Enhanced GNSS Reliability on High-Dynamic Platforms: A Comparative Study of Multi-Frequency, Multi-Constellation Signals in Jamming Environments
<p>Spirent GSS6700 GNSS simulator.</p> "> Figure 2
<p>Orolia GSG-8 GNSS simulator.</p> "> Figure 3
<p>Imported trajectory to Orolia.</p> "> Figure 4
<p>Simulated trajectories: (<b>left</b>) first trajectory, (<b>right</b>) second trajectory.</p> "> Figure 5
<p>Orolia experimental setup.</p> "> Figure 6
<p>NEAT (<b>left</b>), and mini-circuits attenuator (<b>right</b>).</p> "> Figure 7
<p>Anechoic chamber including both Tx and Rx antennas.</p> "> Figure 8
<p>(<b>a</b>) Horizontal positioning error for different GNSS signal combinations [first trajectory]. (<b>b</b>) Zoomed view of horizontal positioning error for different GNSS signal combinations [first trajectory].</p> "> Figure 9
<p>(<b>a</b>) Vertical positioning error for different GNSS signal combinations [first trajectory]. (<b>b</b>) Zoomed view of vertical positioning error for different GNSS signal combinations [first trajectory].</p> "> Figure 10
<p>Number of visible satellites for different GNSS signal combinations [first trajectory].</p> "> Figure 11
<p>(<b>a</b>) Horizontal positioning error for different GNSS signal combinations [second trajectory]. (<b>b</b>) Zoomed view of horizontal positioning error for different GNSS signal combinations [second trajectory].</p> "> Figure 12
<p>(<b>a</b>) Vertical positioning error for different GNSS signal combinations [second trajectory]. (<b>b</b>) Zoomed view of vertical positioning error for different GNSS signal combinations [second trajectory].</p> "> Figure 13
<p>Number of visible satellites for different GNSS signal combinations [second trajectory].</p> "> Figure 14
<p>(<b>a</b>) Horizontal positioning error for different GNSS signal combinations [first trajectory]. (<b>b</b>) Zoomed view of horizontal positioning error for different GNSS signal combinations [first trajectory].</p> "> Figure 15
<p>(<b>a</b>) Vertical positioning error for different GNSS signal combinations [first trajectory]. (<b>b</b>) Zoomed view of vertical positioning error for different GNSS signal combinations [first trajectory].</p> "> Figure 16
<p>Number of visible satellites for different GNSS signal combinations [first trajectory].</p> "> Figure 17
<p>(<b>a</b>) Horizontal positioning error for different GNSS signal combinations [second trajectory]. (<b>b</b>) Zoomed view of horizontal positioning error for different GNSS signal combinations [second trajectory].</p> "> Figure 17 Cont.
<p>(<b>a</b>) Horizontal positioning error for different GNSS signal combinations [second trajectory]. (<b>b</b>) Zoomed view of horizontal positioning error for different GNSS signal combinations [second trajectory].</p> "> Figure 18
<p>(<b>a</b>) Vertical positioning error for different GNSS signal combinations [second trajectory]. (<b>b</b>) Zoomed view of vertical positioning error for different GNSS signal combinations [second trajectory].</p> "> Figure 19
<p>Number of visible satellites for different GNSS signal combinations [second trajectory].</p> "> Figure 20
<p>(<b>a</b>) Horizontal positioning error for different GNSS signal combinations [first trajectory]. (<b>b</b>) Zoomed view of horizontal positioning error for different GNSS signal combinations [first trajectory].</p> "> Figure 21
<p>(<b>a</b>) Vertical positioning error for different GNSS signal combinations [first trajectory]. (<b>b</b>) Zoomed view of vertical positioning error for different GNSS signal combinations [first trajectory].</p> "> Figure 22
<p>Number of visible satellites for different GNSS signal combinations [first trajectory].</p> "> Figure 23
<p>(<b>a</b>) Horizontal positioning error for different GNSS signal combinations [second trajectory]. (<b>b</b>) Zoomed view of horizontal positioning error for different GNSS signal combinations [second trajectory].</p> "> Figure 23 Cont.
