Brillouin Interaction between Two Optical Modes Selectively Excited in Weakly Guiding Multimode Optical Fibers
<p>Illustration of Brillouin amplification process in multimode optical fiber. The optical fields with specific profiles <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>E</mi> <mo>→</mo> </mover> <mrow> <mi>L</mi> <mn>0</mn> </mrow> </msub> <mfenced> <mrow> <msub> <mover accent="true"> <mi>r</mi> <mo>→</mo> </mover> <mo>⊥</mo> </msub> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>E</mi> <mo>→</mo> </mover> <mrow> <mi>S</mi> <mn>0</mn> </mrow> </msub> <mfenced> <mrow> <msub> <mover accent="true"> <mi>r</mi> <mo>→</mo> </mover> <mo>⊥</mo> </msub> </mrow> </mfenced> </mrow> </semantics></math> at frequencies <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>L</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>S</mi> </msub> </mrow> </semantics></math> are introduced into the multimode optical fiber, providing selective excitation of pure pump <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>e</mi> <mo>→</mo> </mover> <mi>L</mi> </msub> <mfenced> <mrow> <msub> <mover accent="true"> <mi>r</mi> <mo>→</mo> </mover> <mo>⊥</mo> </msub> </mrow> </mfenced> <mi>exp</mi> <mfenced close="}" open="{"> <mrow> <mi>i</mi> <mfenced close="]" open="["> <mrow> <msub> <mi>ω</mi> <mi>L</mi> </msub> <mi>t</mi> <mo>−</mo> <msub> <mi>β</mi> <mi>L</mi> </msub> <mi>z</mi> </mrow> </mfenced> </mrow> </mfenced> </mrow> </semantics></math> and Stokes <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>e</mi> <mo>→</mo> </mover> <mi>S</mi> </msub> <mfenced> <mrow> <msub> <mover accent="true"> <mi>r</mi> <mo>→</mo> </mover> <mo>⊥</mo> </msub> </mrow> </mfenced> <mi>exp</mi> <mfenced close="}" open="{"> <mrow> <mi>i</mi> <mfenced close="]" open="["> <mrow> <msub> <mi>ω</mi> <mi>S</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>β</mi> <mi>S</mi> </msub> <mi>z</mi> </mrow> </mfenced> </mrow> </mfenced> </mrow> </semantics></math> optical modes. Their interaction inside the optical fiber with the sound wave leads to amplification of the Stokes mode amplitude.</p> "> Figure 2
<p>Brillouin interaction between plane waves in a volume medium.</p> "> Figure 3
<p>Brillouin gain spectra describing interaction between plane waves in a volume medium at different angles (<b>a</b>–<b>c</b>). Calculations are performed using Equation (7).</p> "> Figure 4
<p>Brillouin interaction between eigen optical modes in a planar waveguide (<b>a</b>). Each optical mode is a combination of two plane waves, resulting in two kinds of sound plane waves possessing low (<b>b</b>) and high (<b>c</b>) spatial modulation frequencies in the waveguide cross-section.</p> "> Figure 5
<p>Brillouin gain spectra for the interaction between eigenmodes of different orders (<b>a</b>–<b>c</b>) in a planar waveguide. Calculations are performed using Equation (10).</p> "> Figure 6
<p>The coefficients <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mfenced> <mi>δ</mi> </mfenced> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2...10</mn> </mrow> </semantics></math>) as functions of the frequency <math display="inline"><semantics> <mi>δ</mi> </semantics></math> for interaction of the modes of different orders (<b>a</b>–<b>f</b>) in an optical fiber; the real (<b>a</b>–<b>c</b>) and imaginary (<b>d</b>–<b>f</b>) parts. Calculations are performed using Equation (23).</p> "> Figure 7
