A Novel Motor Structure with Extended Particle Swarm Optimization for Space Robot Control
<p>Concept image of a robotic arm for on-orbit service. The robotic arm is used to assist in the combination of the two satellites.</p> "> Figure 2
<p>Structure of the stepped rotor BLSRM.</p> "> Figure 3
<p>Important parameters of the stepped rotor BLSRM.</p> "> Figure 4
<p>Feasible range of the rotor pole <inline-formula><mml:math id="mm94"><mml:semantics><mml:mrow><mml:mi>arc</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> and torque pole <inline-formula><mml:math id="mm95"><mml:semantics><mml:mrow><mml:mi>arc</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 5
<p>Starting torque of different step angles for three parameter combinations.</p> "> Figure 6
<p>Average torque of different step angles for three parameter combinations.</p> "> Figure 7
<p>Torque fluctuation of different step angles for three parameter combinations.</p> "> Figure 8
<p>Starting torque of different step heights for three parameter combinations.</p> "> Figure 9
<p>Average torque of different step heights for three parameter combinations.</p> "> Figure 10
<p>Torque fluctuation at different step heights for three parameter combinations.</p> "> Figure 11
<p>Improved PSO flow chart, showing the basic process of the improved PSO.</p> "> Figure 12
<p>Finite element model of the stepped rotor BLSRM.</p> "> Figure 13
<p>Block diagram of the stepped rotor BLSRM optimization design system.</p> "> Figure 14
<p>Convergence curve of the objective function.</p> "> Figure 15
<p>Comparison of convergence processes.</p> "> Figure 16
<p>Inductance characteristic curve of torque windings.</p> "> Figure 17
<p>Torque characteristic curve of torque windings.</p> "> Figure 18
<p>Comparison of starting torques of three motor structures.</p> "> Figure 19
<p>Comparison of torque fluctuations of three motor structures.</p> "> Figure 20
<p>Torque variation during the speed regulation process.</p> "> Figure 21
<p>Speed variation during the speed regulation process.</p> ">
Abstract
:1. Introduction
2. Motor Design for Space Robots
2.1. Structure and Working Principle of the BLSRM
2.2. Parameter Conditions
2.2.1. Design of Step Angle
2.2.2. Design of Step Height
3. Improved PSO
4. Optimized Design of Stepped Rotor BLSRM
4.1. The Selection of Optimization Variables
4.2. Constraint Setting
4.3. Determination of the Objective Function
4.4. Method for Calculating Fitness Value Based on Finite Element
4.5. Algorithm Implementation
5. Analysis and Verification of Results
5.1. Optimization Algorithm Test
5.2. Characteristic Analysis of BLSRM
5.2.1. Inductance Characteristics
5.2.2. Torque Characteristics
5.2.3. Starting Torque and Torque Ripple
5.2.4. Structural Parameter Comparison
5.3. Dynamic Simulation
6. Conclusions
- (1)
- Compared with the standard PSO, the proposed PSO had a faster convergence speed, higher accuracy, and more robust global optimization capability;
- (2)
- Compared with the original 12/14 type BLSRM, the torque ripple of the stepped rotor type BLSRM w reduced, and the starting torque is significantly increased. Furthermore, the optimized motor reduces the torque ripple under the condition of ensuring self-starting ability. This proves that the stepped rotor BLSRM structure is adequate and feasible.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BLSRM | Bearingless Switched Reluctance Motor |
SRM | Switched Reluctance Motors |
PSO | Particle Swarm Optimization |
Rotor Pole Arc | |
Torque Pole Arc | |
Step Height | |
Step Angle |
References
- Li, W.J.; Cheng, D.Y.; Liu, X.G.; Wang, Y.B.; Shi, W.H.; Tang, Z.X.; Gao, F.; Zeng, F.M.; Chai, H.Y.; Luo, W.B.; et al. On-orbit service (OOS) of spacecraft: A review of engineering developments. Prog. Aerosp. Sci. 2019, 108, 32–120. [Google Scholar] [CrossRef]