<p>(<b>a</b>) Horizontal positioning error for different GNSS signal combinations [second trajectory]. (<b>b</b>) Zoomed view of horizontal positioning error for different GNSS signal combinations [second trajectory].</p> "> Figure 24
<p>(<b>a</b>) Vertical positioning error for different GNSS signal combinations [second trajectory]. (<b>b</b>) Zoomed view of vertical positioning error for different GNSS signal combinations [second trajectory].</p> "> Figure 25
<p>Number of visible satellites for different GNSS signal combinations [second trajectory].</p> "> Figure 26
<p>Horizontal positioning error for different GNSS signal combinations [first trajectory].</p> "> Figure 27
<p>Vertical positioning error for different GNSS signal combinations [first trajectory].</p> "> Figure 28
<p>Number of visible satellites for different GNSS signal combinations [first trajectory].</p> "> Figure 29
<p>Horizontal positioning error for different GNSS signal combinations [second trajectory].</p> "> Figure 30
<p>Vertical positioning error for different GNSS signal combinations [second trajectory].</p> "> Figure 31
<p>Number of visible satellites for different GNSS signal combinations [second trajectory].</p> "> Figure 32
<p>RMS of horizontal errors for the simulated and actual jamming scenarios (low jamming).</p> "> Figure 33
<p>RMS of vertical errors for the simulated and actual jamming scenarios (low jamming).</p> "> Figure 34
<p>RMS of horizontal errors for the simulated and actual jamming scenarios (high jamming).</p> "> Figure 35
<p>RMS of vertical errors for the simulated and actual jamming scenarios (high jamming).</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Methodology
4. Experiment Setup and Data Collection
4.1. Simulated Jamming Experiment
4.2. Actual Jamming Experiment
5. Simulated Jamming Results Analysis
5.1. Low Jamming Scenario
5.1.1. First Trajectory
5.1.2. Second Trajectory
5.2. High Jamming Scenario
5.2.1. First Trajectory
5.2.2. Second Trajectory
6. Real Jamming Results Analysis
6.1. Low Jamming Scenario
6.1.1. First Trajectory
6.1.2. Second Trajectory
6.2. High Jamming Scenario
6.2.1. First Trajectory
6.2.2. Second Trajectory
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Purfürst, T. Evaluation of Static Autonomous GNSS Positioning Accuracy Using Single-, Dual-, and Tri-Frequency Smartphones in Forest Canopy Environments. Sensors 2022, 22, 1289. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ge, M.; Dai, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 2015, 89, 607–635. [Google Scholar] [CrossRef]
- Joubert, N.; Reid, T.G.R.; Noble, F. Developments in Modern GNSS and its Impact on Autonomous Vehicle Architectures. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020. [Google Scholar]
- Dasgupta, S.; Rahman, M.; Bandi, T.N. AI-based GNSS Spoofing Attack Detection for Autonomous Vehicles using Satellite Characteristics Data. In Proceedings of the 2023 International Technical Meeting, ION ITM 2023, Long Beach, CA, USA, 25–27 January 2023. [Google Scholar]
- Jing, H.; Gao, Y.; Shahbeigi, S.; Dianati, M. Integrity Monitoring of GNSS/INS Based Positioning Systems for Autonomous Vehicles: State-of-the-Art and Open Challenges. Trans. Intell. Transp. Syst. 2022, 23, 14166–14187. [Google Scholar] [CrossRef]
- Lin, X.; Wang, F.; Yang, B.; Zhang, W. Autonomous Vehicle Localization with Prior Visual Point Cloud Map Constraints in GNSS-Challenged Environments. Remote Sens. 2021, 13, 506. [Google Scholar] [CrossRef]
- Schütz, A.; Sánchez-Morales, D.E.; Pany, T. Precise Positioning Through a Loosely-coupled Sensor Fusion of GNSS-RTK, INS and LiDAR for Autonomous Driving. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020. [Google Scholar]
