Vehicle State Joint Estimation Based on Lateral Stiffness
<p>The schematic diagram of joint estimation.</p> "> Figure 2
<p>The linear two-degree-of-freedom vehicle model.</p> "> Figure 3
<p>Analysis of vehicle motion in vehicle coordinate system.</p> "> Figure 4
<p>The SRGHCKF algorithm flowchart.</p> "> Figure 5
<p>The simulation results of the double lane change: (<b>a</b>) the steering angle; (<b>b</b>) the front-axle lateral stiffness; (<b>c</b>) the rear-axle lateral stiffness; (<b>d</b>) the longitudinal velocity; (<b>e</b>) the lateral velocity; (<b>f</b>) the yaw rate.</p> "> Figure 6
<p>The simulation results of the slalom: (<b>a</b>) the steering angle; (<b>b</b>) the front-axle lateral stiffness; (<b>c</b>) the rear-axle lateral stiffness; (<b>d</b>) the longitudinal velocity; (<b>e</b>) the lateral velocity; (<b>f</b>) the yaw rate.</p> "> Figure 7
<p>The vehicle and measurement sensors used in the experiment.</p> "> Figure 8
<p>The experiment results of the double lane change: (<b>a</b>) the steering angle; (<b>b</b>) the lateral acceleration; (<b>c</b>) the longitudinal acceleration; (<b>d</b>) the longitudinal velocity; (<b>e</b>) the lateral velocity; (<b>f</b>) the yaw rate.</p> "> Figure 9
<p>The experiment results of the slalom: (<b>a</b>) the steering angle; (<b>b</b>) the lateral acceleration; (<b>c</b>) the longitudinal acceleration; (<b>d</b>) the longitudinal velocity; (<b>e</b>) the lateral velocity; (<b>f</b>) the yaw rate.</p> ">
Abstract
:1. Introduction
2. Design of Vehicle State Joint Estimator
2.1. The Vehicle State Estimator
2.1.1. The Linear Two-Degree-of-Freedom Vehicle Model
2.1.2. The Nonlinear Three-Degree-of-Freedom Vehicle Model
2.1.3. The Vehicle State Estimation Model
2.1.4. Design Generalized High-Degree Cubature Kalman Estimator
2.1.5. Design Square Root Generalized High-Degree Cubature Kalman Estimator
2.2. The Lateral Stiffness Estimator
2.2.1. Magic Formula
2.2.2. The Lateral Stiffness Estimation Model
2.2.3. Design Lateral Stiffness Estimator
3. Simulation Analysis
3.1. Double Lane Change Simulation
3.2. Slalom Simulation
4. Experimental Verification
4.1. The Double Lane Change Experiment
4.2. The Slalom Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ya, J.F. Application Analysis of In-wheel Motor Technology in New Energy Vehicles. Auto Time 2023, 11, 92–94. [Google Scholar]
- Wang, Y.; Yi, G.D.; Geng, K.K.; Dong, H.X.; Liu, S.P.; Chen, N. Active collision avoidance adaptive control based on identification of different emergency conditions. J. Mech. Eng. 2020, 56, 115–124. [Google Scholar] [CrossRef]
- Ding, X.; Wang, Z.; Zhang, L.; Wang, C. Longitudinal vehicle speed estimation for four-wheel-independently-actuated electric vehicles based on multi-sensor fusion. IEEE Trans. Veh. Technol. 2020, 69, 12797–12806. [Google Scholar] [CrossRef]
- Park, G. Vehicle Sideslip Angle Estimation Based on Interacting Multiple Model Kalman Filter Using Low-Cost Sensor Fusion. IEEE Trans. Veh. Technol. 2022, 71, 6088–6099. [Google Scholar] [CrossRef]
- García, G.J.; Prieto, G.L.; Pajares, R.J.; Montalvo, M.M.; Boada, M.J.L. Real-time vehicle roll angle estimation based on neural networks in iot low-cost devices. Sensors 2018, 18, 2188. [Google Scholar] [CrossRef] [PubMed]
