Dynamic Response of the Pitot Tube with Pressure Sensor
<p>Experimental testing stand (1—propeller, 2—engine, 3—slider, 4—linear bearing, 5—base, 6—load cell, 7—Pitot tube, 8—reference Pitot tube, 9—motorized slider, 10—RPM, 11—pressure sensor, 12—stepper motor driver, 13—bridge transducer amplifier, 14—temperature sensor, 15—microcontroller system) [<a href="#B17-sensors-23-02843" class="html-bibr">17</a>].</p> "> Figure 2
<p>Propeller airstream: shadowed as stated by simplified actuator disk theory (1—uniform stream of incoming air or steady air, 2—unsteady area of air sucked by propeller, 3—unsteady area of air after propeller, 4—steady stream after propeller [<a href="#B17-sensors-23-02843" class="html-bibr">17</a>].</p> "> Figure 3
<p>Structure of the measurement system (in-text markings) [<a href="#B16-sensors-23-02843" class="html-bibr">16</a>].</p> "> Figure 4
<p>Samples of the recorded pressure responses (2970 and 6750 RPM) (blue) and pulses of the laser RPM meter (green), obtained with (<b>a</b>) 2970 RPM, (<b>b</b>) 6750 RPM.</p> "> Figure 5
<p>The geometry of the computational domain. The locations of the checkpoints have been marked.</p> "> Figure 6
<p>An exemplary sequence of solutions for an inlet pressure of 20 Pa.</p> "> Figure 7
<p>The measuring system as the Helmholtz resonator.</p> "> Figure 8
<p>Waveforms of pressure changes at different points of the domain: full experiment (<b>a</b>), zoomed-in view of the selected portion of the chart (<b>b</b>).</p> "> Figure 9
<p>Comparison of CFD-simulated responses with estimates for different reference points.</p> "> Figure 10
<p>The frequency properties of the obtained Pitot tube models.</p> "> Figure 11
<p>Experiment with RPM changes.</p> "> Figure 12
<p>Samples of the recorded 10 ms of pressure responses (4019 (<b>a</b>) and 6750 (<b>b</b>) RPM) (blue) and pulses of the laser RPM meter (green).</p> "> Figure 13
<p>Frequency analysis results for selected RPM values, with marked frequencies.</p> ">
Abstract
:1. Introduction
2. Propeller Test Stand
- ps0—outer pressure,
- p1—pressure before propeller,
- p2—pressure after propeller,
- pt—pressure distribution after propeller.
- Pitot tube (A);
- Piezoresistive differential pressure transducer (B);
- Tube supplying the reference pressure from the undisturbed zone (C);
- Instrumental amplifier (D);
- Power supply for the transducer and amplifier (E).
- Outer diameter 2 mm;
- Inner diameter 1.3 mm;
- Length 17 mm.
3. CFD Simulation
- Conditions airflow and pressure stabilization phase—time 0 ms;
- Input pressure change from initial 10 Pa to 20 Pa—time 6 ms;
- Input pressure change back to initial value—time 7.5 ms.
4. Dynamic Model and Identification
4.1. First Approximation
4.2. Signal Estimation—CFD Results
4.3. Measurement Experiment Results
- 1565 RPM (f = 52.17 Hz);
- 2970 RPM (f = 99.00 Hz);
- 4019 RPM (f = 133.97 Hz);
- 6750 RPM (f = 225.00 Hz).