- Chen, Y.; Zhan, X. GNSS vulnerability reliable assessment and its substitution with visual–inertial navigation. Aerosp. Syst. 2021, 4, 179–189. [Google Scholar] [CrossRef]
- Lo, S.; Chen, Y.H.; Miguel, N.S.; Walter, T. Examining Cross Frequency Interference Effects in Multi-Frequency GNSS Receivers. In Proceedings of the 2023 International Technical Meeting, ION ITM 2023, Long Beach, CA, USA, 25–27 January 2023. [Google Scholar]
- Kaplan, E.D.; Hegarty, C. Understanding GPS/GNSS: Principles and Applications, 3rd ed.; Artech House: Boston, MA, USA, 2017. [Google Scholar]
- ElGhamrawy, H. Narrowband Jamming Mitigation in Vector-Based GPS Software Defined Receiver. Ph.D. Thesis, Queen’s University, Kingston, ON, USA, 2019. [Google Scholar]
- Elghamrawy, H.; Karaim, M.; Korenberg, M.; Noureldin, A. High-Resolution Spectral Estimation for Continuous Wave Jamming Mitigation of GNSS Signals in Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 7881–7895. [Google Scholar] [CrossRef]
- Reuper, B.; Becker, M.; Leinen, S. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm. Sensors 2018, 18, 3052. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, D.; Zhang, L.; Li, Q.; Wu, A. Tightly Coupled GNSS/INS Integration with Robust Sequential Kalman Filter for Accurate Vehicular Navigation. Sensors 2020, 20, 561. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, Z.; Li, X.; Liu, G.; Zhou, Y.; Li, S. Continuous Decimeter-Level Positioning in Urban Environments Using Multi-Frequency GPS/BDS/Galileo PPP/INS Tightly Coupled Integration. Remote Sens. 2023, 15, 2160. [Google Scholar] [CrossRef]
- Ollander, S. Accurate Positioning in Urban Canyons with Multi-Frequency Satellite Navigation. Ph.D. Thesis, Georg-August University, Göttingen, Germany, 2020. [Google Scholar]
- Elghamrawy, H.; Karaim, M.; Noureldin, A.; Tamazin, M. Experimental Evaluation of the Impact of Different Types of Jamming Signals on Commercial GNSS Receivers. Appl. Sci. 2020, 10, 4240. [Google Scholar] [CrossRef]
- Reuper, B.F. Multi-Frequency GNSS Sensor Fusion with Quality Assessment for Automotive 583 Applications. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2020. [Google Scholar]
- Elmasry, O.; Tamazin, M.; Elghamrawy, H.; Karaim, M.; Noureldin, A.; Khedr, M. Examining the benefits of multi-GNSS constellation for the positioning of high dynamics air platforms under jamming conditions. In Proceedings of the 11th International Symposium on Mechatronics and its Applications (ISMA), Sharjah, United Arab Emirates, 4–6 March 2018. [Google Scholar]
- Zidan, J.; Adegoke, E.I.; Kampert, E.; Birrell, S.A.; Ford, C.R.; Higgins, M.D. GNSS Vulnerabilities and Existing Solutions: A Review of the Literature. IEEE Access 2021, 9, 153960–153976. [Google Scholar] [CrossRef]
- Glomsvoll, O.; Bonenberg, L.K. GNSS Jamming Resilience for Close to Shore Navigation in the Northern Sea. J. Navig. 2018, 70, 33–48. [Google Scholar] [CrossRef]
- Bhuiyan, M.Z.H.; Honkala, S.; Soderhölm, S.; Kuusniemi, H. Performance analysis of a multi-GNSS receiver in the presence of a commercial jammer. In Proceedings of the 2015 International Association of Institutes of Navigation World Congress (IAIN), Prague, Czech Republic, 20–23 October 2015. [Google Scholar]
- Safran. Safran-Navigation-Timing. Available online: https://safran-navigation-timing.com/manuals/skydel/#_launching_skydel (accessed on 11 October 2023).
- NovAtel. NovAtel-PwrPak7. NovAtel. Available online: https://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://hexagondownloads.blob.core.windows.net/public/Novatel/assets/Documents/Papers/PwrPak7-Product-Sheet/PwrPak7-Product-Sheet.pdf (accessed on 11 October 2023).
