Surface Acoustic WaveAmmonia Sensors Based on ST-cut Quartz under Periodic Al Structure
<p>The coordinate system.</p> ">
<p>Boundary conditions for theoretical analysis: (a) Mechanical boundary conditions. (b) Electrical boundary conditions.</p> ">
<p>Dispersion curves of Rayleigh wave under the shorted and open grating on <span class="html-italic">Al</span>/ST-cut quartz at <span class="html-italic">M/p</span> = 0.5: (a) The real part of normalized wave number. (b) The imaginary part of normalized wave number.</p> ">
<p>The COM parameters under the Al periodic grating on ST-cut quartz: (a) |<span class="html-italic">κ<sub>12</sub></span>·2<span class="html-italic">p</span>| and <span class="html-italic">κ<sub>11</sub></span>·2<span class="html-italic">p</span> and (b) |<span class="html-italic">ξ</span>(<span class="html-italic">2p</span>)|<span class="html-italic"><sup>2</sup></span>/(<span class="html-italic">ω<sub>0</sub>C<sub>s</sub></span>).</p> ">
<p>Frequency responses of two-port SAW resonator.</p> ">
<p>The photograph of a dual-device configuration.</p> ">
<p>Schematic diagram of a gas testing system for ammonia detection.</p> ">
<p>Frequency responses of the SAW sensor to 77 ppm ammonia.</p> ">
<p>Frequency responses of the SAW sensor to 40 ppm ammonia.</p> ">
Abstract
:1. Introduction
2. Theoretical Approach
3. Experimental Procedures and Results
4. Conclusions
Acknowledgments
References and Notes
- Wu, T.T.; Chen, Y.Y.; Chou, T.H. A high sensitivity nanomaterial based SAW humidity sensor. J. Phys. D: Appl. Phys. 2008, 41, 085101, 3pp. [Google Scholar]
- Huang, F.C.; Chen, Y.Y.; Wu, T.T. A room temperature SAW hydrogen sensor with Pt coated ZnO nanorods. Nanotechnology 2009, 20, 065501, 6pp. [Google Scholar]
- Timmer, B.; Olthuis, W.; Berg, A. van den. Ammonia sensors and their applications—a review. Sens. Actuat. B 2005, 107, 666–677. [Google Scholar]
- Henry-Briot, E; Ballandras, S.; Marianneau, G.; Martin, G. Influence of metal thickness on phase velocity and thermal sensitivity of SAW devices. IEEE T. Ultrason. Ferr. 2001, 48, 538–546. [Google Scholar]
- Yamazaki, T.; Iizawa, K.; Kanna, S.; Takagi, M. Temperature stability of surface acoustic wave resonators on in-plane rotated 33° Y-cut Quartz. Jpn. J. Appl. Phys. 2003, 42, 3136–3138. [Google Scholar]
- Benetti, M.; Cannatà, D.; Pietrantonio, F.; Di Fedosov, V.I.; Verona, E. Gigahertz-range electro-acoustic devices based on pseudosurface-acoustic waves in AlN/diamond/Si structures. Appl. Phys. Lett. 2005, 87, 033504. [Google Scholar]
- Makkonen, T.; Plessky, V.P. Modeling longitudinal leaky saw propagation under periodic electrode arrays. Proc. IEEE Ultra. Symp. 2005, 691–694. [Google Scholar]
- Hakiki, M.E.; Elmazria, O.; Assouar, M.B.; Mortet, V.; Talbi, A.; Sarry, F. High saw velocity and high electromechanical coupling coefficient with the new three layered structure: ZnO/AlN/Diamond. Proc. IEEE Ultra. Symp. 2004, 195–198. [Google Scholar]
- Hofer, M.; Finger, N.; Kovacs, G.; Zaglmayr, S.; Langer, U.; Lerch, R. Finite-element simulation of wave propagation in periodic piezoelectric SAW structures. IEEE T. Ultrason. Ferr. 2006, 53, 1192–1201. [Google Scholar]
- Laude, V.; Reinhardt, A.; Wilm, M.; Khelif, A.; Ballandras, S. Fast FEM/BEM simulation of SAW devices via asymptotic waveform evaluation. IEEE T. Ultrason. Ferr. 2004, 51, 359–363. [Google Scholar]
