Cross-Modality Person Re-Identification via Local Paired Graph Attention Network
<p>(<b>a</b>) Most methods for cross-modality person ReID treat each pedestrian image as a node of a graph. (<b>b</b>) The proposed method treats paired local features from different modalities as a node of a graph. We distinguish the pedestrian identities using different colors, with the same color indicating the same pedestrian. Circles and triangles are used to represent the IR and RGB modalities, respectively.</p> "> Figure 2
<p>The framework of our approach. We first apply the Local Feature Extractor to obtain the local features from different modalities. Then, we propose the LPGAT module to learn the correlation between the paired local features from different modalities. The same color indicates the same pedestrian, and the circle and the triangle represent IR and RGB modalities, respectively. We also use the proposed <math display="inline"><semantics> <mrow> <msup> <mi>C</mi> <mn>3</mn> </msup> <mi>L</mi> </mrow> </semantics></math> to optimize the network, which constrains the distance between the local features and their heterogeneous centers.</p> "> Figure 3
<p>(<b>a</b>) The constraint on the centers of RGB modality and IR modality. However, there are some outliers in the learning process. (<b>b</b>) The proposed <math display="inline"><semantics> <mrow> <msup> <mi>C</mi> <mn>3</mn> </msup> <mi>L</mi> </mrow> </semantics></math> constrains the local features and their heterogeneous centers, which alleviates the influence of outliers. The red arrows denote the constraints between features, whereas the dotted circles signify outliers. The stars indicate the centers, and the circle and the triangle represent the RGB modality and IR modality, respectively.</p> "> Figure 4
<p>The influence of the hyperparameter <math display="inline"><semantics> <mi>β</mi> </semantics></math> in mAP accuracy and Rank-1 accuracy.</p> "> Figure 5
<p>The influence of the scalar temperature parameter <math display="inline"><semantics> <mi>τ</mi> </semantics></math> in Rank-1 accuracy and mAP accuracy.</p> "> Figure 6
<p>The influence of the trade-off parameters <math display="inline"><semantics> <msub> <mi>λ</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>λ</mi> <mn>2</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>λ</mi> <mn>3</mn> </msub> </semantics></math> in mAP accuracy and Rank-1 accuracy.</p> "> Figure 7
<p>The distributions of the cosine similarity scores of positive and negative pairs of (<b>a</b>) <span class="html-italic">B</span>, (<b>b</b>) <span class="html-italic">B</span> + <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>P</mi> <mi>G</mi> <mi>A</mi> <mi>T</mi> </mrow> </semantics></math> and (<b>c</b>) <span class="html-italic">B</span> + <math display="inline"><semantics> <mrow> <msup> <mi>C</mi> <mn>3</mn> </msup> <mi>L</mi> </mrow> </semantics></math>. The <span class="html-italic">x</span> axis shows the cosine similarity scores between RGB images and IR images, and the <span class="html-italic">y</span> axis shows the frequency statistics of the cosine similarity score.</p> ">
Abstract
:1. Introduction
- We propose LPGAT for cross-modality ReID. In contrast to previous approaches that only use pedestrian images from different modalities as the nodes of a graph, LPGAT uses the paired local features from different modalities as the nodes of a graph, thus alleviating the gap between the two modalities.
- We propose to constrain local features and their heterogeneous centers. In contrast to previous methods that only constrain the distance between the centers of different modalities, constrains the features that are far from the center, thus narrowing the gap between heterogeneous modalities.
- We compare the proposed method against state-of-the-art methods using two publicly accessible datasets, RegDB and SYSU-MM01, and our results demonstrate that the proposed method outperforms them.
