CH4, C2H6, and CO2 Multi-Gas Sensing Based on Portable Mid-Infrared Spectroscopy and PCA-BP Algorithm
<p>Schematic diagram of the sensing system.</p> "> Figure 2
<p>(<b>a</b>) Photo of the flexible HWG with 100 cm length. (<b>b</b>) Measured loss spectra of the HWG with 100 cm length.</p> "> Figure 3
<p>Measured absorption spectra of CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, and CO<sub>2</sub> by the FPI sensing system.</p> "> Figure 4
<p>Topology of BP neural network.</p> "> Figure 5
<p>(<b>a</b>) Measured absorption spectra of different CO<sub>2</sub> concentrations. (<b>b</b>) Experimental data and fitting curve of CO<sub>2</sub> concentration versus absorbance area. (<b>c</b>) Allan variance analysis of the sensor for CO<sub>2</sub>.</p> "> Figure 6
<p>(<b>a</b>) Measured absorption spectra of different CH<sub>4</sub> concentrations. (<b>b</b>) Experimental data and fitting curve of CH<sub>4</sub> concentration versus absorbance area. (<b>c</b>) Allan variance analysis of the sensor for CH<sub>4</sub>.</p> "> Figure 7
<p>(<b>a</b>) Measured absorption spectra of different C<sub>2</sub>H<sub>6</sub> concentrations. (<b>b</b>) Experimental data and fitting curve of C<sub>2</sub>H<sub>6</sub> concentration versus absorbance area. (<b>c</b>) Allan variance analysis of the sensor for C<sub>2</sub>H<sub>6</sub>.</p> "> Figure 8
<p>(<b>a</b>) Gas concentration distribution of the mixed gases. (<b>b</b>) Measured absorption spectra of mixed gases samples.</p> "> Figure 9
<p>Predicted concentrations of CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> using measured mixed gases.</p> "> Figure 10
<p>(<b>a</b>) Comparison of measured and simulated absorption spectra of 1824 ppm CH<sub>4</sub>. (<b>b</b>) Comparison of measured and simulated absorption spectra of CH<sub>4</sub> at different concentrations.</p> "> Figure 11
<p>Comparison of measured and simulated absorption spectra of C<sub>2</sub>H<sub>6</sub> at different concentrations.</p> "> Figure 12
<p>Comparison of measured and simulated absorption spectra of CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> mixed gases at different concentrations.</p> "> Figure 13
<p>Predicted concentrations of CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> using simulated mixed gases spectra.</p> "> Figure 14
<p>The RMSEP of (<b>a</b>) CH<sub>4</sub> and (<b>b</b>) C<sub>2</sub>H<sub>6</sub> obtained by training with 49 simulated spectra data and different numbers of measured spectra data.</p> ">
Abstract
:1. Introduction
2. Principle and System
2.1. Sensing System Design
2.2. Principle
3. Results and Discussion
3.1. Performance of the Sensor for Single Gas
3.2. Performance of the Sensor with Measured Mixed Gases
3.3. Simulation-Aid Training
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.W.; Liu, C.; Chan, K.L.; Xie, P.H.; Liu, W.Q.; Zeng, Y.; Wang, S.M.; Huang, S.H.; Chen, J.; Wang, Y.P.; et al. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm. Atmos. Meas. Tech. 2013, 6, 1993–2005. [Google Scholar] [CrossRef] [Green Version]
- Asadov, H.H.; Mirzabalayev, I.M.; Aliyev, D.Z.; Agayev, J.A.; Azimova, S.R.; Nabiyev, N.A.; Abdullayeva, S.N. Synthesis of corrected multi-wavelength spectrometers for atmospheric trace gases. Chin. Opt. Lett. 2009, 7, 361–363. [Google Scholar] [CrossRef]
- Sklorz, A.; Schafer, A.; Lang, W. Merging ethylene NDIR gas sensors with preconcentrator-devices for sensitivity enhancement. Sens. Actuators B Chem. 2012, 170, 21–27. [Google Scholar] [CrossRef]
