CMOS Image Sensors for High Speed Applications
<p>(a) Fluorescence spectral response showing the excitation pulse and the emission pulse. (b) Time-resolved and fluorescence lifetime measurements [<a href="#b2-sensors-09-00430" class="html-bibr">2</a>].</p> ">
<p>A block-diagram categorizing some of the most relevant published high-speed imagers [<a href="#b3-sensors-09-00430" class="html-bibr">3</a>-<a href="#b14-sensors-09-00430" class="html-bibr">14</a>], showing the frame rates that can be achieved by different readout architectures.</p> ">
<p>Array access in a simple pixel-by-pixel (PBP) sequential readout architecture.</p> ">
<p>Array access in (a) a per-column ADC (PC-ADC) readout and (b) a PC-ADC ×2.</p> ">
<p>Simplified schematic diagrams of (a) a 3-T active pixel sensor (APS) and (b) a digital pixel sensor (DPS) containing part of the ADC and an 8-bit memory within the pixel.</p> ">
<p>Simulation results of <a href="#FD1" class="html-disp-formula">equations (1</a><a href="#FD3" class="html-disp-formula">3</a>) showing the FR of a pixel-by-pixel, PC-ADC and a PP-ADC readout architectures with 8-bit resolution ADCs (<span class="html-italic">b</span>=8), four 8-bit parallel outputs (<span class="html-italic">n</span>=32) and a <span class="html-italic">τ<sub>ADC</sub></span> = 2 μ s. (a) The FR as a function of varying the imager resolution with a fixed clock rate of 50 MHz (1/<span class="html-italic">τ<sub>RO</sub></span>). (b) The FR as a function of the clock rate with a fixed imager resolution of <span class="html-italic">H</span>×<span class="html-italic">V</span> = 64×64. Both graphs are shown in a log-log scale.</p> ">
<p>Simple 4-T APS with an analog storage element.</p> ">
<p>The storage and readout of an <span class="html-italic">in situ</span> CCD imager that can store up to N frames.</p> ">
<p>(a) The schematic diagram of the ultrahigh-speed <span class="html-italic">in-situ</span> APS containing 8 memory elements and 38 transistors and (b) the layout screen capture of a single pixel.</p> ">
Abstract
:1. Introduction
2. Digital Readout Architectures
2.1. Array-Level Techniques
2.2. Pixel-Level Techniques
3. Analog Readout Architectures
4. Ultrahigh-Speed CMOS Imager
5. Conclusions
Acknowledgments
References and Notes
- Charbon, E. Will CMOS imagers ever need ultra-high speed? IEEE International Conference on Solid-State and Integrated-Circuit Technology (ICSICT), Beijing, October 2004; pp. 1975–1980.
- Faramarzpour, N.; El-Desouki, M.M.; Deen, M.J.; Fang, Q.; Shrani, S.; Liu, L.W.C. CMOS imaging for biomedical applications. IEEE Potentials 2008, 27, 31–36. [Google Scholar]
- Krymski, A.; Van Blerkom, D.; Andersson, A.; Block, N.; Mansoorian, B.; Fossum, E. R. A high speed, 500 frames/s, 1024 × 1024 CMOS active pixel sensor. Proceedings of the 1999 Symposium on VLSI Circuits; 1999; pp. 137–138. [Google Scholar]
- Krymski, A.I.; Bock, N.E.; Tu, N.; Blerkom, D.V.; Fossum, E.R. A high-speed, 240-frames/s, 4.1-Mpixel CMOS sensor. IEEE Trans. Electron Devices 2003, 50, 130–135. [Google Scholar]
- Nishikawa, Y.; Kawahito, S.; Furuta, M.; Tamura, T. A high-speed CMOS image sensor with on-chip parallel image compression circuits. IEEE Custom Integrated Circuits Conference CICC; 2007; pp. 833–836. [Google Scholar]
- Furuta, M.; Inoue, T.; Nishikawa, Y.; Kawahito, S. A 3500fps high-apeed CMOS image sensor with 12b column-parallel cyclic A/D converters. IEEE Symposium on VLSI Circuits Digest of Technical Paper; 2006; pp. 21–22. [Google Scholar]
- Kleinfelder, S.; Lim, S.; Liu, X.; El Gamal, A. A 10,000 frames/s CMOS digital pixel sensor. IEEE J. Solid-State Circuits 2001, 36, 2049–2059. [Google Scholar]
- Ghannoum, R.; Sawan, M. A 90nm CMOS multimode image sensor intended for a visual cortical stimulator. Internatonal Conference on Microelectronics; 2007; pp. 197–182. [Google Scholar]