- Menhour, L.; Lechner, D.; Charara, A. Embedded unknown input sliding mode observer to estimate the vehicle roll and road bank angles: Experimental evaluation. IFAC Proc. Vol. 2010, 43, 623–628. [Google Scholar] [CrossRef]
- Cheng, S.; Li, L.; Yan, B.; Liu, C.; Wang, X.; Fang, J. Simultaneous estimation of tire side-slip angle and lateral tire force for vehicle lateral stability control. Mech. Syst. Signal Process. 2019, 132, 168–182. [Google Scholar] [CrossRef]
- Chen, T.; Xu, X.; Chen, L.; Jiang, H.; Cai, Y.; Li, Y. Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles. Mech. Syst. Signal Process. 2018, 101, 377–388. [Google Scholar] [CrossRef]
- Dong, M.M.; Zhang, Y.; Wang, Z.F. A research on the estimation of vehicle rolling state. Automot. Eng. 2018, 40, 1089–1095. [Google Scholar] [CrossRef]
- Reina, G.; Messina, A. Vehicle dynamics estimation via augmented Extended Kalman Filtering. Measurement 2018, 133, 383–395. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, G.D.; Geng, K.K.; Dong, H.X.; Lu, Y.B.; Zhang, F.J. Tire lateral forces and sideslip angle estimation for distributed drive electric vehicle using noise adaptive cubature Kalman filter. J. Mech. Eng. 2019, 55, 103–112. [Google Scholar] [CrossRef]
- Li, S.H.; Wang, G.Y.; Yang, Z.K.; Wang, X.W. Dynamic joint estimation of vehicle sideslip angle and road adhesion coefficient based on DRBF-EKF algorithm. Chin. J. Theor. Appl. Mech. 2022, 54, 1853–1865. [Google Scholar] [CrossRef]
- Huang, B.; Fu, X.; Wu, S.; Huang, S. Calculation algorithm of tire-road friction coefficient based on limited-memory adaptive extended Kalman filter. Math. Probl. Eng. 2019, 2019, 1056269. [Google Scholar] [CrossRef]
- Jin, X.J.; Yang, J.P.; Yin, G.D.; Wang, J.X.; Chen, N.; Lu, Y.B. Combined state and parameter observation of distributed drive electric vehicle via dual unscented Kalman filter. J. Mech. Eng. 2019, 55, 93–102. [Google Scholar] [CrossRef]
- Jin, X.J.; Yang, J.P.; Li, Y.J.; Zhu, B.; Yin, G.D. Online estimation of inertial parameter for lightweight electric vehicle using dual unscented Kalman filter approach. IET Intell. Transp. Syst. 2020, 14, 412–422. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, K.; Xu, L.; Ren, Y.; Dong, H.; Yin, G.D. Estimation of sideslip angle and tire cornering stiffness using fuzzy adaptive robust cubature Kalman filter. IEEE Trans. Syst. Man Cybern. 2020, 52, 1451–1462. [Google Scholar] [CrossRef]
- Cheng, S.; Li, L.; Chen, J. Fusion algorithm design based on adaptive SCKF and integral correction for side-slip angle observation. IEEE Trans. Industr. Electr. 2017, 65, 5754–5763. [Google Scholar] [CrossRef]
- Boada, B.L.; Garcia, P.D.; Boada, M.J.L.; Diaz, V. A constrained dual Kalman filter based on pdf truncation for estimation of vehicle parameters and road bank angle: Analysis and experimental validation. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1006–1016. [Google Scholar] [CrossRef]
- Hu, J.Y.; Wang, Y.; Yan, Y.J.; Geng, K.K.; Bai, S.; Yin, G.D. Vehicle state estimation based on limited memory random weighted extended Kalman filter. J. Southeast Univ. Nat. Sci. Ed. 2022, 52, 387–393. [Google Scholar] [CrossRef]