- Zou, M.; Sun, L.; Wang, X.J.S. CH4/C2H6 dual-gas sensing system based on wavelength modulation spectroscopy using a single near infrared laser. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 272, 120970. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Zheng, K.; Zheng, C.; Zhang, H.; Song, F.; Li, C.; Ye, W.; Zhang, Y.; Wang, Y.; Tittel, F.K. Near-Infrared Dual-Gas Sensor System for Methane and Ethane Detection Using a Compact Multipass Cell. Orig. Res. Artic. 2022, 10, 843171. [Google Scholar] [CrossRef]
- Jaworski, P.; Koziol, P.E.; Krzempek, K.; Wu, D.; Knight, J.C. Antiresonant Hollow-Core Fiber-Based Dual Gas Sensor for Detection of Methane and Carbon Dioxide in the Near-and Mid-Infrared Regions. Sens. Actuators B Chem. 2020, 20, 3813. [Google Scholar] [CrossRef]
- Xu, M.; Peng, B.; Zhu, X.; Guo, Y. Multi-Gas Detection System Based on Non-Dispersive Infrared (NDIR) Spectral Technology. Sens. Actuators B Chem. 2022, 22, 836. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y.; Chen, C.; Lu, Y.; He, C.; Gao, Y.; You, K.; He, Y.; Zhang, K.; Liu, W. Design of non-dispersion Infrared detector’s data processor on measurement of automobile emission CO and CO2. In Infrared Technology and Applications, and Robot Sensing and Advanced Control; SPIE Digital Library: Beijing, China, 2016. [Google Scholar]
- Dong, M.; Zheng, C.; Miao, S.; Zhang, Y.; Du, Q.; Wang, Y.; Tittel, F.K. Development and Measurements of a Mid-Infrared Multi-Gas Sensor System for CO, CO2 and CH4 Detection. Sens. Actuators B Chem. 2017, 17, 2221. [Google Scholar] [CrossRef] [Green Version]
- Brandt, A.R.; Heath, G.A.; Cooley, D.J. Methane Leaks from Natural Gas Systems Follow Extreme Distributions. Environ. Sci. Technol. 2016, 50, 12512–12520. [Google Scholar] [CrossRef]
- Bamberger, I.; Stieger, J.; Buchmann, N.; Eugster, W.J. Spatial variability of methane: Attributing atmospheric concentrations to emissions. Environ. Pollut. 2014, 190, 65–74. [Google Scholar] [CrossRef]
- Smith, F.A.; Elliott, S.; Blake, D.R.; Rowland, F.S. Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico. Environ. Sci. Policy 2002, 5, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Etiope, G.; Ciccioli, P. Earth’s Degassing: A Missing Ethane and Propane Source. Science 2009, 323, 478. [Google Scholar] [CrossRef] [PubMed]
- Simpson, I.J.; Andersen, M.S.; Meinardi, S.; Bruhwiler, L.; Blake, N.J.; Helmig, D.; Rowland, F.S.; Blake, D.R. Long-term decline of global atmospheric ethane concentrations and implications for methane. Nature 2012, 488, 490–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakar, N.; Abu-Siada, A.; Islam, S. A review of dissolved gas analysis measurement and interpretation techniques. IEEE Electr. Insul. Mag. 2014, 30, 39–49. [Google Scholar] [CrossRef]
- Effuggi, A.; Gelosa, D.; Derudi, M.; Rota, R.J. Mild Combustion of Methane-Derived Fuel Mixtures: Natural Gas and Biogas. Combust. Sci. Technol. 2008, 180, 481–493. [Google Scholar] [CrossRef]
- Sakr, A.A.-E.; Faramawy, S.Z. Natural gas origin, composition, and processing: A review. J. Nat. Gas Sci. Eng. 2016, 34, 34–54. [Google Scholar]
- Gasser, C.; Genner, A.; Moser, H.; Ofner, J.; Lendl, B.J.S. Application of a tunable Fabry-Pérot filtometer to mid-infrared gas sensing. Sens. Actuators B Chem. 2017, 242, 9–14. [Google Scholar] [CrossRef]
- Lacolle, M.; Johansen, I.R.; Bakke, T.; Sagberg, H. Tunable diffractive filters for robust NIR and IR spectroscopy. J. Micromech. Microeng. 2013, 23, 74008. [Google Scholar] [CrossRef]