2. Related Work
2.1. Cross-Modality Person ReID
2.2. Graph Attention Networks
2.3. Contrastive Learning
3. Approach
3.1. Overview
3.2. Local Feature Extractor
3.3. LPGAT Module
3.4. Cross-Center Contrastive Learning
3.5. Optimization
4. Experiments
4.1. Datasets
4.2. Evaluation Metrics
4.3. Implementation Details
4.4. Comparisons with State-of-the-Art Methods
Setting | All Search | Indoor Search | ||||||
---|---|---|---|---|---|---|---|---|
Method | R-1 | R-10 | R-20 | mAP | R-1 | R-10 | R-20 | mAP |
Zero-pad [27] | 14.80 | 54.12 | 71.33 | 15.95 | 20.58 | 68.38 | 85.79 | 26.92 |
TONE [45] | 12.52 | 50.72 | 68.60 | 14.42 | 20.82 | 68.86 | 84.46 | 26.38 |
HCML [45] | 14.32 | 53.16 | 69.17 | 16.16 | 24.52 | 73.25 | 86.73 | 30.08 |
cmGAN [47] | 26.97 | 67.51 | 80.56 | 27.80 | 31.63 | 77.23 | 89.18 | 42.19 |
HSME [50] | 20.68 | 62.74 | 77.95 | 23.12 | - | - | - | - |
BDTR [52] | 27.32 | 66.96 | 81.07 | 27.32 | 31.92 | 77.18 | 89.28 | 41.86 |
eBDTR [52] | 27.82 | 67.34 | 81.34 | 28.42 | 32.46 | 77.42 | 89.62 | 42.46 |
DRL [53] | 28.90 | 70.60 | 82.40 | 29.20 | - | - | - | - |
MSR [44] | 37.35 | 83.40 | 93.34 | 38.11 | 39.64 | 89.29 | 97.66 | 50.88 |
AlignGAN [48] | 42.40 | 85.00 | 93.70 | 40.70 | 45.90 | 87.60 | 94.40 | 54.30 |
JSIA-ReID [49] | 38.10 | 80.70 | 89.90 | 36.90 | 43.80 | 86.20 | 94.20 | 52.90 |
Xmodal [54] | 49.92 | 89.79 | 95.96 | 50.73 | ||||
MACE [10] | 51.64 | 87.25 | 94.44 | 50.11 | 57.35 | 93.02 | 97.47 | 64.79 |
DDAG [16] | 54.75 | 90.39 | 95.81 | 53.02 | 61.02 | 94.06 | 98.41 | 67.98 |
HAT [24] | 55.29 | 92.14 | 97.36 | 53.89 | 62.10 | 95.75 | 99.20 | 69.37 |
TSLFN + HC [21] | 56.96 | 91.50 | 96.82 | 54.95 | 59.74 | 92.07 | 96.22 | 64.91 |
DAPR [28] | 46.00 | 87.90 | 96.00 | 43.90 | 46.20 | 89.2.00 | 96.70 | 55.80 |
WIT [22] | 59.20 | 91.70 | 96.50 | 57.30 | 60.70 | 94.10 | 98.40 | 67.10 |
AGW [46] | 47.50 | 84.39 | 92.14 | 47.65 | 54.17 | 91.14 | 95.98 | 62.97 |
FBP-AL [55] | 54.14 | 86.04 | 93.03 | 50.20 | - | - | - | - |
CMAlign [7] | 55.41 | - | - | 54.14 | 58.46 | - | - | 66.33 |
NFS [6] | 56.91 | 91.34 | 96.52 | 55.45 | 62.79 | 96.53 | 99.07 | 69.79 |
CPN [56] | 42.48 | 87.12 | 95.62 | 44.90 | - | - | - | - |
KSD [51] | 61.07 | 93.15 | 97.86 | 58.76 | 64.09 | 95.78 | 98.89 | 70.57 |
Ours | 61.89 | 93.56 | 97.86 | 60.12 | 64.24 | 96.58 | 99.08 | 71.04 |
Setting | V-T | T-V | ||||||
---|---|---|---|---|---|---|---|---|
Methods | R-1 | R-10 | R-20 | mAP | R-1 | R-10 | R-20 | mAP |
Zero-pad [27] | 17.74 | 34.21 | 44.35 | 18.90 | 16.63 | 34.68 | 44.25 | 17.82 |
HCML [45] | 24.44 | 47.53 | 56.78 | 20.08 | 21.70 | 45.02 | 55.58 | 22.24 |
BDTR [52] | 33.56 | 58.61 | 67.43 | 32.76 | 32.92 | 58.46 | 68.43 | 31.96 |
eBDTR [52] | 34.62 | 58.96 | 68.72 | 33.46 | 34.21 | 58.74 | 68.64 | 32.49 |
DRL [53] | 43.40 | 66.10 | 76.30 | 44.10 | - | - | - | - |
MSR [44] | 48.43 | 70.32 | 79.95 | 48.67 | - | - | - | - |
HSME [50] | 50.85 | 73.36 | 81.66 | 47.00 | 50.15 | 72.40 | 81.07 | 46.16 |
AlignGAN [48] | 57.90 | - | - | 53.60 | - | - | - | - |
JSIA-ReID [49] | 48.50 | - | - | 49.30 | 48.10 | - | - | 48.90 |
Xmodal [54] | 62.21 | 83.13 | 91.72 | 60.18 | - | - | - | - |
DDAG [16] | 69.34 | 86.14 | 91.49 | 63.46 | 68.06 | 85.15 | 90.31 | 61.80 |
HAT [24] | 71.83 | 87.16 | 92.16 | 67.56 | 70.02 | 86.45 | 91.61 | 66.30 |
MACE [10] | 72.37 | 88.40 | 93.59 | 69.09 | 72.12 | 88.07 | 93.07 | 68.57 |
DAPR [28] | 61.50 | 81.60 | 88.70 | 59.40 | - | - | - | - |