<p>The SBS gain spectra <math display="inline"><semantics> <mrow> <mi>G</mi> <mfenced> <mi>δ</mi> </mfenced> </mrow> </semantics></math> (<b>a</b>–<b>c</b>) and radial distribution of the sound amplitude <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mfenced> <mrow> <mi>δ</mi> <mo>,</mo> <mi>r</mi> </mrow> </mfenced> </mrow> </semantics></math> (<b>d</b>–<b>f</b>) at the frequencies <math display="inline"><semantics> <mi>δ</mi> </semantics></math> corresponding to the left (red curve) and right (black curve) peak of the SBS gain spectra for interaction of modes of different orders (<b>a</b>–<b>f</b>) in an optical fiber. Calculations are performed using Equations (16), (23), (26) and (27).</p> "> Figure 8
<p>Brillouin gain spectra in the cases of interaction between eigen modes of different orders (<b>a</b>–<b>d</b>) in an optical fiber. Calculations are performed using Equations (26) and (27).</p> ">
Abstract
:1. Introduction
2. Steady-State SBS Model
3. Comparing SBS Interaction in a Volume Medium and Planar Waveguide
3.1. SBS Interaction between Two Plane Waves in a Volume Medium
3.2. SBS Interaction between Two Modes in a Planar Waveguide
4. SBS Interaction between Individual Modes in an Optical Fiber
4.1. Weakly Guiding Modes
- Even modes :
- Odd modes :
- Even modes :
- Even modes :
- Odd modes :
- Odd modes :
4.2. Derivation of Expressions for Acoustic Wave Amplitude and Brillouin Gain Spectrum
5. Sound Propagation Effects
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, Z.; Yuan, H.; Liu, Z.; Xu, P.; Gao, Q.; Williams, R.J.; Kitzler, O.; Mildren, R.P.; Wang, Y.; Lu, Z. Stimulated Brillouin scattering materials, experimental design and applications: A review. Opt. Mater. 2018, 75, 626–645. [Google Scholar] [CrossRef]
- Kuzin, E.A.; Petrov, M.P.; Fotiadi, A.A. Phase conjugation by SMBS in optical fibers. In Optical Phase Conjugation; Gower, M., Proch, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 74–96. [Google Scholar]
- Ostermeyer, M.; Kong, H.; Kovalev, V.; Harrison, R.; Fotiadi, A.; Mégret, P.; Kalal, M.; Slezak, O.; Yoon, J.; Shin, J.; et al. Trends in stimulated Brillouin scattering and optical phase conjugation. Laser Part. Beams 2008, 26, 297–362. [Google Scholar] [CrossRef]
- Gomes, A.D.; Bartelt, H.; Frazão, O. Optical Vernier Effect: Recent Advances and Developments. Laser Photonics Rev. 2021, 15, 2000588. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ozaki, Y. Brillouin frequency shift measurement with virtually controlled sensitivity. Appl. Phys. Express 2017, 10, 062504. [Google Scholar] [CrossRef]
- Meng, Z.; Yakovlev, V.V. Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer. J. Innov. Opt. Health Sci. 2015, 8, 1550021. [Google Scholar] [CrossRef]
- La Cavera, S.; Pérez-Cota, F.; Fuentes-Domínguez, R.; Smith, R.J.; Clark, M. Time resolved Brillouin fiber-spectrometer. Opt. Express 2019, 27, 25064–25071. [Google Scholar] [CrossRef] [PubMed]
- Karampatzakis, A.; Song, C.Z.; Allsopp, L.P.; Filloux, A.; Rice, S.A.; Cohen, Y.; Wohland, T.; Török, P. Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging. NPJ Biofilms Microbiomes 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, W.; Yang, N.; Ma, R.; Zhang, Y.; Wang, Z.; Zhang, J.; Rao, Y. High-Power Multimode Random Fiber Laser for Speckle-Free Imaging. Ann. der Phys. 2021, 533, 2100390. [Google Scholar] [CrossRef]