- Dubois, J.; Ginhac, D.; Paindavoine, M. A single-chip 10000 frames/s CMOS sensor with in-situ 2D programmable image processing. International Workshop on Computer Architecture for Machine Perception and Sensing; 2006; pp. 124–129. [Google Scholar]
- Stevanovic, N.; Hillegrand, M.; Hostica, B.J.; Teuner, A. A CMOS image sensor for high-speed imaging. IEEE International Solid-State Circuits Conference, Digest of Technical Papers; 2000; pp. 104–105. [Google Scholar]
- Lauxtermann, S.; Schwider, P.; Seitz, P.; Bloss, H.; Ernst, J.; Firla, H. A high speed CMOS imager acquiring 5000 frames/sec. International Electron Devices Meeting, IEDM Technical Digest; 1999; pp. 875–878. [Google Scholar]
- Sugiyama, T.; Yoshimura, S.; Suzuki, R.; Sumi, H. A 1/4-inch QVGA color imaging and 3-D sensing CMOS sensor with analog frame memory. IEEE International Solid-State Circuits Conference,Digest of Technical Papers; 2002; pp. 434–435. [Google Scholar]
- Etoh, T.G.; Poggemann, D.; Kreider, G.; Mutoh, H.; Theuwissen, A.J.P.; Ruckelshausen, A.; Kondo, Y.; Maruno, H.; Takubo, K.; Soya, H.; Takehara, K.; Okinaka, T.; Takano, Y. An image sensor which captures 100 consecutive frames at 1000000 frames/s. IEEE Trans. Electron Devices 2003, 50, 144–151. [Google Scholar]
- Kleinfelder, S.; Chen, Y.; Kwiatkowski, K.; Shah, A. High-speed CMOS image sensor circuits with in-situ frame storage. IEEE Trans. Nucl. Sci. 2004, 51, 1648–1656. [Google Scholar]
- Campos, F.S.; Marinov, O.; Faramarzpour, N.; Saffih, F.; Deen, M.J.; Swart, J.W. A multisampling time-domain CMOS imager with synchronous readout circuits. Analog Integr. Circuits Signal Process. 2008, 57, 151–159. [Google Scholar]
- Faramarzpour, N.; Deen, M.J.; Shirani, S.; Fang, Q.; Liu, L. W-C.; Campos, F.S.; Swart, J.W. CMOS based active pixel for low-light-level detection: analysis and measurements. IEEE Trans. Electron Devices 2007, 54, 3229–3237. [Google Scholar]
- Faramarzpour, N.; Deen, M.J.; Shirani, S. An approach to improve the signal-to-noise ratio of active pixel sensor for low-light-level applications. IEEE Trans. Electron Devices 2006, 53, 2384–2391. [Google Scholar]
- Kfouri, M.; Marinov, O.; Quevedo, P.; Faramarzpour, N.; Shirani, S.; Liu, L. W-C.; Fang, Q.; Deen, M.J. Towards a miniaturized wireless fluorescence-based diagnostic imaging system. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 226–234. [Google Scholar]
- Huang, T.; Sorgenfrei, S.; Shepard, K.L.; Gong, P.; Levicky, R. A CMOS array sensor for sub-800-ps time-resolved fluorescence detection. IEEE Custom Integrated Circuits Conference; 2007; pp. 829–832. [Google Scholar]
- Faramarzpour, N.; Deen, M.J.; Shirani, S.; Fang, Q. Fully integrated single photon avalanche diode detector in standard CMOS 0.18μm technology. IEEE Trans. Electron Devices 2008, 55, 760–767. [Google Scholar]
- Hogan, G.E.; Adams, K.J.; Alrick, K.R.; Amann, J.F.; Boissevain, J.G.; Crow, M.L.; et al. Proton radiography. Proceedings of the IEEE Particle Accelerator Conference; 1999; 2, pp. 579–583. [et+al.&publication_year=1999&pages=579–583" class='google-scholar' target='_blank'>Google Scholar]
- Bigas, M.; Cabruja, E.; Forest, J.; Salvi, J. Review of CMOS image sensors. Microelectron. J. 2006, 37, 433–451. [Google Scholar]
- Kitchen, A.; Bermak, A.; Bouzerdoum, A. A digital pixel sensor array with programmable dynamic range. IEEE Trans. Electron Devices 2005, 52, 2591–2601. [Google Scholar]
- Bermak, A. Conversion time analysis of time domain digital pixel sensor in uniform and non-uniform quantizers. Proc. 9th Int. Database Eng. & Application Symposium (IDEAS'05); 2005. [Google Scholar]
- Culurciello, E.; Etienne-Cummings, R.; Boahen, K. A. A biomorphic digital image sensor. IEEE J. Solid-State Circuits 2003, 38, 281–294. [Google Scholar]