AGW [46] | 70.10 | - | - | 66.40 | - | - | - | - |
FBP-AL [55] | 73.98 | 89.71 | 93.69 | 58.24 | 70.05 | 89.22 | 93.88 | 66.61 |
WIT [22] | 85.00 | 96.90 | 98.80 | 75.90 | - | - | - | - |
CMAlign [7] | 74.17 | - | - | 67.64 | 72.43 | - | - | 65.46 |
NFS [6] | 80.54 | 91.96 | 95.07 | 72.10 | 77.95 | 90.45 | 93.62 | 69.79 |
CPN [56] | 51.29 | 71.15 | 79.79 | 49.37 | - | - | - | - |
KSD [51] | 76.66 | 90.19 | 93.84 | 69.63 | 73.64 | 89.22 | 93.10 | 67.41 |
Ours | 89.37 | 97.62 | 99.08 | 78.74 | 84.51 | 95.83 | 98.01 | 73.75 |
4.5. Ablation Studies
4.6. Parameters Analysis
5. Visualization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Zheng, L.; Yang, Y.; Tian, Q.; Wang, S. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 480–496. [Google Scholar]
- He, T.; Shen, X.; Huang, J.; Chen, Z.; Hua, X.-S. Partial person re-identification with part-part correspondence learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 9105–9115. [Google Scholar]
- Fan, D.; Wang, L.; Cheng, S.; Li, Y. Dual branch attention network for person re-identification. Sensors 2021, 17, 5839. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, P.; Cui, Y.; Liu, C.; Duan, W. Integration of Multi-Head Self-Attention and Convolution for Person Re-Identification. Sensors 2022, 16, 6293. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Z.; Lin, S.; Qu, Y.; Xie, Y.; Ma, L. Farewell to mutual information: Variational distillation for cross-modal person re-identification. In Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Online, 27–28 February 2021; pp. 1522–1531. [Google Scholar]
- Chen, Y.; Wan, L.; Li, Z.; Jing, Q.; Sun, Z. Neural feature search for rgb-infrared person re-identification. In Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 587–597. [Google Scholar]
- Park, H.; Lee, S.; Lee, J.; Ham, B. Learning by aligning: Visible-infrared person re-identification using cross-modal correspondences. In Proceedings of the 2021 International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 12046–12055. [Google Scholar]
- Zhao, Q.; Wu, H.; Zhu, J. Margin-Based Modal Adaptive Learning for Visible-Infrared Person Re-Identification. Sensors 2023, 23, 1426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Liu, S.; Xiao, B.; Durrani, T.S. Cross-domain person re-identification using heterogeneous convolutional network. IEEE TCSVT 2022, 32, 1160–1171. [Google Scholar] [CrossRef]
- Ye, M.; Lan, X.; Leng, Q.; Shen, J. Cross-modality person re-identification via modality-aware collaborative ensemble learning. IEEE TIP 2020, 29, 9387–9399. [Google Scholar] [CrossRef]
- Cheng, D.; Li, X.; Qi, M.; Liu, X.; Chen, C.; Niu, D. Exploring cross-modality commonalities via dual-stream multi-branch network for infrared-visible person re-identification. IEEE Access 2020, 8, 12824–12834. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, X.; Xiao, G.; Ma, W.; Gou, X. Dual-path deep supervision network with self-attention for visible-infrared person re-identification. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [Google Scholar]
- Sun, Z.; Zhu, Y.; Song, S.; Hou, J.; Du, S.; Song, Y. The multi-layer constrained loss for cross-modality person re-identification. In Proceedings of the 2020 International Conference on Artificial Intelligence and Signal Processing (AISP), Amaravati, India, 10–12 January 2020; pp. 1–6. [Google Scholar]
