Using Optical Coherence Tomography Angiography. Transl. Vis. Sci. Technol. 2019, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carnevale, C.; Riva, I.; Roberti, G.; Michelessi, M.; Tanga, L.; Verticchio Vercellin, A.C.; Agnifili, L.; Manni, G.; Harris, A.; Quaranta, L.; et al. Confocal Microscopy and Anterior Segment Optical Coherence Tomography Imaging of the Ocular Surface and Bleb Morphology in Medically and Surgically Treated Glaucoma Patients: A Review. Pharmaceuticals 2021, 14, 581. https://doi.org/10.3390/ph14060581
Carnevale C, Riva I, Roberti G, Michelessi M, Tanga L, Verticchio Vercellin AC, Agnifili L, Manni G, Harris A, Quaranta L, et al. Confocal Microscopy and Anterior Segment Optical Coherence Tomography Imaging of the Ocular Surface and Bleb Morphology in Medically and Surgically Treated Glaucoma Patients: A Review. Pharmaceuticals. 2021; 14(6):581. https://doi.org/10.3390/ph14060581
Chicago/Turabian StyleCarnevale, Carmela, Ivano Riva, Gloria Roberti, Manuele Michelessi, Lucia Tanga, Alice C. Verticchio Vercellin, Luca Agnifili, Gianluca Manni, Alon Harris, Luciano Quaranta, and et al. 2021. "Confocal Microscopy and Anterior Segment Optical Coherence Tomography Imaging of the Ocular Surface and Bleb Morphology in Medically and Surgically Treated Glaucoma Patients: A Review" Pharmaceuticals 14, no. 6: 581. https://doi.org/10.3390/ph14060581
APA StyleCarnevale, C., Riva, I., Roberti, G., Michelessi, M., Tanga, L., Verticchio Vercellin, A. C., Agnifili, L., Manni, G., Harris, A., Quaranta, L., & Oddone, F. (2021). Confocal Microscopy and Anterior Segment Optical Coherence Tomography Imaging of the Ocular Surface and Bleb Morphology in Medically and Surgically Treated Glaucoma Patients: A Review. Pharmaceuticals, 14(6), 581. https://doi.org/10.3390/ph14060581