- Qi, D.; Feng, J.; Wan, W.; Song, B. A novel maximum correntropy adaptive extended Kalman filter for vehicle state estimation under non-Gaussian noise. Meas. Sci. Technol. 2022, 34, 025114. [Google Scholar] [CrossRef]
- Zhou, W.Q.; Qi, X.; Chen, L.; Xu, X. Vehicle State Estimation Based on the Combination of Unscented Kalman Filtering and Genetic Algorithm. Automot. Eng. 2019, 41, 198–205. [Google Scholar] [CrossRef]
- Wan, W.; Feng, J.; Song, B.; Li, X. Huber-based robust unscented Kalman filter distributed drive electric vehicle state observation. Energies 2021, 14, 750. [Google Scholar] [CrossRef]
- Qi, D.L.; Feng, J.G.; Li, Y.B.; Wang, L.; Song, B. A Robust Hierarchical Estimation Scheme for Vehicle State Based on Maximum Correntropy Square-Root Cubature Kalman Filter. Entropy 2023, 25, 453. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.X.; Wei, M.X.; Zhao, W.Z.; Wang, Y.; Wu, S.F. Vehicle State Estimation Based on Adaptive Cubature Particle Filtering. J. Nanjing Univ. Aeronaut. Astronaut. 2020, 52, 445–453. [Google Scholar] [CrossRef]
- Bai, Y.; Ding, D.W.; Zhang, G.Q.; Wang, G.L.; Xu, D.G. Position and Speed Detection Method of PMSM Drives Based on Moving-average Least Square Method. Proc. CSEE 2023, 43, 2532–2539. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, M.X.; Zhao, W.Z.; Zhang, F.J.; Yan, M.Y. Vehicle State Estimation Based on Combined RLS and FAEKF. China Mech. Eng. 2017, 28, 750–755. [Google Scholar] [CrossRef]
- Liu, D.; Chen, X.; Xu, Y.; Liu, X.; Shi, C. Maximum correntropy generalized high-degree cubature Kalman filter with application to the attitude determination system of missile. Aerosp. Sci. Technol. 2019, 95, 105441. [Google Scholar] [CrossRef]
- Hao, S.Y.; Lu, H.; Wei, X.; Xu, M.Q. Reduced high-degree strong tracking cubature Kalman filter and its application in integrated navigation system. Control. Decis. 2019, 34, 2105–2114. [Google Scholar] [CrossRef]
- Peng, Z.Y.; Xia, H.B.; Xu, Y.S. Adaptive generalized high-degree Cubature Kalman Filter based on target tracking. Comput. Eng. Appl. 2018, 54, 46–52. [Google Scholar]
- Liu, Y.; Huang, P. A more general class of cubature Kalman filters. Comput. Eng. Appl. 2015, 51, 207–210. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, H.H.; Gao, C.; Li, Q.W. The linear three-degree-of-freedom vehicle model based on Simulink simulation. Intell. Comput. Appl. 2020, 10, 200–207. [Google Scholar]
- Yu, Z.S. Automobile Theory, 5th ed.; China Machine Press: Beijing, China, 2009; pp. 144–146. [Google Scholar]
- Quan, L.X.; Chang, R.L.; Guo, C.H. Vehicle State and Road Adhesion Coefficient Joint Estimation Based on High-Order Cubature Kalman Algorithm. Appl. Sci. 2023, 13, 10734. [Google Scholar] [CrossRef]
- Qin, K.; Dong, X.M.; Chen, Y.; Liu, Z.C.; Li, H.B. Huber-based robust generalized high-degree cubature Kalman filter. Control. Decis. 2018, 3, 88–94. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Wang, H.P.; Dong, K. Augmented target tracking algorithm based on SRCKF for joint estimation of state and sensor systematic error. J. Jilin Univ. Eng. Technol. Ed. 2015, 45, 314–321. [Google Scholar] [CrossRef]
- Du, R.F.; Wang, J.; Li, N.; Fei, M.Z.; Deng, H.; Wang, Y.J. Road Friction Coefficient Estimation Based on Square Root Cubature Kalman Filter. Automot. Eng. 2023, 8, 30–37. [Google Scholar] [CrossRef]