- Zhang, L.; Du, G.; Liu, F.; Tu, H.; Shu, X. Global-local multiple granularity learning for cross-modality visible-infrared person reidentification. IEEE TNNLS 2021, 36, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, J.; Jiang, K.; Gu, X.; Wan, J. Visible Infrared Person Re-Identification via Global-Level and Local-Level Constraints. IEEE Access 2021, 9, 166339–166350. [Google Scholar] [CrossRef]
- Ye, M.; Shen, J.; Crandall, J.D.; Shao, L.; Luo, J. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification. In Proceedings of the 2020 European Conference on Computer Vision (ECCV), Online, 17 July 2019; pp. 229–247. [Google Scholar]
- Cheng, Y.; Xiao, G.; Tang, X.; Ma, W.; Gou, X. Two-phase feature fusion network for visible-infrared person re-identification. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 1149–1153. [Google Scholar]
- Wan, L.; Sun, Z.; Jing, Q.; Chen, Y.; Lu, L.; Li, Z. G2DA: Geometry-guided dual-alignment learning for RGB-infrared person re-identification. arXiv 2021, arXiv:2106.07853. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Chen, C.; Qi, M.; Wu, J.; Jiang, J. Global-Local Graph Convolutional Network for cross-modality person re-identification. Neurocomputing 2021, 452, 137–146. [Google Scholar] [CrossRef]
- Ye, M.; Wang, Z.; Lan, X.; Yuen, P.C. Visible thermal person re-identification via dual-constrained top-ranking. In Proceedings of the 2018 International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, 13–19 July 2018; pp. 1092–1099. [Google Scholar]
- Zhu, Y.; Yang, Z.; Wang, L.; Zhao, S.; Hu, X.; Tao, D. Hetero-center loss for cross-modality person re-identification. IEEE TIP 2020, 29, 9387–9399. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Li, Y.; Chen, H.; Peng, Y.; Zhu, X.; Zhu, J. Visible-infrared cross-modality person re-identification based on whole-individual training. Neurocomputing 2021, 440, 1–11. [Google Scholar] [CrossRef]
- Li, W.; Qi, K.; Chen, W.; Zhou, Y. Unified batch all triplet loss for visible-infrared person re-identification. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Ye, M.; Shen, J.; Shao, L. Visible-infrared person re-identification via homogeneous augmented tri-modal learning. IEEE TIFS 2020, 16, 728–739. [Google Scholar] [CrossRef]
- Ling, Y.; Luo, Z.; Lin, Y.; Li, S. A Multi-Constraint Similarity Learning with Adaptive Weighting for Visible-Thermal Person Re-Identification. In Proceedings of the 2021 International Joint Conference on Artificial Intelligence (IJCA), Online, 11–17 July 2020; pp. 845–851. [Google Scholar]
- Kong, J.; He, Q.; Jiang, M.; Liu, T. Dynamic center aggregation loss with mixed modality for visible-infrared person re-identification. IEEE SPL 2021, 28, 2003–2007. [Google Scholar] [CrossRef]
- Wu, A.; Zheng, W.-S.; Yu, H.-X.; Gong, S.; Lai, J. RGB-infrared cross-modality person re-identification. In Proceedings of the 2017 International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5380–5389. [Google Scholar]
- Zhang, P.; Wu, Q.; Yao, X.; Xu, J. Beyond modality alignment: Learning part-level representation for visible-infrared person re-identification. IVC 2021, 108, 104–118. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 2017 Neural Information Processing Systems (NIPS), Los Angeles, CA, USA, 13–19 March 2017; pp. 1–11. [Google Scholar]
