A Perturbation Method for the 3D Finite Element Modeling of Electrostatically Driven MEMS
<p>A moving micro-beam carrying a floating potential inside a parrallel-plate capacitor</p> ">
<p>Mesh of Ω (1); distribution of the unperturbed electric potential <span class="html-italic">υ<sub>u</sub></span> (2) and electrice field <b><span class="html-italic">e</span><span class="html-italic"><sub>u</sub></span></b> (3); adapted mesh of Ω<span class="html-italic"><sub>p</sub></span> (4); distribution of the perturbation electric potential <span class="html-italic">υ</span> (5) and the perturbed one <span class="html-italic">υ<sub>p</sub></span> (6); distribution of the perturbation electric field <b><span class="html-italic">e</span></b> (7) and the perturbed one <b><span class="html-italic">e</span><span class="html-italic"><sub>p</sub></span></b> (8)</p> ">
<p>Meshes for the perturbation problems without <span class="html-italic">(left)</span> and with a shell for transformation to infinity <span class="html-italic">(right)</span></p> ">
<p><b><span class="html-italic">e</span><span class="html-italic"><sub>p</sub></span></b> (<span class="html-italic">y</span>-component) computed along the micro-beam top surface for different perturbing regions <span class="html-italic">(left)</span>. Relative error of <b><span class="html-italic">e</span><span class="html-italic"><sub>p</sub></span></b> (<span class="html-italic">y</span>-component) with respect to the FE solution in each perturbing region <span class="html-italic">(right)</span></p> ">
<p>Relative error of <span class="html-italic">υ<sub>p</sub>(left)</span> and <b><span class="html-italic">e</span></b><span class="html-italic"><sub>p</sub></span> (<span class="html-italic">y</span>-component) <span class="html-italic">(right)</span> computed along the micro-beam top surface for several distances separating electrode at 1V and the micro-beam</p> ">
<p>Relative error of <span class="html-italic">υ<sub>p</sub></span> <span class="html-italic">(left)</span> and <b><span class="html-italic">e <sub>p</sub></span></b> (y-component) <span class="html-italic">(right)</span> computed along the micro-beam top surface for some iterations</p> ">
<p>Iteration numbers to achieve the convergence versus the distance separating electrode at 1V and the micro-beam</p> ">
Abstract
:1. Introduction
2. Electric Scalar Potential Weak Formulation
3. Perturbation Method
3.1. Unperturbed electric scalar potential formulation
3.2. Perturbation electric scalar potential formulation
4. Iterative Sequence of Perturbation Electric Scalar Potential Problems
5. Application
6. Conclusion
Acknowledgments
References
- Batra, R. C.; Porfiri, M.; Spinello, D. Review of modeling electrostatically actuated microelec-tromechanical systems. Smart Materials and Structures 2007, 16, R23–R31. [Google Scholar]
- Younis, M. I.; Abdel-Rahman, E. M.; Nayfeh, A. A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical Systems 2003, 12(5), 672–680. [Google Scholar]
- Osterberg, P. M.; Senturia, S. D. M-test: A test chip for MEMS material property measurement using electrostatically actuated test structures. Journal of Microelectromechanical Systems 1997, 6(2), 107–118. [Google Scholar]
- Boutaayamou, M.; Nair, K. H.; Sabariego, R. V.; Dular, P. Finite element modeling of electrostatic MEMS including the impact of fringing field effects on forces. In press in Sensor Letters 2007. [Google Scholar]
- Zhang, L. X.; Zhao, Y. P. Electromechanical model of RF MEMS switches. Microsystem Technolo-gies 2003, 9, 420–426. [Google Scholar]
- Zhang, L. X.; Yu, T. X.; Zhao, Y. P. Numerical analysis of theoretical model of the RF MEMS switches. Acta Mechanica Sinica 2004, 20(2), 178–184. [Google Scholar]
- Rochus, V.; Rixen, D.; Golinval, J.-C. Modeling of electro-mechanical coupling problem using the finite element formulation. Proceedings of the 10th SPIE 2003, volume 5049, 349–360. [Google Scholar]
- Badics, Z.; Matsumoto, Y.; Aoki, K.; Nakayasu, F.; Uesaka, M.; Miya, K. An effective 3-D finite element scheme for computing electromagnetic field distortions due to defects in eddy-current nondestructive evaluation. IEEE Transactions on Magnetics 1997, 33(2), 1012–1020. [Google Scholar]
- Dular, P.; Sabariego, R. V. A perturbation finite element method for modeling moving conductive and magnetic regions without remeshing. The international journal for computation and mathe-matics in electrical and electric engineering 2007, 26(3), 700–711. [Google Scholar]
- Dular, P.; Sabariego, R. V. A perturbation finite element method for computing field distorsions due to conductive regions with h-conform magnetodynamic finite element formulations. IEEE Transactions on Magnetics 2007, 43(4), 1293–1296. [Google Scholar]
- Sebestyen, I. Electric field calculation for HV insulators using domain decomposition method. IEEE Transactions on Magnetics 2002, 38(2), 1213–1216. [Google Scholar]
- Stratton, J. A. Electromagnetic Theory; McGraw-Hill, 1941. [Google Scholar]
- Dular, P.; Legros, W.; Nicolet, A. Coupling of local and global quantities in various finite element formulations and its application to electrostatics, magnetostatics and magnetodynamics. IEEE Transactions on Magnetics 1998, 34(5), 3078–3081. [Google Scholar]
- Geuzaine, C.; Meys, B.; Henrotte, F.; Dular, P.; Legros, W. A Galerkin projection method for mixed finite elements. IEEE Transactions on Magnetics 1999, 35(3), 1438–1441. [Google Scholar]
- Brunotte, X.; Meunier, G.; Imhoff, J.-F. Finite element modeling of unbounded problems using transformations: a rigorous, powerful and easy solution. IEEE Transactions on Magnetics 1992, 28(2), 1663–1666. [Google Scholar]
- Weniger, E. J. Prediction properties of Aitken's iterated δ2process, of Wynn's epsilon algorithm and of Brezinski's iterated theta algorithm. Journal of Computational and Applied Mathematics 2000, 122(1-2), 329–356. [Google Scholar]
© 2008 by MDPI Reproduction is permitted for noncommercial purposes.
Share and Cite
Boutaayamou, M.; Sabariego, R.V.; Dular, P. A Perturbation Method for the 3D Finite Element Modeling of Electrostatically Driven MEMS. Sensors 2008, 8, 994-1003. https://doi.org/10.3390/s8020994
Boutaayamou M, Sabariego RV, Dular P. A Perturbation Method for the 3D Finite Element Modeling of Electrostatically Driven MEMS. Sensors. 2008; 8(2):994-1003. https://doi.org/10.3390/s8020994
Chicago/Turabian StyleBoutaayamou, Mohamed, Ruth V. Sabariego, and Patrick Dular. 2008. "A Perturbation Method for the 3D Finite Element Modeling of Electrostatically Driven MEMS" Sensors 8, no. 2: 994-1003. https://doi.org/10.3390/s8020994
APA StyleBoutaayamou, M., Sabariego, R. V., & Dular, P. (2008). A Perturbation Method for the 3D Finite Element Modeling of Electrostatically Driven MEMS. Sensors, 8(2), 994-1003. https://doi.org/10.3390/s8020994