- Čižmár, T.; Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 2012, 3, 1027. [Google Scholar] [CrossRef]
- Fotiadi, A.; Kiyan, R.V. Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber. Opt. Lett. 1998, 23, 1805–1807. [Google Scholar] [CrossRef]
- Liew, S.F.; Redding, B.; Choma, M.A.; Tagare, H.D.; Cao, H. Broadband multimode fiber spectrometer. Opt. Lett. 2016, 41, 2029–2032. [Google Scholar] [CrossRef] [PubMed]
- Redding, B.; Popoff, S.M.; Cao, H. All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express 2013, 21, 6584–6600. [Google Scholar] [CrossRef] [PubMed]
- Finlay, M.C.; A Mosse, C.; Colchester, R.J.; Noimark, S.; Zhang, E.Z.; Ourselin, S.; Beard, P.C.; Schilling, R.J.; Parkin, I.P.; Papakonstantinou, I.; et al. Through-needle all-optical ultrasound imaging in vivo: A preclinical swine study. Light. Sci. Appl. 2017, 6, e17103. [Google Scholar] [CrossRef]
- La Cavera, S.; Pérez-Cota, F.; Smith, R.J.; Clark, M. Phonon imaging in 3D with a fibre probe. Light. Sci. Appl. 2021, 10, 1–13. [Google Scholar] [CrossRef]
- Murshid, S.; Grossman, B.; Narakorn, P. Spatial domain multiplexing: A new dimension in fiber optic multiplexing. Opt. Laser Technol. 2008, 40, 1030–1036. [Google Scholar] [CrossRef]
- Caucheteur, C.; Villatoro, J.; Liu, F.; Loyez, M.; Guo, T.; Albert, J. Mode-division and spatial-division optical fiber sensors. Adv. Opt. Photonics 2022, 14, 1–86. [Google Scholar] [CrossRef]
- Weng, Y.; Ip, E.; Pan, Z.; Wang, T. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A Review. Sensors 2016, 16, 1387. [Google Scholar] [CrossRef]
- Weng, Y.; Wang, T.; Pan, Z. Multi-functional fiber optic sensors based on mode division multiplexing. Opt. Mater. Express 2017, 7, 1917. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Pan, Y.; Bao, X.; Chen, L. Trench-assisted multimode fiber used in Brillouin optical time domain sensors. Opt. Express 2019, 27, 11396–11405. [Google Scholar] [CrossRef]
- Shwartz, S.; Golub, M.A.; Ruschin, S. Excitation of Mode Groups in Multimode Fibers with the Aid of Diffractive Optics. IEEE Photonics Technol. Lett. 2016, 28, 1763–1766. [Google Scholar] [CrossRef]
- Schulze, C.; Wilde, J.; Brüning, R.; Schröter, S.; Duparré, M. Measurement of effective refractive index differences in multimode optical fibers based on modal decomposition. Opt. Lett. 2014, 39, 5810–5813. [Google Scholar] [CrossRef] [PubMed]
- Horstmeyer, R.; Ruan, H.; Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 2015, 9, 563–571. [Google Scholar] [CrossRef]
- Fotiadi, A.A. Phase conjugation by stimulated Brillouin amplification in cylindrical fibers. In Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 6 May 2001; p. CThL42. [Google Scholar]
- Rodgers, B.C.; Russell, T.H.; Roh, W.B. Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber. Opt. Lett. 1999, 24, 1124–1126. [Google Scholar] [CrossRef] [PubMed]
- Kuzin, E.; Petrov, M.; Fotiadi, A. Fiber-optic stimulated-Brillouin-scattering amplifier. Sov. Phys. Tech. Phys. 1988, 33, 206–209. [Google Scholar]
- Minardo, A.; Bernini, R.; Zeni, L. Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber. Opt. Express 2014, 22, 17480–17489. [Google Scholar] [CrossRef]