- Li, X.; Zhou, T.; Li, J.; Zhou, Y.; Zhang, Z. Group-wise semantic mining for weakly supervised semantic segmentation. In Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Online, 17–18 May 2021; pp. 1984–1992. [Google Scholar]
- Wang, Z.; Zheng, L.; Li, Y.; Wang, S. Linkage based face clustering via graph convolution network. In Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 1117–1125. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
- Thekumparampil, K.K.; Wang, C.; Oh, S.; Li, L.-J. Attention-based graph neural network for semi-supervised learning. arXiv 2018, arXiv:1803.03735. [Google Scholar]
- Zhang, Z.; Zhang, H.; Liu, S. Person re-identification using heterogeneous local graph attention networks. In Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Online, 27–28 February 2021; pp. 12136–12145. [Google Scholar]
- Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. Supervised contrastive learning. In Proceedings of the 2020 Neural Information Processing Systems (NIPS), Hilton Midtown, NY, USA, 7–20 February 2020; pp. 18661–18673. [Google Scholar]
- Wang, P.; Han, K.; Wei, X.-S.; Zhang, L.; Wang, L. Contrastive learning based hybrid networks for long-tailed image classification. In Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Online, 27–28 February 2021; pp. 943–952. [Google Scholar]
- Xie, E.; Ding, J.; Wang, W.; Zhan, X.; Xu, H.; Sun, P.; Li, Z.; Luo, P. Detco: Unsupervised contrastive learning for object detection. In Proceedings of the 2021 International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 8392–8401. [Google Scholar]
- Chen, H.; Lagadec, B.; Bremond, F. Ice: Inter-instance contrastive encoding for unsupervised person re-identification. In Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Montreal, QC, Canada, 10–17 October 2021; pp. 14940–14949. [Google Scholar]
- Si, T.; He, F.; Zhang, Z.; Duan, Y. Hybrid contrastive learning for unsupervised person re-identification. IEEE TMM 2022. [Google Scholar] [CrossRef]
- Isobe, T.; Li, D.; Tian, L.; Chen, W.; Shan, Y.; Wang, S. Towards discriminative representation learning for unsupervised person re-identification. In Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Online, 27–28 February 2021; pp. 8526–8536. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Angeles, NV, USA, 26–27 June 2016; pp. 770–778. [Google Scholar]
- Nguyen, D.T.; Hong, H.G.; Kim, K.W.; Park, K.R. Person recognition system based on a combination of body images from visible light and thermal cameras. Sensors 2017, 17, 605. [Google Scholar] [CrossRef]
- Feng, Z.; Lai, J.; Xie, X. Learning modality-specific representations for visible-infrared person re-identification. IEEE TIP 2019, 29, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Lan, X.; Li, J.; Yuen, P. Hierarchical discriminative learning for visible thermal person re-identification. In Proceedings of the 2018 AAAI Conference on Artificial Intelligence, Louisiana, LA, USA, 2–7 February 2018; pp. 7501–7508. [Google Scholar]
- Ye, M.; Shen, J.; Lin, G.; Xiang, T.; Shao, L.; Hoi, S.C. Deep learning for person re-identification: A survey and outlook. IEEE TPAMI 2021, 44, 2872–2893. [Google Scholar] [CrossRef] [PubMed]
- Dai, P.; Ji, R.; Wang, H.; Wu, Q.; Huang, Y. Cross-modality person re-identification with generative adversarial training. In Proceedings of the 2018 International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, 13–19 July 2018; pp. 677–683. [Google Scholar]