- Gamble, K.J.; Malocha, D.C. Simulation of short LSAW transducers including electrode mass loading and finite finger resistance. IEEE T. Ultrason. Ferr. 2002, 49, 47–56. [Google Scholar]
- Duran, M.; Nedelec, J.C.; Ossandon, S. Numerical study of the spectral 3-D Green function singularities for piezoelectric SAW components. IEEE T. Ultrason. Ferr. 2005, 52, 2395–2402. [Google Scholar]
- Peach, R.C.; Simplified, Green. function techniques for general SAW device analysis and optimization. Proc. IEEE Ultra. Symp. 2006, 371–375. [Google Scholar]
- Peach, R.C.; Xu, Z. Design of LCR filters using non-linear optimization applied to simplified Green function models. Proc. IEEE Ultra. Symp. 2006, 78–81. [Google Scholar]
- Laude, V.; Hanckes, C.F.J.; Ballandras, S. Surface Green function of a piezoelectric half-space. IEEE T. Ultrason. Ferr. 2006, 53, 420–428. [Google Scholar]
- Ventura, P.; Hode, J.M.; Desbois, J.; Solal, M. Combined FEM and Green function analysis of periodic SAW structure, application to the calculation of reflection and scattering parameters. IEEE T. Ultrason. Ferr. 2001, 48, 1259–1274. [Google Scholar]
- Kitabayashi, H.; Smith, P.M. Analysis of SAW propagation in gratings on ZnO/diamond substrates. IEEE T. Ultrason. Ferr. 2001, 51, 249–261. [Google Scholar]
- Sato, T.; Abe, H. Propagation of longitudinal leaky surface waves under periodic metal grating structure on lithium tetraborate. IEEE T. Ultrason. Ferr. 1998, 45, 394–408. [Google Scholar]
- Pissoort, D.; Michielssen, E.; Olyslager, F.; Zutter, D.D. Fast analysis of 2D electromagnetic crystal structures using a periodic Green function approach. IEEE J. Lightwave Technol. 2005, 23, 2294–2308. [Google Scholar]
- Pissoort, D.; Michielssen, E. Towards an electromagnetic crystal Green function multiple scattering technique for arbitrary polarizations, lattices, and defects. Antennas and Propagation Society International Symposium; 2006; pp. 2835–2838. [Google Scholar]
- Pissoort, D.; Michielssen, E.; Grbic, A. An electromagnetic crystal Green function multiple scattering technique for arbitrary polarizations, lattices, and effects. IEEE J. Lightwave Technol. 2007, 25, 571–583. [Google Scholar]
- Chen, Y.Y.; Wu, T.T.; Chou, T.T. Analysis of the frequency response of a dispersive IDT/ZnO/sapphire SAW filter using effective permittivity and the coupling of modes model. J. Phys. D: Appl. Phys. 2004, 37, 120–127. [Google Scholar]
- Sveshnikov, B.V.; Shitvov, A.P. Evaluation of dispersion in COM-parameters. Proc. IEEE Ultra. Symp. 2003, 715–719. [Google Scholar]
- Ntagwirumugara, E.; Gryba, T.; Zhang, V.Y.; Dogheche, E.; Lefebvre, J.E. Analysis of frequency response of IDT/ZnO/Si SAW filter using the coupling of modes model. IEEE T. Ultrason. Ferr. 2007, 54, 2011–2015. [Google Scholar]
- Jakubik, W.P.; Urbanczyk, M.; Maciak, E.; Pustelny, T.; Stolarczyk, A. Polyaniline thin films as a toxic gas sensors in SAW system. J. Phys. IV France 2005, 129, 121–124. [Google Scholar]
- Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Nanostructured polyaniline sensors. Chem. Eur. J. 2004, 10, 1314–1319. [Google Scholar]
- Sengupta, P.P.; Barik, S.; Adhikari, B. Polyaniline as a gas-sensor material. Mater. Manuf. Process 2006, 21, 263–270. [Google Scholar]
- Hajdu, F. Behaviour of electroconductive polyaniline films used in highly sensitive ammonia sensors. Proceedings of the 2nd International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics; 2002; pp. 216–220. [Google Scholar]