- Li, Y.; Sun, X.; Liu, X.; Wu, J.; Liu, Q. Deployment of On-Orbit Service Vehicles Using a Fuzzy Adaptive Particle Swarm Optimization Algorithm. Model. Simul. Eng. 2021, 2021, 6644339. [Google Scholar] [CrossRef]
- Han, D.; Dong, G.Q.; Huang, P.E.; Ma, Z.Q. Capture and detumbling control for active debris removal by a dual-arm space robot. Chin. J. Aeronaut. 2021, 35, 342–353. [Google Scholar] [CrossRef]
- Hatty, I. Viability of On-Orbit Servicing Spacecraft to Prolong the Operational Life of Satellites. J. Space Saf. Eng. 2022, 9, 263–268. [Google Scholar] [CrossRef]
- Truong, V.; Greco, T.; Kassam, I.; D’Silva, O.; Tan, E. A cost effective methodology for building flight spares for robotic life extension on the international space station. Acta Astronaut. 2019, 162, 405–408. [Google Scholar] [CrossRef]
- Ding, X.L.; Wang, Y.C.; Wang, Y.B.; Xu, K. A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing. Sci. China Technol. Sci. 2021, 64, 462–480. [Google Scholar] [CrossRef]
- Shi, L.; Xiao, X.; Shan, M.; Wang, X. Force control of a space robot in on-orbit servicing operations. Acta Astronaut. 2022, 193, 469–482. [Google Scholar] [CrossRef]
- Yang, J.; Peng, H.; Zhang, J.; Wu, Z. Dynamic modeling and beating phenomenon analysis of space robots with continuum manipulators. Chin. J. Aeronaut. 2022, 35, 226–241. [Google Scholar] [CrossRef]
- Ahn, J.W.; Lukman, G.F. Switched reluctance motor: Research trends and overview. CES Trans. Electr. Mach. Syst. 2018, 2, 339–347. [Google Scholar] [CrossRef]
- Yang, Y.F.; Sun, L.; Zhu, X.B.; Hu, D. Comparative performance analysis of bearingless switched reluctance motor. AIP Adv. 2021, 11, 025307. [Google Scholar] [CrossRef]
- Kumar, V.M.; Vinoth Kumar, K.; Saravanakumar, R. Switched Reluctance Motor Converter Topologies: A Review. Innov. Electr. Electron. Eng. 2020, 626, 55–63. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, X.; Deng, Z.; Li, K. Modeling and Characteristic Investigation of Axial Reluctance Force for Bearingless Switched Reluctance Motor. IEEE Trans. Ind. Appl. 2021, 57, 5215–5226. [Google Scholar] [CrossRef]
- Degano, M.; Murataliyev, M.; Di Nardo, M. Reluctance motors (including switched reluctance motors). In Encyclopedia of Electrical and Electronic Power Engineering; García, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 319–328. ISBN 978-0-12-823211-8. [Google Scholar]
- Qi, Y.; Xu, Z.; Zhang, Y. Characteristics Analysis of a Novel Hybrid Rotor Type 12/14 Bearingless Switched Reluctance Motor. In Proceedings of the 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Republic of Korea, 31 October–3 November 2021; pp. 339–343. [Google Scholar]
- Li, F.; Wang, H.; Zhou, G.X.; Pang, M.; Wei, X.; Zhang, M. Design and Experimental Investigation of Bearingless Switched Reluctance Motor with Permanent Magnet into Stator Yoke. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju Island, Republic of Korea, 7–10 October 2018; pp. 1968–1973. [Google Scholar]
- Xu, Z.; Lee, D.H.; Ahn, J.W. Stepped rotor type 12/14 bearingless SRM for self-starting and torque ripple reduction. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; pp. 414–419. [Google Scholar]
- Xu, Z.; Zhang, F.; Lee, D.H.; Ahn, J.W. Design and analysis of novel 12/14 hybrid pole type bearingless switched reluctance motor with short flux path. J. Electr. Eng. Technol. 2012, 7, 705–713. [Google Scholar] [CrossRef]
- Sobhan, P.V.S.; Kumar, G.V.N.; Rao, P.V.R. Rotor autocentering and speed control of hybrid bearingless SRM using single-neuron adaptive PID controller. Int. J. Eng. 2018, 7, 5. [Google Scholar] [CrossRef]
- Hao, W.; Wang, Y. A brief analysis of a bearingless linear switched reluctance motor with mover structural decoupling design. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 652–653. [Google Scholar] [CrossRef]