Combination | GNSS Constellation | Signals Acquired |
---|---|---|
1 | GPS DF | L1 C/A, L1P, L2C, L2P |
2 | GPS TF | L1 C/A, L1P, L2C, L2P, L5 |
3 | GPS TF + Galileo SF | L1 C/A, L1P, L2C, L2P, L5, E1 |
4 | GPS TF + Galileo TF | L1 C/A, L1P, L2C, L2P, L5, E1, E5a, E5b |
5 | GPS TF + Galileo TF + GLONASS SF | L1 C/A, L1P, L2C, L2P, L5, E1, E5a, E5b, G1 |
6 | GPS TF+ Galileo TF+ GLONASS DF | L1 C/A, L1P, L2C, L2P, L5, E1, E5a, E5b, G1, G2 |
Combination | Horizontal | Vertical | ||||
---|---|---|---|---|---|---|
RMSE | Mean | Max | RMSE | Mean | Max | |
GPS DF | 48.434 | 6.560 | 1141.527 | 147.512 | 13.840 | 3283.053 |
GPS TF | 3.528 | 3.482 | 8.156 | 3.964 | 2.777 | 31.026 |
GPS TF + Galileo SF | 3.294 | 3.272 | 8.187 | 2.746 | 1.980 | 23.401 |
GPS TF + Galileo TF | 2.720 | 2.678 | 4.624 | 1.766 | 1.578 | 4.624 |
GPS TF+ Galileo TF + GLONASS SF | 2.853 | 2.825 | 4.851 | 1.845 | 1.687 | 4.851 |
GPS TF + Galileo TF + GLONASS DF | 2.409 | 2.384 | 3.074 | 1.115 | 0.980 | 4.024 |
Combination | Horizontal Error | Vertical | ||||
---|---|---|---|---|---|---|
RMSE | Mean | Max | RMSE | Mean | Max | |
GPS DF | 2.994 | 2.949 | 9.882 | 3.264 | 2.734 | 17.911 |
GPS TF | 3.112 | 3.084 | 6.139 | 3.103 | 2.173 | 16.388 |
GPS TF + Galileo SF | 3.154 | 3.138 | 4.914 | 2.545 | 2.128 | 22.633 |
GPS TF + Galileo TF | 1.810 | 1.544 | 4.517 | 2.163 | 1.647 | 10.969 |
GPS TF+ Galileo TF + GLONASS SF | 1.243 | 1.024 | 4.390 | 3.163 | 2.280 | 13.842 |
GPS TF + Galileo TF + GLONASS DF | 0.477 | 0.391 | 2.596 | 1.394 | 1.067 | 6.393 |
Combination | Horizontal | Vertical | ||||
---|---|---|---|---|---|---|
RMSE | Mean | Max | RMSE | Mean | Max | |
GPS DF | 45.243 | 10.621 | 344.106 | 132.595 | 25.015 | 1026.897 |
GPS TF | 3.492 | 3.261 | 28.611 | 5.701 | 2.732 | 94.982 |
GPS TF + Galileo SF | 4.045 | 3.377 | 48.045 | 10.212 | 3.474 | 158.456 |
GPS TF + Galileo TF | 1.670 | 1.333 | 8.904 | 2.809 | 1.799 | 13.211 |
GPS + Galileo TF + GLONASS SF | 2.179 | 1.649 | 18.975 | 4.324 | 2.271 | 47.251 |
GPS TF + Galileo TF + GLONASS DF | 1.300 | 1.110 | 3.347 | 3.166 | 2.274 | 11.363 |
Combination | Horizontal | Vertical | ||||
---|---|---|---|---|---|---|
RMSE | Mean | Max | RMSE | Mean | Max | |
GPS DF | 39.087 | 6.750 | 841.198 | 87.420 | 12.630 | 1757.638 |
GPS TF | 45.413 | 6.217 | 1001.927 | 55.505 | 5.340 | 1272.265 |
GPS TF + Galileo SF | 3.225 | 3.212 | 4.923 | 2.762 | 2.104 | 15.265 |
GPS TF + Galileo TF | 1.707 | 0.975 | 7.245 | 3.332 | 2.285 | 13.756 |
GPS TF+ Galileo TF + GLONASS SF | 2.015 | 1.781 | 11.262 | 2.314 | 1.580 | 18.614 |
GPS TF + Galileo TF + GLONASS DF | 2.800 | 2.754 | 5.137 | 2.330 | 1.507 | 11.658 |
Combination | Horizontal | Vertical | ||||
---|---|---|---|---|---|---|
RMSE | Mean | Max | RMSE | Mean | Max | |
GPS DF | 177.205 | 24.096 | 3908.975 | 328.590 | 51.193 | 4711.388 |
GPS TF | 3.649 | 3.166 | 56.892 | 6.308 | 2.022 | 163.453 |
GPS TF + Galileo SF | 4.123 | 3.586 | 15.631 | 6.482 | 2.747 | 98.680 |
GPS TF + Galileo TF | 2.182 | 1.996 | 9.600 | 6.917 | 4.481 | 37.169 |
