In-Bulk Temperature Profile Mapping Using Fiber Bragg Grating in Fluids
<p>Side-view photo of the experimental setup with its instrumentation: optical fiber in the center of the column with 24 FBGs spaced every 1 cm, 23 thermocouples with sensing points corresponding to the FBG positions. The fiber was encased outside of the measurement area in an orange cable connected to the spectrometer, and the measuring area of the coated fiber was positioned vertically in the middle of the setup, barely visible in the picture (see left insert for detailed schematic). The heater was later inserted from the top, schematized in green.</p> "> Figure 2
<p>Example of reflected spectrum from the spectrometer. Each FBG reflected a slightly different wavelength, enabling the easy multiplexing of the sensors. The FBG at position <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> showed a reference reflective wavelength of 822.5 nm. The temperature differences to be measured here caused shifts in the wavelength within 0.1 nm.</p> "> Figure 3
<p>Flow chart of data acquisition procedure.</p> "> Figure 4
<p>(<b>a</b>) Reconstructed temperature profile for stable gradient in GaInSn. Profiles are shown for two snapshots of FGB sensors (solid lines, closed circles) and compared to thermocouple measurements (dashed lines, open circles). (<b>b</b>) Measurement error, defined as the difference between FBG and thermocouple measurements, taken as benchmark.</p> "> Figure 5
<p>Temperature time evolution with local heating of thermocouples (dashed lines) compared with FBG readings (solid lines) corrected with respect to reference sensor. Left axis gives the relative temperature, right axis gives the absolute scale by taking the reference temperature as the time-average of the thermocouple data at the reference sensor, at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>24</mn> </mrow> </semantics></math> cm. Vertical solid lines corresponds to the times at which temperature profiles were computed in <a href="#sensors-23-08539-f006" class="html-fig">Figure 6</a>, from purple to green at 100 s, 300 s, 600 s, and 1300 s.</p> "> Figure 6
<p>Reconstructed temperature profiles at four time steps: <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> s, 300 s, 600 s, and 1300 s. Profiles from optical fiber (solid lines) are compared with thermocouple benchmark (dashed lines). The colors of the profiles correspond to the vertical lines in matching colors from <a href="#sensors-23-08539-f005" class="html-fig">Figure 5</a>.</p> ">
Abstract
:1. Introduction
2. Description of the Problem
3. Experimental Setup
4. Results
4.1. Method
4.2. Stable Temperature Gradient in GaInSn
4.3. Local Time-Dependent Heating in Water
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cioni, S.; Ciliberto, S.; Sommeria, J. Strongly turbulent Rayleigh–Bénard convection in mercury: Comparison with results at moderate Prandtl number. J. Fluid Mech. 1997, 335, 111–140. [Google Scholar] [CrossRef]
- Horanyi, S.; Krebs, L.; Müller, U. Turbulent Rayleigh–Bénard convection in low Prandtl–number fluids. Int. J. Heat Mass Transf. 1999, 42, 3983–4003. [Google Scholar] [CrossRef]
- Tsuji, Y.; Mizuno, T.; Mashiko, T.; Sano, M. Mean Wind in Convective Turbulence of Mercury. Phys. Rev. Lett. 2005, 94, 034501. [Google Scholar] [CrossRef] [PubMed]
- Akashi, M.; Yanagisawa, T.; Sakuraba, A.; Schindler, F.; Horn, S.; Vogt, T.; Eckert, S. Jump rope vortex flow in liquid metal Rayleigh–Bénard convection in a cuboid container of aspect ratio. J. Fluid Mech. 2022, 932, A27. [Google Scholar] [CrossRef]
- Schindler, F.; Eckert, S.; Zürner, T.; Schumacher, J.; Vogt, T. Collapse of Coherent Large Scale Flow in Strongly Turbulent Liquid Metal Convection. Phys. Rev. Lett. 2022, 128, 164501. [Google Scholar] [CrossRef]
- Käufer, T.; Vieweg, P.P.; Schumacher, J.; Cierpka, C. Thermal boundary condition studies in large aspect ratio Rayleigh–Bénard convection. Eur. J. Mech. B/Fluids 2023, 101, 283–293. [Google Scholar] [CrossRef]
- Smith, C.; Sabatino, D.; Praisner, T. Temperature sensing with thermochromic liquid crystals. Exp. Fluids 2001, 30, 190–201. [Google Scholar] [CrossRef]
- Anders, S.; Noto, D.; Tasaka, Y.; Eckert, S. Simultaneous optical measurement of temperature and velocity fields in solidifying liquids. Exp. Fluids 2020, 61, 1–19. [Google Scholar] [CrossRef]
- Moller, S.; Resagk, C.; Cierpka, C. Long-time experimental investigation of turbulent superstructures in Rayleigh–Bénard convection by noninvasive simultaneous measurements of temperature and velocity fields. Exp. Fluids 2021, 62, 1–18. [Google Scholar] [CrossRef]
- Sahota, J.K.; Gupta, N.; Dhawan, D. Fiber Bragg Grating Sensors for Monitoring of Physical Parameters: A Comprehensive Review. Opt. Eng. 2020, 59, 060901. [Google Scholar] [CrossRef]
