An Active Multi-Object Ultrafast Tracking System with CNN-Based Hybrid Object Detection
<p>Contradiction between wide field of view and high-definition images.</p> "> Figure 2
<p>Wide field of view registration and multi-object tracking by virtual cameras using a galvanometer-based reflective PTZ camera.</p> "> Figure 3
<p>Flowchart of object registration process and multi-object tracking process.</p> "> Figure 4
<p>Time-division threaded gaze control process for multiple target tracking based on HFR object detection hybridized with CNN: (<b>a</b>) time-division threaded gaze control process for simultaneous multi-object observation and (<b>b</b>) HFR target tracking hybridized with CNN in each virtual camera.</p> "> Figure 5
<p>(<b>a</b>) Overview and (<b>b</b>) geometry of the galvanometer-based reflective PTZ camera.</p> "> Figure 6
<p>The 1920 × 1080 input images from the digital camera and the panoramic stitched 9600 × 5280 images from the PTZ camera: (<b>a</b>) overview of the experimental scene and (<b>b</b>) panoramic stitched image from the PTZ camera (targets are pasted on the panoramic image in the form of a red frame texture).</p> "> Figure 7
<p>HD images of twenty objects tracked simultaneously.</p> "> Figure 8
<p>Pan and tilt angles of the galvanometer-based reflective PTZ camera when scanning and tracking twenty different targets.</p> "> Figure 9
<p>Experimental environment used for tracking multiple moving objects in an outdoor scene.</p> "> Figure 10
<p>The 1920 × 1080 input images from the digital camera and panoramic stitched 9600 × 5280 images from the PTZ camera: (<b>a</b>) input image of digital camera and (<b>b</b>) panoramic stitched image from the PTZ camera.</p> "> Figure 11
<p>The 145 × 108 ROI images around targets from the digital wide-view camera and 640 × 480 input images from the virtual PTZ cameras (red boxs are the test results).</p> "> Figure 12
<p>Pan and tilt angles of the galvanometer-based reflective PTZ camera when scanning and tracking multiple bottles.</p> "> Figure 13
<p>The <span class="html-italic">x</span> and <span class="html-italic">y</span> centroids of tracked bottle regions.</p> "> Figure 14
<p>Tracking status of the free-fall of bottle 1 when tracking three bottles simultaneously: (<b>a</b>) free-fall of bottle 1 based on CNN hybrid tracking and (<b>b</b>) free-fall of bottle 1 based on YOLOv4 tracking.</p> "> Figure 15
<p>Relationship between velocity and distance from the detection ROI to the image center during free-fall bottle tracking.</p> "> Figure 16
<p>Pixel deviation value between the object position calculated by different algorithms and the object’s real position during free-falling.</p> "> Figure 17
<p>The 1920 × 1080 input images from the digital camera and panoramic stitched 9600 × 5280 images from the PTZ camera: (<b>a</b>) input image of the digital camera and (<b>b</b>) panoramic stitched image from the PTZ camera.</p> "> Figure 18
<p>Pan and tilt angles of the galvanometer-based reflective PTZ camera when scanning and tracking multiple persons.</p> "> Figure 19
<p>Cross-tracking of person 2 and person 3 between 24.9 and 26.1 s.</p> "> Figure 20
<p>Cross-tracking of person 2 and person 3 between 31.4 and 32.6 s.</p> "> Figure 21
<p>The <span class="html-italic">x</span> and <span class="html-italic">y</span> centroids of the regions with tracked people.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Object Detection
2.2. Multiple Object Tracking (Mot)
2.3. High-Speed Vision
3. Active Multi-Object Ultrafast Tracking with CNN-Based Hybrid Object Detection
3.1. New Object Registration Process
3.2. Multi-Target Tracking Process
4. Experiments
4.1. System Configuration
4.2. Execution Times of Visual Tracking Algorithm
4.3. Simultaneous Tracking of Twenty Different Objects
4.4. Low-Latency Pan-Tilt Tracking of Multiple Moving Bottles
4.5. Multi-Person Pan-Tilt Tracking in Wide-Area Surveillance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, W.; Xing, J.; Milan, A.; Zhang, X.; Liu, W.; Kim, T.K. Multiple object tracking: A literature review. Artif. Intell. 2021, 293, 103448. [Google Scholar] [CrossRef]