- Culurciello, E.; Andreou, A.G. CMOS image sensors for sensor networks. Proc. Analog Integ. Circuits 2006, 49, 39–51. [Google Scholar]
- Culurciello, E.; Andreou, A. G. ALOHA CMOS imager. IEEE Proc. Int. Symp. Cir. Sys. (ISCAS) 2004, 956–959. [Google Scholar]
- Faramarzpour, N.; El-Desouki, M.M.; Deen, M.J.; Shrani, S.; Fang, Q. CMOS photodetector systems for low-level light applications. J. Mater. Sci. - Mater. Electron. 2007. 7 pages in print. [Google Scholar]
- Hosticka, B.J.; Brockherde, W.; Bussmann, A.; Heimann, T.; Jeremias, R.; Kemna, A.; Nitta, C.; Schrey, O. CMOS imaging for automotive application. IEEE Trans. Electron Devices 2003, 50, 173–183. [Google Scholar]
- Simoni, A.; Torelli, G.; Maloberti, F.; Sartori, A.; Plevridis, S.; Birbas, A. A single-chip optical sensor with analog memory for motion detection. IEEE J. Solid-State Circuits 1995, 30, 800–806. [Google Scholar]
- Han, S.-W.; Kim, S.-J.; Choi, J.; Kim, C.-K.; Yoon, E. A high dynamic range CMOS image sensor with in-pixel floating-node analog memory for pixel level integration time control. VLSI Circuits Symp. Dig. 2006, 31–32. [Google Scholar]
- Ni, Y.; Yan, X.L. CMOS active differential imaging device with single in-pixel analog memory. Proc. IEEE Eur. Solid-State Cir. Conf. 2002; pp. 359–362. [Google Scholar]
- Aslam-Siddiqi, A.; Brockherde, W.; Schanz, M.; Hosticka, B.J. A 128-pixel CMOS image sensor with integrated analog nonvolatile memory. IEEE J. Solid-State Circuits 1998, 33, 1497–1501. [Google Scholar]
- Chapinal, G.; Bota, S. A 128 × 128 CMOS image sensor with analog memory for synchronous image capture. IEEE Sens. J. 2002, 2, 120–127. [Google Scholar]
- Radovanovic, S.A.J.; Nauta, B. A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication. IEEE J. Solid-State Circuits 2005, 40, 1706–1717. [Google Scholar]
REF. | TECH. (CMOS) | TECHNIQUE | PARALLEL OUTPUTS | CLOCK FREQ. (MHZ) | FR (fps) | ARRAY SIZE | PIXEL AREA | FF (%) |
---|---|---|---|---|---|---|---|---|
[3] | 0.5 μ m | PC-ADC & dual-portRAM | 64 | 66 | 0.5k | 1024×1024 | (10 μ m)2 | 45 |
[4] | 0.35 μ m | PC-ADC & dual-port RAM | 160 | 66 | 0.24k | 2352×1728 | (7 μ m)2 | 43 |
[5] | 0.25 μ m | PC-ADC & PC-compression | 32 | 16.8 | 3k | 256×256 | (15 μ m)2 | -- |
[6] | 0.25 μ m | PC-ADC | 160 | 68 | 3.5k | 512×512 | (20 μ m)2 | -- |
[7] | 0.18 μ m | PP-ADC | 64 | 167 | 10k | 352×288 | (9.4 μ m)2 | 15 |
[8] | 90 nm | PP-ADC | -- | -- | 0.4k | 64×48 | (9 μ m)2 | 26 |
[9] | 0.35 μ m | Smart-pixel | -- | -- | 10k | 64×64 | (35 μ m)2 | 25 |
[10] | 1.0 μ m | Parallel analog outputs | 4 | 22 | 1.04k | 256×256 | (30 μ m)2 | 40 |
[11] | 0.5 μ m | Parallel analog outputs | 16 | 24 | 5k | 256×256 | 9μ m×18μ m | 42 |
[12] | 0.35 μ m | Analog frame storage | -- | -- | 3.3k | 320×240 | (11.2 μ m)2 | 53 |
[13] | CCD | In-situ | -- | -- | 1M, 100-frames | 312×260 | (66.3 μ m)2 | 13 |
[14] | 0.35 μ m | In-situ | -- | -- | 10.5M, 64-frames | 12×12 | (200 μ m)2 | -- |
This work | 0.13 μ m | In-situ | 8 | 50 | 1.25B, 8-frames | 32×32 | 37μ m×30μ μμm | 9 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
El-Desouki, M.; Jamal Deen, M.; Fang, Q.; Liu, L.; Tse, F.; Armstrong, D. CMOS Image Sensors for High Speed Applications. Sensors 2009, 9, 430-444. https://doi.org/10.3390/s90100430
El-Desouki M, Jamal Deen M, Fang Q, Liu L, Tse F, Armstrong D. CMOS Image Sensors for High Speed Applications. Sensors. 2009; 9(1):430-444. https://doi.org/10.3390/s90100430
Chicago/Turabian StyleEl-Desouki, Munir, M. Jamal Deen, Qiyin Fang, Louis Liu, Frances Tse, and David Armstrong. 2009. "CMOS Image Sensors for High Speed Applications" Sensors 9, no. 1: 430-444. https://doi.org/10.3390/s90100430
APA StyleEl-Desouki, M., Jamal Deen, M., Fang, Q., Liu, L., Tse, F., & Armstrong, D. (2009). CMOS Image Sensors for High Speed Applications. Sensors, 9(1), 430-444. https://doi.org/10.3390/s90100430