- Tang, S.; Wang, H.; Xue, B.; Liang, J. Levitation control of novel bearingless switched reluctance motor with biased permanent magnet. In Proceedings of the 2015 18th International Conference on Electrical Machines and Systems (ICEMS), Pattaya, Thailand, 25–28 October 2015; pp. 1360–1365. [Google Scholar] [CrossRef]
- Jain, N.K.; Nangia, U.; Jain, J. A review of particle swarm optimization. J. Inst. Eng. (India) Ser. B 2018, 99, 407–411. [Google Scholar] [CrossRef]
- Chopard, B.; Tomassini, M. An Introduction to Metaheuristics for Optimization, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2018; Chapter 6; pp. 97–102. ISBN 978-3-319-93073-2. [Google Scholar]
- Houssein, E.H.; Gad, A.G.; Hussain, K.; Suganthan, P.N. Major advances in particle swarm optimization: Theory, analysis, and application. Swarm Evol. Comput. 2021, 63, 100868. [Google Scholar] [CrossRef]
- de Almeida, B.S.G.; Leite, V.C. A powerful technique for solving engineering problems. In Particle Swarm Optimization; Del Ser, J., Villar, E., Osaba, E., Eds.; IntechOpen: Rijeka, Croatia, 2019; pp. 1–21. ISBN 978-1-78984-537-2. [Google Scholar]
- Hu, Z.; Yang, G. Simulation control model of synchronous motor based on PSO algorithm optimization in power system. Energy Rep. 2022, 8, 1044–1054. [Google Scholar] [CrossRef]
- Zhu, S.P.; Keshtegar, B.; Seghier, M.E.A.B.; Zio, E.; Taylan, O. Hybrid and enhanced PSO: Novel first order reliability method-based hybrid intelligent approaches. Comput. Methods Appl. Mech. Eng. 2022, 393, 114730. [Google Scholar] [CrossRef]
- Sahu, A.; Mohanty, K.B.; Mishra, R.N. Design of MPC-PSO based torque regulator for DTC-SVM induction motor drive. In Proceedings of the 2021 1st International Conference on Power Electronics and Energy (ICPEE), Bhubaneswar, India, 2–3 January 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Scalcon, F.P.; Vieira, R.P.; Gründling, H.A. PSO-Based Fast Mechanical Parameters Estimation of Switched Reluctance Motor Drives. J. Control Autom. Electr. Syst. 2022, 33, 1286–1293. [Google Scholar] [CrossRef]
Standard PSO | Improved PSO | The Optimal Value | |
---|---|---|---|
Unimodal function | −3.43 × 10−5 | −8.53 × 10−26 | 0 |
Multimodal function | 72.64 | 80.70658 | 80.70658 |
Parameter | Type 12/14 | Stepped Type Initial Value | Stepped Type Optimization Value |
---|---|---|---|
Phase | 2 | 2 | 2 |
Suspension force pole | 4 | 4 | 4 |
Torque pole | 8 | 8 | 8 |
Number of rotor poles | 14 | 14 | 14 |
Suspension force pole arc (deg) | 25.7 | 25.7 | 25.7 |
Torque pole arc (deg) | 12.85 | 11.5 | 10.3 |
Rotor pole arc (deg) | 12.85 | 14 | 13.61 |
Air gap length (mm) | 0.3 | 0.3 | 0.3 |
Stator outer diameter (mm) | 112 | 112 | 112 |
Stator yoke height (mm) | 7.7 | 7.7 | 7.7 |
Rotor outer diameter (mm) | 59.6 | 59.6 | 59.6 |
Rotor yoke height (mm) | 9.7 | 9.7 | 9.7 |
Core length (mm) | 40 | 40 | 40 |
Shaft diameter (mm) | 18 | 18 | 18 |
Stepped angle (deg) | - | 0.1 | 0.22 |
Stepped height (mm) | - | 2.5 | 3.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Liu, Z.; Wang, X.; Li, D.; Zhang, T.; Yu, J.; Wang, J. A Novel Motor Structure with Extended Particle Swarm Optimization for Space Robot Control. Sensors 2023, 23, 4126. https://doi.org/10.3390/s23084126
Gao H, Liu Z, Wang X, Li D, Zhang T, Yu J, Wang J. A Novel Motor Structure with Extended Particle Swarm Optimization for Space Robot Control. Sensors. 2023; 23(8):4126. https://doi.org/10.3390/s23084126
Chicago/Turabian StyleGao, Hongwei, Zide Liu, Xuna Wang, Dongyu Li, Tian Zhang, Jiahui Yu, and Jianbin Wang. 2023. "A Novel Motor Structure with Extended Particle Swarm Optimization for Space Robot Control" Sensors 23, no. 8: 4126. https://doi.org/10.3390/s23084126
APA StyleGao, H., Liu, Z., Wang, X., Li, D., Zhang, T., Yu, J., & Wang, J. (2023). A Novel Motor Structure with Extended Particle Swarm Optimization for Space Robot Control. Sensors, 23(8), 4126. https://doi.org/10.3390/s23084126