- Mwamba, I.C.; Morshedi, M.; Padhye, S.; Davatgari, A.; Yoon, S.; Labi, S.; Hastak, M. Synthesis Study of Best Practices for Mapping and Coordinating Detours for Maintenance of Traffic (MOT) and Risk Assessment for Duration of Traffic Control Activities; Technical Report; Joint Transportation Research Program; Purdue University: West Lafayette, IN, USA, 2021. [Google Scholar]
- Ghafir, I.; Prenosil, V.; Svoboda, J.; Hammoudeh, M. A survey on network security monitoring systems. In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Vienna, Austria, 22–24 August 2016; pp. 77–82. [Google Scholar]
- Qureshi, K.N.; Abdullah, A.H. A survey on intelligent transportation systems. Middle-East J. Sci. Res. 2013, 15, 629–642. [Google Scholar]
- Weng, X.; Wang, J.; Held, D.; Kitani, K. 3d multi-object tracking: A baseline and new evaluation metrics. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, 24–30 October 2020; pp. 10359–10366. [Google Scholar]
- Rzadca, K.; Findeisen, P.; Swiderski, J.; Zych, P.; Broniek, P.; Kusmierek, J.; Nowak, P.; Strack, B.; Witusowski, P.; Hand, S.; et al. Autopilot: Workload autoscaling at Google. In Proceedings of the Fifteenth European Conference on Computer Systems, New York, NY, USA, 8–12 May 2023; pp. 1–16. [Google Scholar]
- Bohush, R.; Zakharava, I. Robust person tracking algorithm based on convolutional neural network for indoor video surveillance systems. In Proceedings of the Pattern Recognition and Information Processing: 14th International Conference, PRIP 2019, Minsk, Belarus, 21–23 May 2019; Revised Selected Papers 14. pp. 289–300. [Google Scholar]
- Kaiser, R.; Thaler, M.; Kriechbaum, A.; Fassold, H.; Bailer, W.; Rosner, J. Real-time Person Tracking in High-resolution Panoramic Video for Automated Broadcast Production. In Proceedings of the 2011 Conference for Visual Media Production, Washington, DC, USA, 16–17 November 2011; pp. 21–29. [Google Scholar] [CrossRef]
- Fukami, K.; Fukagata, K.; Taira, K. Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 2019, 870, 106–120. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, S.; Barnes, N. A deep journey into super-resolution: A survey. ACM Comput. Surv. (CSUR) 2020, 53, 1–34. [Google Scholar] [CrossRef]
- Carles, G.; Downing, J.; Harvey, A.R. Super-resolution imaging using a camera array. Opt. Lett. 2014, 39, 1889–1892. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Paik, J.K.; Koschan, A.; Abidi, B.R.; Abidi, M.A. Real-time video tracking using PTZ cameras. In Proceedings of the Sixth International Conference on Quality Control by Artificial Vision, Gatlinburg, TN, USA, 19–22 May 2003; Volume 5132, pp. 103–111. [Google Scholar]
- Ding, C.; Song, B.; Morye, A.; Farrell, J.A.; Roy-Chowdhury, A.K. Collaborative sensing in a distributed PTZ camera network. IEEE Trans. Image Process. 2012, 21, 3282–3295. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, M.; Gu, Q.; Ishii, I. A Flexible Calibration Algorithm for High-speed Bionic Vision System based on Galvanometer. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 4222–4227. [Google Scholar] [CrossRef]
- Gu, Q.Y.; Ishii, I. Review of some advances and applications in real-time high-speed vision: Our views and experiences. Int. J. Autom. Comput. 2016, 13, 305–318. [Google Scholar] [CrossRef]
- Okumura, K.; Oku, H.; Ishikawa, M. High-speed gaze controller for millisecond-order pan/tilt camera. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 6186–6191. [Google Scholar]
- Aoyama, T.; Li, L.; Jiang, M.; Inoue, K.; Takaki, T.; Ishii, I.; Yang, H.; Umemoto, C.; Matsuda, H.; Chikaraishi, M.; et al. Vibration sensing of a bridge model using a multithread active vision system. IEEE/ASME Trans. Mechatron. 2017, 23, 179–189. [Google Scholar] [CrossRef]
- Hu, S.; Shimasaki, K.; Jiang, M.; Takaki, T.; Ishii, I. A dual-camera-based ultrafast tracking system for simultaneous multi-target zooming. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 521–526. [Google Scholar]
- Jiang, M.; Sogabe, R.; Shimasaki, K.; Hu, S.; Senoo, T.; Ishii, I. 500-fps omnidirectional visual tracking using three-axis active vision system. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Chua, L.O.; Roska, T. The CNN paradigm. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 1993, 40, 147–156. [Google Scholar] [CrossRef]