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Symbol and Abbreviation Index
A | neck cross-section area |
a | speed of sound |
CFD | computed fluid dynamics |
DAQ | data acquisition board |
f | frequency |
f0 | resonance frequency |
fH | resonance frequency |
I | Pitot tube inlet |
L | neck length |
L | tube length |
O | symmetry |
p1 | total pressure before the propeller |
P1, P3 | test points |
p2 | total pressure just after propeller |
PC | personal computer |
PI | pressure inlet |
PO | nonreflective pressure outlet |
pS0 | static pressure of free air |
pS2 | static pressure of the airstream after propeller |
pt_1 | pressure at point P1 |
pt_3 | pressure at point P3 |
pt_w | pressure at point Pw |
Pw | point before tube |
S | sensor |
sa | symmetry axis |
t | time |
psensor | mean pressure on the pressure sensor |
V | cavity volume |
V0 | velocity of incoming airstream |
V1 | velocity of the airstream after propeller |
V2 | velocity of steady stream after propeller (where ps2 = ps0) |
References
- Szczerba, Z.; Szczerba, P.; Szczerba, K. Sensitivity of Piezoresistive Pressure Sensors to Acceleration. Energies 2022, 15, 493. [Google Scholar] [CrossRef]
- Sanchez, K.; Achour, B.; Coustou, A.; Lecestre, A.; Charlot, S.; Lavayssière, M.; Lefrançois, A.; Aubert, H.; Pons, P. Transient Response of Miniature Piezoresistive Pressure Sensor Dedicated to Blast Wave Monitoring. Sensors 2022, 22, 9571. [Google Scholar] [CrossRef] [PubMed]
- Lepicovsky, J.; Simurda, D. Past Developments and Current Advancements in Unsteady Pressure Measurements in Turbomachines. J. Turbomach. 2018, 140, 111005-1–111005-17. [Google Scholar] [CrossRef]
- Chasoglou, A.C.; Mansour, M.; Kalfas, A.I.; Abhari, R.S. A Novel 4-Sensor Fast-Response Aerodynamic Probe for Non-Isotropic Turbulence Measurement in Turbomachinery Flows. J. Glob. Power Propuls. Soc. 2018, 2, UALS07. [Google Scholar] [CrossRef]
- Duquesne, P.; Deschênes, C.; Iliescu, M.; Ciocan, G.D. Calibration in a Potential Water Jet of a Five-Hole Pressure Probe with Embedded Sensors for Unsteady Flow Measurement. In Proceedings of the Fourth International Conference on Experimental Mechanics, Singapore, 4 December 2009; Quan, C., Qian, K., Asundi, A.K., Chau, F.S., Eds.; SPIE: Bellingham, WA, USA, 2009. [Google Scholar]
- Humm, H.J.; Gossweiler, C.R.; Gyarmathy, G. On Fast-Response Probes: Part 2—Aerodynamic Probe Design Studies. J. Turbomach. 1995, 117, 618–624. [Google Scholar] [CrossRef]
- Schlienger, J.; Pfau, A.; Kalfas, A.I.; Abhari, R.S. Measuring Unsteady 3D Flow With a Single Pressure Transducer. In Proceedings of the 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines, Cambridge, UK, 23–24 September 2002. [Google Scholar]
- Gossweiler, C.R.; Kupferschmied, P.; Gyarmathy, G. On Fast-Response Probes: Part 1—Technology, Calibration and Application to Turbomachinery. In Proceedings of the Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; General, Orlando, FL, USA, 13 June 1994; American Society of Mechanical Engineers: New York, NY, USA, 1994. [Google Scholar]
- Kupferschmied, P.; Gossweiler, C.; Gyarmathy, G. Aerodynamic Fast-Response Probe Measurement Systems: State of Development, Limitations and Future Trends. In Proceedings of the 12th Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascades and Turbomachines, Prague, Czech Republic, 12–13 September 1994. [Google Scholar]
- Heckmeier, F.M.; Hayböck, S.; Breitsamter, C. Spatial and Temporal Resolution of a Fast-Response Aerodynamic Pressure Probe in Grid-Generated Turbulence. Exp. Fluids 2021, 62, 44. [Google Scholar] [CrossRef]