- Wang, G.A.; Zhang, T.; Cheng, J.; Liu, S.; Yang, Y.; Hou, Z. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment. In Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 3623–3632. [Google Scholar]
- Wang, G.A.; Zhang, T.; Yang, Y.; Cheng, J.; Chang, J.; Liang, X.; Hou, Z.-G. Cross-modality paired-images generation for RGB-infrared person re-identification. In Proceedings of the 2020 AAAI Conference on Artificial Intelligence, Hilton New York Midtown, NY, USA, 7–12 February 2020; pp. 12144–12151. [Google Scholar]
- Hao, Y.; Wang, N.; Li, J.; Gao, X. HSME: Hypersphere manifold embedding for visible thermal person re-identification. In Proceedings of the 2019 AAAI Conference on Artificial Intelligence, Hilton New York Midtown, NY, USA, 15–17 July 2019; pp. 8385–8392. [Google Scholar]
- Zhou, Y.; Li, R.; Sun, Y.; Dong, K.; Li, S. Knowledge self-distillation for visible-infrared cross-modality person re-identification. In Proceedings of the 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 9–11 May 2022; pp. 1–15. [Google Scholar]
- Ye, M.; Lan, X.; Wang, Z.; Yuen, P.C. Bi-directional center-constrained top-ranking for visible thermal person re-identification. IEEE TIFS 2020, 15, 407–419. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Zheng, Y.; Chuang, Y.-Y.; Satoh, S.i. Learning to reduce dual-level discrepancy for infrared-visible person re-identification. In Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 618–626. [Google Scholar]
- Li, D.; Wei, X.; Hong, X.; Gong, Y. Infrared-visible cross-modal person re-identification with an x modality. In Proceedings of the 2020 AAAI Conference on Artificial Intelligence, Hilton New York Midtown, NY, USA, 7–12 February 2020; pp. 4610–4617. [Google Scholar]
- Wei, Z.; Yang, X.; Wang, N.; Gao, X. Flexible body partition-based adversarial learning for visible infrared person re-identification. IEEE Trans 2021, 33, 4676–4687. [Google Scholar] [CrossRef]
- Liu, J.; Song, W.; Chen, C.; Liu, F. Cross-modality person re-identification via channel-based partition network. In Proceedings of the 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 9–11 May 2022; pp. 1–13. [Google Scholar]
Methods | R-1 | R-10 | R-20 | mAP |
---|---|---|---|---|
B | 56.26 | 91.41 | 96.54 | 55.16 |
B + | 56.96 | 91.89 | 96.75 | 56.24 |
B + -k | 58.01 | 92.83 | 97.67 | 56.63 |
B + | 59.07 | 93.25 | 97.68 | 57.42 |
B + | 60.72 | 93.53 | 97.83 | 58.83 |
Ours (B + + ) | 61.89 | 93.56 | 97.86 | 60.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Dong, Q.; Zhang, Z.; Liu, S.; Durrani, T.S. Cross-Modality Person Re-Identification via Local Paired Graph Attention Network. Sensors 2023, 23, 4011. https://doi.org/10.3390/s23084011
Zhou J, Dong Q, Zhang Z, Liu S, Durrani TS. Cross-Modality Person Re-Identification via Local Paired Graph Attention Network. Sensors. 2023; 23(8):4011. https://doi.org/10.3390/s23084011
Chicago/Turabian StyleZhou, Jianglin, Qing Dong, Zhong Zhang, Shuang Liu, and Tariq S. Durrani. 2023. "Cross-Modality Person Re-Identification via Local Paired Graph Attention Network" Sensors 23, no. 8: 4011. https://doi.org/10.3390/s23084011
APA StyleZhou, J., Dong, Q., Zhang, Z., Liu, S., & Durrani, T. S. (2023). Cross-Modality Person Re-Identification via Local Paired Graph Attention Network. Sensors, 23(8), 4011. https://doi.org/10.3390/s23084011