- Jiang, M.; Shimasaki, K.; Hu, S.; Senoo, T.; Ishii, I. A 500-fps pan-tilt tracking system with deep-learning-based object detection. IEEE Robot. Autom. Lett. 2021, 6, 691–698. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Turk, M.; Pentland, A. Eigenfaces for Recognition. J. Cogn. Neurosci. 1991, 3, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Amit, Y.; Felzenszwalb, P.; Girshick, R. Object detection. In Computer Vision: A Reference Guide; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–9. [Google Scholar]
- Li, G.; Xu, D.; Cheng, X.; Si, L.; Zheng, C. Simvit: Exploring a simple vision transformer with sliding windows. In Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022; pp. 1–6. [Google Scholar]
- Ghasemi, Y.; Jeong, H.; Choi, S.H.; Park, K.B.; Lee, J.Y. Deep learning-based object detection in augmented reality: A systematic review. Comput. Ind. 2022, 139, 103661. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893. [Google Scholar] [CrossRef]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1, p. I. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Tran, D.T.; Byun, J.Y.; Jeon, J.W. Real-time vehicle detection using an effective region proposal-based depth and 3-channel pattern. IEEE Trans. Intell. Transp. Syst. 2018, 20, 3634–3646. [Google Scholar] [CrossRef]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Targ, S.; Almeida, D.; Lyman, K. Resnet in resnet: Generalizing residual architectures. arXiv 2016, arXiv:1603.08029. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114. [Google Scholar]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Purkait, P.; Zhao, C.; Zach, C. SPP-Net: Deep absolute pose regression with synthetic views. arXiv 2017, arXiv:1712.03452. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. Adv. Neural Inf. Process. Syst. 2016, 29. [Google Scholar]
- Qiao, S.; Chen, L.C.; Yuille, A. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10213–10224. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF International Conference on Computer Cision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9627–9636. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14, pp. 21–37. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar] [CrossRef]
- Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. CenterNet: Keypoint Triplets for Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6568–6577. [Google Scholar] [CrossRef]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10778–10787. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Sang, J.; Wu, Z.; Guo, P.; Hu, H.; Xiang, H.; Zhang, Q.; Cai, B. An improved YOLOv2 for vehicle detection. Sensors 2018, 18, 4272. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Yu, J.; Zhang, W. Face mask wearing detection algorithm based on improved YOLO-v4. Sensors 2021, 21, 3263. [Google Scholar] [CrossRef]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 2778–2788. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Soleimanitaleb, Z.; Keyvanrad, M.A.; Jafari, A. Object Tracking Methods:A Review. In Proceedings of the 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Khorasan Razavi, Iran, 24–25 October 2019; pp. 282–288. [Google Scholar] [CrossRef]
- Cheng, Y. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 790–799. [Google Scholar] [CrossRef]
- Carpenter, J.; Clifford, P.; Fearnhead, P. Improved particle filter for nonlinear problems. IEEE Proc.-Radar Sonar Navig. 1999, 146, 2–7. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J. A scale adaptive kernel correlation filter tracker with feature integration. In Proceedings of the ECCV Workshops (2), Zurich, Switzerland, 6–7 September 2014; Volume 8926, pp. 254–265. [Google Scholar]
- Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2544–2550. [Google Scholar]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar]
- Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [Google Scholar]
- Wang, Z.; Zheng, L.; Liu, Y.; Li, Y.; Wang, S. Towards real-time multi-object tracking. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XI 16, pp. 107–122. [Google Scholar]
- Chen, L.; Ai, H.; Zhuang, Z.; Shang, C. Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018; pp. 1–6. [Google Scholar]