- Morris, W.; Coull, J.; Dickens, T.; de Luca, A.; Udrea, F. A Novel MEMS-Based Probe for Unsteady Aerodynamic Measurements: A Proof-of-Concept Study. J. Glob. Power Propuls. Soc. 2020, 4, 145–160. [Google Scholar] [CrossRef]
- Pfau, A.; Schlienger, J.; Kalfas, A.I.; Abhari, R.S. Virtual Four Sensor Fast Response Aerodynamic Probe (FRAP®). E3S Web Conf. 2022, 345, 01014. [Google Scholar] [CrossRef]
- Kost, F. The Behaviour of Probes in Transonic Flowfields of Turbomachinery. In Proceedings of the Conference: 8th European Conference on Turbomachinery—Fluid Dynamics and Thermodynamics, Graz, Austria, 23–27 March 2009. [Google Scholar]
- Gaetani, P.; Persico, G. Technology Development of Fast-Response Aerodynamic Pressure Probes. Int. J. Turbomach. Propuls. Power 2020, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Ficek, D.; Strzelczyk, P.; Szczerba, Z.; Szumski, M. Wstępne Badanie Pól Fizycznych w Otoczeniu Wirnika. Pomiar Ciśnienia Spiętrzenia. In Proceedings of the IV edycji Konferencji Młodych Naukowców nt. Dokonania Naukowe Doktorantów, Creativetime, Ed., Kraków, Poland, 9 April 2016; pp. 224–229. [Google Scholar]
- Pieniazek, J.; Ciecinski, P.; Ficek, D.; Szumski, M. Property of High-Frequency Pressure Measurement. In Proceedings of the 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 27 June 2022; IEEE: Piscataway, NJ, USA; pp. 33–37. [Google Scholar]
- Pieniazek, J.; Ciecinski, P. Measurement System for Small Propeller Propulsion. In Proceedings of the 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Naples, Italy, 23 June 2021; IEEE: Piscataway, NJ, USA; pp. 687–691. [Google Scholar]
- Torregrosa, A.J.; Fajardo, P.; Gil, A.; Navarro, R. Development of Non-Reflecting Boundary Condition for Application in 3D Computational Fluid Dynamics Codes. Eng. Appl. Comput. Fluid Mech. 2012, 6, 447–460. [Google Scholar] [CrossRef] [Green Version]
- Kozelkov, A.; Kurkin, A.; Utkin, D.; Tyatyushkina, E.; Kurulin, V.; Strelets, D. Application of Non-Reflective Boundary Conditions in Three-Dimensional Numerical Simulations of Free-Surface Flow Problems. Geosciences 2022, 12, 427. [Google Scholar] [CrossRef]
- Givoli, D. Non-Reflecting Boundary Conditions. J. Comput. Phys. 1991, 94, 1–29. [Google Scholar] [CrossRef]
- Ansys® Academic Research Fluent, Release 2021R2, Help System, Boundary Conditions; ANSYS, Inc.: Cannon Sburg, PA, USA, 2021.
- Soderstrom, T.; Stoica, P. System Identification; Prentice-Hall International: Hemmel Hempstead, UK, 1989; ISBN 0-13-881236-5. [Google Scholar]
- van Overschee, P.; de Moor, B. N4SID: Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems. Automatica 1994, 30, 75–93. [Google Scholar] [CrossRef]
Method | f1 (kHz) | f2 (kHz) |
---|---|---|
Simple acoustic models | 3.2 | 6.4 |
CFD simulation | 3.42 | 6.52 |
Practical experiment | 3.4 | ~6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieniążek, J.; Cieciński, P.; Ficek, D.; Szumski, M. Dynamic Response of the Pitot Tube with Pressure Sensor. Sensors 2023, 23, 2843. https://doi.org/10.3390/s23052843
Pieniążek J, Cieciński P, Ficek D, Szumski M. Dynamic Response of the Pitot Tube with Pressure Sensor. Sensors. 2023; 23(5):2843. https://doi.org/10.3390/s23052843
Chicago/Turabian StylePieniążek, Jacek, Piotr Cieciński, Daniel Ficek, and Marek Szumski. 2023. "Dynamic Response of the Pitot Tube with Pressure Sensor" Sensors 23, no. 5: 2843. https://doi.org/10.3390/s23052843
APA StylePieniążek, J., Cieciński, P., Ficek, D., & Szumski, M. (2023). Dynamic Response of the Pitot Tube with Pressure Sensor. Sensors, 23(5), 2843. https://doi.org/10.3390/s23052843