- Prasad, G.K.; Radhakrishnan, T.P.; Kumar, D.S.; Krishna, M.G. Ammonia sensing characteristics of thin film based on polyelectrolyte templated polyaniline. Sens. Actuat. B 2005, 106, 626–631. [Google Scholar]
- Lee, Y.S.; Joo, B.S.; Choi, N.J.; Lim, J.O.; Huh, J.S.; Lee, D.D. Visible optical sensing of ammonia based on polyaniline film. Sens. Actuat. B 2003, 93, 148–152. [Google Scholar]
- Koul, S.; Chandra, R.; Dhawan, S.K. Conducting polyaniline composite: a reusable sensor material for aqueous ammonia. Sens. Actuat. B 2001, 75, 151–159. [Google Scholar]
- Koul, S.; Chandra, R. Mixed dopant conducting polyaniline reusable blend for the detection of aqueous ammonia. Sens. Actuat. B 2005, 104, 57–67. [Google Scholar]
- Nicho, M.E.; Trejo, M.; Velenzuela, A.G.; Saniger, J.M.; Palacios, J.; Hu, H. Polyaniline composite coatings interrogated by a nulling optical-transmittance bridge for sensing low concentrations of ammonia gas. Sens. Actuat. B 2001, 76, 18–24. [Google Scholar]
- Matsuguchi, M.; Okamoto, A.; Sakai, Y. Effect of humidity on NH3 gas sensitivity of polyaniline blend films. Sens. Actuat. B. 2003, 94, 46–52. [Google Scholar]
- Wang, X.; Miura, N.; Yamazoe, N. Study of WO3 -based sensing materials for NH3 and NO detection. Sens. Actuat. B 2000, 66, 74–76. [Google Scholar]
- Patil, D.; Seo, Y.K.; Hwang, Y.K.; Chang, J.S.; Patil, P. Humidity sensing properties of poly(o-anisidine)/WO3 composites. Sens. Actuat. B 2008, 128, 374–382. [Google Scholar]
- Parvatikar, N.; Jain, S.; Khasim, S.; Revansiddappa, M.; Bhoraskar, S.V.; Ambika Prasad, M.V.N. Electrical and humidity sensing properties of polyaniline/WO3 composites. Sens. Actuat. B 2006, 114, 599–603. [Google Scholar]
- Sadek, A.Z.; Wlodarski, W.; Shin, K.; Kaner, R.B.; Kalantar-zadeh, K. A polyaniline/WO3 nanofiber composite-based ZnO/64°YX LiNbO3 SAW hydrogen gas sensor. Synth. Met. 2008, 158, 29–32. [Google Scholar]
- Yantchev, V.; Katardjiev, I. Propagation characteristics of the fundamental symmetric Lamb wave in thin aluminum nitride membranes with infinite gratings. J. Appl. Phys. 2005, 98, 084910, 7 pp. [Google Scholar]
- Chen, Z.H.; Takeuchi, M.; Yamanouchi, K. Analysis of the film thickness dependence of a single-phase unidirectional transducer using the coupling-of-modes theory and the finite-element method. IEEE T. Ultrason. Ferr. 1992, 39, 82–94. [Google Scholar]
- Wohltjen, H. Mechanism of operation and design considerations for surface acoustic wave device vapour sensors. Sens. Actuat. B 1985, 5, 307–325. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hsu, C.-L.; Shen, C.-Y.; Tsai, R.-T.; Su, M.-Y. Surface Acoustic WaveAmmonia Sensors Based on ST-cut Quartz under Periodic Al Structure. Sensors 2009, 9, 980-994. https://doi.org/10.3390/s90200980
Hsu C-L, Shen C-Y, Tsai R-T, Su M-Y. Surface Acoustic WaveAmmonia Sensors Based on ST-cut Quartz under Periodic Al Structure. Sensors. 2009; 9(2):980-994. https://doi.org/10.3390/s90200980
Chicago/Turabian StyleHsu, Cheng-Liang, Chi-Yen Shen, Rume-Tze Tsai, and Ming-Yau Su. 2009. "Surface Acoustic WaveAmmonia Sensors Based on ST-cut Quartz under Periodic Al Structure" Sensors 9, no. 2: 980-994. https://doi.org/10.3390/s90200980
APA StyleHsu, C. -L., Shen, C. -Y., Tsai, R. -T., & Su, M. -Y. (2009). Surface Acoustic WaveAmmonia Sensors Based on ST-cut Quartz under Periodic Al Structure. Sensors, 9(2), 980-994. https://doi.org/10.3390/s90200980