- Kobyakov, A.; Sauer, M.; Chowdhury, D. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photonics 2009, 2, 1–59. [Google Scholar] [CrossRef]
- Peterson-Greenberg, A.; Ma, Z.; Ramachandran, S. Angular Momentum driven Dynamics of Stimulated Brillouin Scattering in Multimode Fibers. Opt. Express 2022, 30, 29708–29721. [Google Scholar] [CrossRef] [PubMed]
- Wisal, K.; Warren-Smith, S.C.; Chen, C.-W.; Behunin, R.; Cao, H.; Stone, A.D. Generalized theory of SBS in multimode fiber amplifiers. In Proceedings of the SPIE PC11995, Physics and Simulation of Optoelectronic Devices XXX, San Francisco, CA, USA, 22 January–28 February 2022; p. PC1199504. [Google Scholar] [CrossRef]
- Iezzi, V.L.; Loranger, S.; Harhira, A.; Kashyap, R.; Saad, M.; Gomes, A.; Rehman, S. Stimulated Brillouin scattering in multi-mode fiber for sensing applications. In Proceedings of the 2011 7th International Workshop on Fibre and Optical Passive Components, Montreal, QC, Canada, 12–15 July 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Beugnot, J.-C.; Laude, V. Electrostriction and guidance of acoustic phonons in optical fibers. Phys. Rev. B 2012, 86. [Google Scholar] [CrossRef]
- Godet, A.; Ndao, A.; Sylvestre, T.; Pecheur, V.; Lebrun, S.; Pauliat, G.; Beugnot, J.-C.; Huy, K.P. Brillouin spectroscopy of optical microfibers and nanofibers. Optica 2017, 4, 1232–1238. [Google Scholar] [CrossRef]
- Stiller, B.; Delqué, M.; Beugnot, J.-C.; Lee, M.W.; Mélin, G.; Maillotte, H.; Laude, V.; Sylvestre, T. Frequency-selective excitation of guided acoustic modes in a photonic crystal fiber. Opt. Express 2011, 19, 7689–7694. [Google Scholar] [CrossRef]
- Gaeta, A.L.; Boyd, R.W. Stochastic dynamics of stimulated Brillouin scattering in an optical fiber. Phys. Rev. A 1991, 44, 3205–3209. [Google Scholar] [CrossRef] [PubMed]
- Starunov, V.S.; Fabelinskii, I.L. Stimulated MANDEL’SHTAM–BRILLOUIN scattering and stimulated entropy (temperature) scattering of light. Uspekhi Fizicheskih Nauk. 1969, 98, 441–491. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J. Optical Waveguide Theory; Kluwer Academic Publishers: London, UK, 1983. [Google Scholar]
- Abramowitz, M.; Stegun, I.A.; Romer, R.H. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Am. J. Phys. 1988, 56, 958. [Google Scholar] [CrossRef]
- Lewis, B.J.; Onder, E.N.; Prudil, A.A. Chapter 10—Introduction to complex analysis. In Advanced Mathematics for Engineering Students; Lewis, B.J., Onder, E.N., Prudil, A.A., Eds.; Butterworth-Heinemann: Oxford, UK, 2022; pp. 287–310. [Google Scholar]
- Zel’dovich, B.Y.; Pilipetskiĭ, A.N. Influence of sound diffraction on stimulated Brillouin scattering in a single-mode waveguide. Sov. J. Quantum Electron. 1986, 16, 546–548. [Google Scholar] [CrossRef]
- Zel’Dovich, B.Y.; Pilipetskiĭ, A.N. Role of a “soundguide” and “antisoundguide” in stimulated Brillouin scattering in a single-mode waveguide. Sov. J. Quantum Electron. 1988, 18, 818–822. [Google Scholar] [CrossRef]
- Grimalsky, V.; Gutierrez-D, E.; Koshevaya, S.; Mansurova, S. Modulation instability of the stimulated Brillouin scattering in fibers in a presence of acoustic diffraction. Optik 2003, 114, 134–138. [Google Scholar] [CrossRef]
- Grimalsky, V.; Koshevaya, S.; Burlak, G.; Salazar-H, B. Dynamic effects of the stimulated Brillouin scattering in fibers due to acoustic diffraction. J. Opt. Soc. Am. B 2002, 19, 689–694. [Google Scholar] [CrossRef]