- Bergmann, P.; Meinhardt, T.; Leal-Taixe, L. Tracking without bells and whistles. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 15–20 June 2019; pp. 941–951. [Google Scholar]
- Zhang, J.; Zhou, S.; Chang, X.; Wan, F.; Wang, J.; Wu, Y.; Huang, D. Multiple object tracking by flowing and fusing. arXiv 2020, arXiv:2001.11180. [Google Scholar]
- Sun, P.; Cao, J.; Jiang, Y.; Zhang, R.; Xie, E.; Yuan, Z.; Wang, C.; Luo, P. Transtrack: Multiple object tracking with transformer. arXiv 2020, arXiv:2012.15460. [Google Scholar]
- Meinhardt, T.; Kirillov, A.; Leal-Taixe, L.; Feichtenhofer, C. Trackformer: Multi-object tracking with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8844–8854. [Google Scholar]
- Dimitrakopoulos, G.; Demestichas, P. Intelligent transportation systems. IEEE Veh. Technol. Mag. 2010, 5, 77–84. [Google Scholar] [CrossRef]
- Loianno, G.; Scaramuzza, D.; Kumar, V. Special issue on high-speed vision-based autonomous navigation of uavs. J. Field Robot. 2018, 1, 1–3. [Google Scholar] [CrossRef]
- Huang, S.; Bergström, N.; Yamakawa, Y.; Senoo, T.; Ishikawa, M. Applying high-speed vision sensing to an industrial robot for high-performance position regulation under uncertainties. Sensors 2016, 16, 1195. [Google Scholar] [CrossRef] [PubMed]
- Ishii, I.; Taniguchi, T.; Sukenobe, R.; Yamamoto, K. Development of high-speed and real-time vision platform, H3 vision. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, New Orleans, LA, USA, 18–24 June 2022; pp. 3671–3678. [Google Scholar] [CrossRef]
- Sharma, A.; Shimasaki, K.; Gu, Q.; Chen, J.; Aoyama, T.; Takaki, T.; Ishii, I.; Tamura, K.; Tajima, K. Super high-speed vision platform for processing 1024 × 1024 images in real time at 12500 fps. In Proceedings of the 2016 IEEE/SICE International Symposium on System Integration (SII), Shiroishi, Japan, 13–15 December 2016; pp. 544–549. [Google Scholar] [CrossRef]
- Gu, Q.; Nakamura, N.; Aoyama, T.; Takaki, T.; Ishii, I. A Full-Pixel Optical Flow System Using a GPU-Based High-Frame-Rate Vision. In Proceedings of the 2015 Conference on Advances In Robotics, Goa, India, 2–4 July 2015; Association for Computing Machinery: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Kobayashi-Kirschvink, K.; Oku, H. Design principles of a high-speed omni-scannable gaze controller. IEEE Robot. Autom. Lett. 2016, 1, 836–843. [Google Scholar] [CrossRef]
- Hu, S.; Shimasaki, K.; Jiang, M.; Senoo, T.; Ishii, I. A simultaneous multi-object zooming system using an ultrafast pan-tilt camera. IEEE Sens. J. 2021, 21, 9436–9448. [Google Scholar] [CrossRef]
- Yoo, J.C.; Han, T.H. Fast normalized cross-correlation. Circuits Syst. Signal Process. 2009, 28, 819–843. [Google Scholar] [CrossRef]
- Zhong, Y.; Deng, W.; Hu, J.; Zhao, D.; Li, X.; Wen, D. SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition. IEEE Trans. Image Process. 2021, 30, 2587–2598. [Google Scholar] [CrossRef] [PubMed]
Size | 64 × 64 | 128 × 128 | 256 × 256 | 512 × 512 | |
---|---|---|---|---|---|
Tracker | |||||
BOOSTING | 17.73 | 54.85 | 29.85 | 8.11 | |
KCF | 5.39 | 5.05 | 20.6 | 90.22 | |
MOSSE | 0.26 | 1.12 | 1.55 | 17.26 | |
MIL | 79.63 | 76.67 | 72.68 | 67.71 | |
TLD | 30.15 | 22.14 | 26.45 | 26.99 | |
MEDIANFLOW | 2.12 | 2.21 | 2.10 | 2.23 | |
GOTURN | 23.22 | 24.54 | 24.74 | 29.60 | |
ours(playback) | 0.27 | 0.41 | 0.77 | 1.82 | |
(forward) | 0.021 | 0.056 | 0.222 | 0.62 | |
(YOLOv4) | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Hu, S.; Shimasaki, K.; Ishii, I. An Active Multi-Object Ultrafast Tracking System with CNN-Based Hybrid Object Detection. Sensors 2023, 23, 4150. https://doi.org/10.3390/s23084150
Li Q, Hu S, Shimasaki K, Ishii I. An Active Multi-Object Ultrafast Tracking System with CNN-Based Hybrid Object Detection. Sensors. 2023; 23(8):4150. https://doi.org/10.3390/s23084150
Chicago/Turabian StyleLi, Qing, Shaopeng Hu, Kohei Shimasaki, and Idaku Ishii. 2023. "An Active Multi-Object Ultrafast Tracking System with CNN-Based Hybrid Object Detection" Sensors 23, no. 8: 4150. https://doi.org/10.3390/s23084150
APA StyleLi, Q., Hu, S., Shimasaki, K., & Ishii, I. (2023). An Active Multi-Object Ultrafast Tracking System with CNN-Based Hybrid Object Detection. Sensors, 23(8), 4150. https://doi.org/10.3390/s23084150