- Lu, J.Y.; You, B.; Wang, J.Y.; Jhuo, S.S.; Hung, T.Y.; Yu, C.P. Volatile Gas Sensing through Terahertz Pipe Waveguide. Sensors 2020, 20, 6268. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, Z.; Zhang, X.; Zhang, X.; Zhu, X.; Shi, Y. Characterization of Gas Absorption Modules Based on Flexible Mid-Infrared Hollow Waveguides. Sensors 2019, 19, 1698. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, T.; Wang, C.; Yu, Z.; Stach, R.; Mizaikoff, B.; Huang, G.B.; Wang, Q.J. NOx Measurements in Vehicle Exhaust Using Advanced Deep ELM Networks. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Huan, K.; Chen, X.; Song, X.; Dong, W. Variable selection in near-infrared spectra: Application to quantitative non-destructive determination of protein content in wheat. Infrared Phys. Technol. 2021, 119, 103937. [Google Scholar] [CrossRef]
- Tang, X.; Li, Y.; Zhu, L.; Zhao, A.; Liu, J. On-line multi-component alkane mixture quantitative analysis using Fourier transform infrared spectrometer. Chemom. Intell. Lab. Syst. 2015, 146, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Pang, W.; Liang, H.; Chen, G.; Ni, P.; Duan, H.; Jiang, C. A novel method to realize multicomponent infrared spectroscopy gas logging based on PSO-split peak fitting-SVM. J. Nat. Gas Sci. Eng. 2022, 101, 104496. [Google Scholar] [CrossRef]
- Li, G.; Li, J.; Liu, Y.; Song, Y.; Jiao, Y.; Zhao, H.; Zhang, X.; Zhang, Z.; Wu, Y.; Ma, K. A near-infrared CO2 detection system for greenhouse gas based on PCA-DNN. Microw. Opt. Technol. Lett. 2022, 64, 1–7. [Google Scholar]
- Chen, Z.; Zeng, J.; He, M.; Zhu, X.; Shi, Y. Portable ppb-level carbon dioxide sensor based on flexible hollow waveguide cell and mid-infrared spectroscopy. Sens. Actuators B Chem. 2022, 359, 131553. [Google Scholar] [CrossRef]
- Li, S.; Dong, L.; Wu, H.; Yin, X.; Ma, W.; Zhang, L.; Yin, W.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.J. Simultaneous multi-gas detection between 3 and 4 μm based on a 2.5-m multipass cell and a tunable Fabry-Pérot filter detector. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 216, 154–160. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, H.; Li, J.; Wan, H.; Guo, Q.; Zhu, H.; Liu, H.; Yi, F. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun. 2020, 11, 5249. [Google Scholar] [CrossRef]
Method | Target Gas | Detection Limit/Detection Error | Reference | Year |
---|---|---|---|---|
TDLAS | CH4 | 24 ppb | [6] | 2020 |
CO2 | 144 ppm | |||
TDLAS | CH4 | 78 ppb | [5] | 2022 |
C2H6 | 190 ppb | |||
TDLAS | CH4 | 23.53 ppb | [4] | 2022 |
C2H6 | 146.4 ppb | |||
NDIR | CO | 2.96 ppm | [9] | 2017 |
CO2 | 4.54 ppm | |||
CH4 | 2.84 ppm | |||
NDIR | CH4 | 200 ppm | [28] | 2019 |
CH2O | 900 ppm | |||
CO2 | 20 ppm | |||
NDIR | CH4 | 63 ppm | [29] | 2020 |
CO2 | 2 ppm | |||
CO | 11 ppm | |||
NDIR | CO2 | −0.15%~−0.55% | [7] | 2022 |
CO | −0.36%~−2.29% | |||
C3H8 | 2.88%~1.68% | |||
NDIR | CH4 | 10.97 ppm | Our work | - |
C2H6 | 2.00 ppm | |||
CO2 | 114 ppb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Jiang, J.; Zeng, J.; Chen, Z.; Zhu, X.; Shi, Y. CH4, C2H6, and CO2 Multi-Gas Sensing Based on Portable Mid-Infrared Spectroscopy and PCA-BP Algorithm. Sensors 2023, 23, 1413. https://doi.org/10.3390/s23031413
Yang Y, Jiang J, Zeng J, Chen Z, Zhu X, Shi Y. CH4, C2H6, and CO2 Multi-Gas Sensing Based on Portable Mid-Infrared Spectroscopy and PCA-BP Algorithm. Sensors. 2023; 23(3):1413. https://doi.org/10.3390/s23031413
Chicago/Turabian StyleYang, Yunting, Jiachen Jiang, Jiafu Zeng, Zhangxiong Chen, Xiaosong Zhu, and Yiwei Shi. 2023. "CH4, C2H6, and CO2 Multi-Gas Sensing Based on Portable Mid-Infrared Spectroscopy and PCA-BP Algorithm" Sensors 23, no. 3: 1413. https://doi.org/10.3390/s23031413
APA StyleYang, Y., Jiang, J., Zeng, J., Chen, Z., Zhu, X., & Shi, Y. (2023). CH4, C2H6, and CO2 Multi-Gas Sensing Based on Portable Mid-Infrared Spectroscopy and PCA-BP Algorithm. Sensors, 23(3), 1413. https://doi.org/10.3390/s23031413