GPS TF+ Galileo TF + GLONASS SF | 4.204 | 2.865 | 33.975 | 10.308 | 9.223 | 27.846 |
GPS TF + Galileo TF + GLONASS DF | 2.089 | 1.937 | 5.847 | 3.454 | 2.810 | 11.220 |
Combination | Horizontal | Vertical | ||||
---|---|---|---|---|---|---|
RMSE | Mean | Max | RMSE | Mean | Max | |
GPS DF | 6.079 | 3.587 | 114.251 | 15.068 | 3.660 | 330.936 |
GPS TF | 2.958 | 2.881 | 7.301 | 4.152 | 2.517 | 23.592 |
GPS TF + Galileo SF | 2.721 | 2.573 | 6.517 | 3.425 | 2.265 | 21.818 |
GPS TF + Galileo TF | 2.307 | 2.155 | 6.009 | 2.070 | 1.625 | 8.898 |
GPS TF+ Galileo TF + GLONASS SF | 2.693 | 2.622 | 6.534 | 4.143 | 2.814 | 13.929 |
GPS TF + Galileo TF + GLONASS DF | 1.787 | 1.585 | 3.640 | 1.151 | 1.014 | 4.519 |
Combination | Horizontal | Vertical | ||||
---|---|---|---|---|---|---|
RMSE | Mean | Max | RMSE | Mean | Max | |
GPS DF | 2.845 | 2.825 | 3.569 | 2.278 | 1.891 | 4.613 |
GPS TF | 5.419 | 3.202 | 134.165 | 16.495 | 2.435 | 407.822 |
GPS TF + Galileo SF | 3.280 | 3.137 | 11.383 | 9.548 | 3.561 | 61.381 |
GPS TF + Galileo TF | 15.542 | 5.289 | 251.315 | 17.454 | 4.531 | 273.599 |
GPS TF+ Galileo TF + GLONASS SF | 3.749 | 3.102 | 38.859 | 7.933 | 4.471 | 68.720 |
GPS TF + Galileo TF + GLONASS DF | 3.200 | 2.254 | 15.289 | 8.299 | 4.327 | 36.932 |
Combination | Horizontal | Vertical | ||||
---|---|---|---|---|---|---|
RMSE | Mean | Max | RMSE | Mean | Max | |
GPS DF | 3.211 | 3.173 | 4.541 | 2.673 | 2.196 | 7.453 |
GPS TF | 12.559 | 3.638 | 356.038 | 10.902 | 2.940 | 187.952 |
GPS TF + Galileo SF | 12.272 | 4.201 | 138.110 | 11.368 | 3.195 | 124.674 |
GPS TF + Galileo TF | 13.161 | 6.455 | 58.532 | 18.938 | 8.636 | 122.068 |
GPS TF+ Galileo TF + GLONASS SF | 2.575 | 2.420 | 8.316 | 7.827 | 5.735 | 42.224 |
GPS TF + Galileo TF + GLONASS DF | 1.831 | 0.781 | 14.4477 | 4.296 | 2.343 | 23.135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmezayen, A.; Karaim, M.; Elghamrawy, H.; Noureldin, A. Enhanced GNSS Reliability on High-Dynamic Platforms: A Comparative Study of Multi-Frequency, Multi-Constellation Signals in Jamming Environments. Sensors 2023, 23, 9552. https://doi.org/10.3390/s23239552
Elmezayen A, Karaim M, Elghamrawy H, Noureldin A. Enhanced GNSS Reliability on High-Dynamic Platforms: A Comparative Study of Multi-Frequency, Multi-Constellation Signals in Jamming Environments. Sensors. 2023; 23(23):9552. https://doi.org/10.3390/s23239552
Chicago/Turabian StyleElmezayen, Abdelsatar, Malek Karaim, Haidy Elghamrawy, and Aboelmagd Noureldin. 2023. "Enhanced GNSS Reliability on High-Dynamic Platforms: A Comparative Study of Multi-Frequency, Multi-Constellation Signals in Jamming Environments" Sensors 23, no. 23: 9552. https://doi.org/10.3390/s23239552
APA StyleElmezayen, A., Karaim, M., Elghamrawy, H., & Noureldin, A. (2023). Enhanced GNSS Reliability on High-Dynamic Platforms: A Comparative Study of Multi-Frequency, Multi-Constellation Signals in Jamming Environments. Sensors, 23(23), 9552. https://doi.org/10.3390/s23239552