- Qiu, C.F.; Zhou, L.; Chen, R.Q.; Sun, X.Y.; Jia, C.H.; Qiu, J.W.; Zhang, C.; Yang, H.T. Calculation Method of Tire Longitudinal Slip Characteristic Parameters Based on Magic Formula. Tire Ind. 2021, 41, 607–611. [Google Scholar] [CrossRef]
- Ružinskas, A.; Sivilevičius, H. Magic formula tyre model application for a tyre-ice interaction. Procedia Eng. 2017, 187, 335–341. [Google Scholar] [CrossRef]
- Ma, F.R.; Li, Y.M.; Du, H.; Jiao, Z.; Qiu, Y.Z. Estimation of Battery SOC Based on Dynamic Forgetting FactorLeast Square Algorithm and EKF. Comput. Meas. Control. 2023, 31, 167–180. [Google Scholar] [CrossRef]
- Lin, F.; Zhang, H.D.; Zhao, Y.Q.; Zhang, H.Q. Road Friction Condition Identification Based on Tire Lateral Stiffness Estimation. J. South China Univ. Technol. Nat. Sci. Ed. 2019, 47, 16–24. [Google Scholar] [CrossRef]
Kalman Algorithm | Principle | Application Scenario | Characteristic |
---|---|---|---|
EKF | Based on first-order Taylor series expansion; approximating nonlinear functions to linear functions | Generally applicable to weakly nonlinear systems. | The accuracy and stability of EKF for state estimation are also relatively average. |
UKF | Using the traceless transformation method to approximate nonlinear functions | Generally applicable to strongly nonlinear systems. | When dealing with complex nonlinear systems, UKF usually has better performance than EKF. |
CKF | Approximating nonlinear functions based on volume criterion | Can be applied to nonlinear systems with additive Gaussian white noise. | CKF has higher computational efficiency than UKF, and its approximation accuracy for nonlinear functions is lower than UKF. |
Estimated Value | LS-SRGHCKFRMSE | LS-GHCKFRMSE | DIFFERENCE |
---|---|---|---|
The longitudinal velocity x | 0.0038 | 0.0083 | 0.0045 |
The lateral velocity y | 0.0047 | 0.0061 | 0.0014 |
The yaw rate r | 0.0019 | 0.0020 | 0.0001 |
Estimated Value | LS-SRGHCKFRMSE | LS-GHCKFRMSE | DIFFERENCE |
---|---|---|---|
The longitudinal velocity x | 0.0122 | 0.0327 | 0.0205 |
The lateral velocity y | 0.0012 | 0.0013 | 0.0001 |
The yaw rate r | 0.0037 | 0.0038 | 0.0001 |
Estimated Value | LS-SRGHCKFRMSE | LS-GHCKFRMSE | DIFFERENCE |
---|---|---|---|
0.0926 | 0.1113 | 0.0187 | |
y | 0.0171 | 0.0181 | 0.0010 |
r | 0.0657 | 0.1463 | 0.0806 |
Estimated Value | LS-SRGHCKFRMSE | LS-GHCKFRMSE | DIFFERENCE |
---|---|---|---|
x | 0.0730 | 0.0782 | 0.0052 |
y | 0.0329 | 0.0424 | 0.0095 |
r | 0.0197 | 0.0222 | 0.0025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, L.; Chang, R.; Guo, C.; Li, B. Vehicle State Joint Estimation Based on Lateral Stiffness. Sensors 2023, 23, 8960. https://doi.org/10.3390/s23218960
Quan L, Chang R, Guo C, Li B. Vehicle State Joint Estimation Based on Lateral Stiffness. Sensors. 2023; 23(21):8960. https://doi.org/10.3390/s23218960
Chicago/Turabian StyleQuan, Lingxiao, Ronglei Chang, Changhong Guo, and Bin Li. 2023. "Vehicle State Joint Estimation Based on Lateral Stiffness" Sensors 23, no. 21: 8960. https://doi.org/10.3390/s23218960
APA StyleQuan, L., Chang, R., Guo, C., & Li, B. (2023). Vehicle State Joint Estimation Based on Lateral Stiffness. Sensors, 23(21), 8960. https://doi.org/10.3390/s23218960