- Fotiadi, A.A.; Kiyan, R.; Deparis, O.; Mégret, P.; Blondel, M. Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold. Opt. Lett. 2002, 27, 83–85. [Google Scholar] [CrossRef]
- Popov, S.M.; Butov, O.V.; Bazakutsa, A.P.; Vyatkin, M.Y.; Chamorovskii, Y.K.; Fotiadi, A.A. Random lasing in a short Er-doped artificial Rayleigh fiber. Results Phys. 2020, 16, 102868. [Google Scholar] [CrossRef]
- Spirin, V.V.; Escobedo, J.L.B.; Korobko, D.A.; Mégret, P.; Fotiadi, A.A. Dual-frequency laser comprising a single fiber ring cavity for self-injection locking of DFB laser diode and Brillouin lasing. Opt. Express 2020, 28, 37322–37333. [Google Scholar] [CrossRef]
- Spirin, V.V.; Escobedo, J.L.B.; Korobko, D.A.; Mégret, P.; Fotiadi, A.A. Stabilizing DFB laser injection-locked to an external fiber-optic ring resonator. Opt. Express 2020, 28, 478–484. [Google Scholar] [CrossRef]
- Lopez-Mercado, C.A.; Korobko, D.A.; Zolotovskii, I.O.; Fotiadi, A.A. Application of Dual-Frequency Self-Injection Locked DFB Laser for Brillouin Optical Time Domain Analysis. Sensors 2021, 21, 6859. [Google Scholar] [CrossRef]
- Korobko, D.A.; Zolotovskii, I.O.; Panajotov, K.; Spirin, V.V.; Fotiadi, A.A. Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator. Opt. Commun. 2017, 405, 253–258. [Google Scholar] [CrossRef]
- Korobko, D.; Zolotovskii, I.O.; Svetukhin, V.; Zhukov, A.; Fomin, A.; Borisova, C.; Fotiadi, A. Detuning effects in Brillouin ring microresonator laser. Opt. Express 2020, 28, 4962–4972. [Google Scholar] [CrossRef]
- Flamm, D.; Schulze, C.; Naidoo, D.; Schroter, S.; Forbes, A.; Duparre, M. All-Digital Holographic Tool for Mode Excitation and Analysis in Optical Fibers. J. Light. Technol. 2013, 31, 1023–1032. [Google Scholar] [CrossRef]
- Liñares, J.; Montero-Orille, C.; Moreno, V.; Mouriz, D.; Nistal, M.C.; Prieto-Blanco, X. Ion-exchanged binary phase plates for mode multiplexing in graded-index optical fibers. Appl. Opt. 2017, 56, 7099–7106. [Google Scholar] [CrossRef] [PubMed]
Pump\Stokes | ||||
---|---|---|---|---|
1. Even mode | ||||
2. Even mode | ||||
3. Odd mode | ||||
4. Odd mode |
Pump\Stokes | ||||
---|---|---|---|---|
1. Even mode | ||||
2. Even mode | ||||
3. Odd mode | ||||
4. Odd mode |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fotiadi, A.; Rafailov, E.; Korobko, D.; Mégret, P.; Bykov, A.; Meglinski, I. Brillouin Interaction between Two Optical Modes Selectively Excited in Weakly Guiding Multimode Optical Fibers. Sensors 2023, 23, 1715. https://doi.org/10.3390/s23031715
Fotiadi A, Rafailov E, Korobko D, Mégret P, Bykov A, Meglinski I. Brillouin Interaction between Two Optical Modes Selectively Excited in Weakly Guiding Multimode Optical Fibers. Sensors. 2023; 23(3):1715. https://doi.org/10.3390/s23031715
Chicago/Turabian StyleFotiadi, Andrei, Edik Rafailov, Dmitry Korobko, Patrice Mégret, Alexander Bykov, and Igor Meglinski. 2023. "Brillouin Interaction between Two Optical Modes Selectively Excited in Weakly Guiding Multimode Optical Fibers" Sensors 23, no. 3: 1715. https://doi.org/10.3390/s23031715
APA StyleFotiadi, A., Rafailov, E., Korobko, D., Mégret, P., Bykov, A., & Meglinski, I. (2023). Brillouin Interaction between Two Optical Modes Selectively Excited in Weakly Guiding Multimode Optical Fibers. Sensors, 23(3), 1715. https://doi.org/10.3390/s23031715