- Lupi, C.; Felli, F.; Brotzu, A.; Caponero, M.A.; Paolozzi, A. Improving FBG Sensor Sensitivity at Cryogenic Temperature by Metal Coating. IEEE Sens. J. 2008, 8, 1299–1304. [Google Scholar] [CrossRef]
- Yang, S.; Homa, D.; Heyl, H.; Theis, L.; Beach, J.; Dudding, B.; Acord, G.; Taylor, D.; Pickrell, G.; Wang, A. Application of sapphire-fiber-Bragg-grating-based multi-point temperature sensor in boilers at a commercial power plant. Sensors 2019, 19, 3211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, J.; Wang, Y.; Dai, X. A Fast Response Temperature Sensor Based on Fiber Bragg Grating. Meas. Sci. Technol. 2014, 25, 075105. [Google Scholar] [CrossRef]
- Yucel, M.; Ozturk, N.F.; Gemci, C. Design of a Fiber Bragg Grating Multiple Temperature Sensor. In Proceedings of the 2016 Sixth International Conference on Digital Information and Communication Technology and Its Applications (DICTAP), Konya, Turkey, 21–23 July 2016; pp. 6–11. [Google Scholar] [CrossRef]
- Brown, E.; Ahlers, G. Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard Convection. J. Fluid Mech. 2006, 568, 351. [Google Scholar] [CrossRef]
- Funfschilling, D.; Brown, E.; Ahlers, G. Torsional oscillations of the large-scale circulation in turbulent Rayleigh-Bénard convectionl. J. Fluid Mech. 2008, 607, 119–139. [Google Scholar] [CrossRef]
- Xi, H.; Xia, K.Q. Flow mode transitions in turbulent thermal convection. Phys. Fluids 2008, 20, 055104. [Google Scholar] [CrossRef]
- Jung, J.; Nam, H.; Lee, B.; Byun, J.O.; Kim, N.S. Fiber Bragg Grating Temperature Sensor with Controllable Sensitivity. Appl. Opt. 1999, 38, 2752–2754. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Hsieh, T.S.; Chen, Y.C.; Huang, S.C.; Chiang, C.C. Metal-Coated Fiber Bragg Grating for Dynamic Temperature Sensor. Optik 2016, 127, 10740–10745. [Google Scholar] [CrossRef]
- Mishra, V.; Lohar, M.; Amphawan, A. Improvement in Temperature Sensitivity of FBG by Coating of Different Materials. Optik 2016, 127, 825–828. [Google Scholar] [CrossRef]
- Gao, H.; Hu, H.; Zhao, Y.; Li, J.; Lei, M.; Zhang, Y. Highly-sensitive optical fiber temperature sensors based on PDMS/silica hybrid fiber structures. Sens. Actuators A Phys. 2018, 284, 22–27. [Google Scholar] [CrossRef]
- Mohd Yusof, M.; Jamaluddin, M.; Muhammad, F.; Lim, K.; Ahmad, H.; Zulkifli, M. An investigation on temperature sensitivity of conductive carbon coated fiber Bragg grating. Results Opt. 2021, 5, 100164. [Google Scholar] [CrossRef]
- Hirayama, N.; Sano, Y. Fiber Bragg Grating Temperature Sensor for Practical Use. ISA Trans. 2000, 39, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, H.; Zhao, Q.; Liu, Y.; Li, F. Temperature-independent FBG pressure sensor with high sensitivity. Opt. Fiber Technol. 2007, 13, 78–80. [Google Scholar] [CrossRef]
- Kuang, Y.; Guo, Y.; Xiong, L.; Liu, W. Packaging and temperature compensation of fiber Bragg grating for strain sensing: A survey. Photonic Sens. 2018, 8, 320–331. [Google Scholar] [CrossRef]
- Yi, L.; Zude, Z.; Erlong, Z.; Jun, Z.; Yuegang, T.; Mingyao, L. Measurement Error of Surface-Mounted Fiber Bragg Grating Temperature Sensor. Rev. Sci. Instrum. 2014, 85, 064905. [Google Scholar] [CrossRef]
- Othonos, A. Fiber Bragg gratings. Rev. Sci. Instrum. 1997, 68, 4309–4341. [Google Scholar] [CrossRef]
- Lunwei, Z.; Jinwu, Q.; Linyong, S.; Yanan, Z. FBG sensor devices for spatial shape detection of intelligent colonoscope. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’04), New Orleans, LA, USA, 26 April–1 May 2004; Volume 1, pp. 834–840. [Google Scholar]
- Guyon, E.; Hulin, J.P.; Petit, L.; Mitescu, C.D. Physical Hydrodynamics; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Morley, N.B.; Burris, J.; Cadwallader, L.C.; Nornberg, M.D. GaInSn Usage in the Research Laboratory. Rev. Sci. Instrum. 2008, 79, 056107. [Google Scholar] [CrossRef]
- Plevachuk, Y.; Sklyarchuk, V.; Eckert, S.; Gerbeth, G.; Novakovic, R. Thermophysical Properties of the Liquid Ga–In–Sn Eutectic Alloy. J. Chem. Eng. Data 2014, 59, 757–763. [Google Scholar] [CrossRef]
- Schlichting, H.; Kestin, J. Boundary Layer Theory; Springer: Berlin/Heidelberg, Germany, 1961; Volume 121. [Google Scholar]
- Tosi, D. Review and analysis of peak tracking techniques for fiber Bragg grating sensors. Sensors 2017, 17, 2368. [Google Scholar] [CrossRef]
- Guo, Z.S. Strain and Temperature Monitoring of Asymmetric Composite Laminate Using FBG Hybrid Sensors. Struct. Health Monit. 2007, 6, 191–197. [Google Scholar] [CrossRef]
mm | mm | ||
---|---|---|---|
7 | 1 | ||
Air | 3 | 10 | |
(g) | 12 | ||
100 | 20 | ||
Water | 2 | 2 | |
(g) | 1 | 0.2 | |
300 | 60 | ||
GaInSn | 1 | 2 | |
(g) | 3.2 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, S.; Niu, T.; Vogt, T.; Eckert, S. In-Bulk Temperature Profile Mapping Using Fiber Bragg Grating in Fluids. Sensors 2023, 23, 8539. https://doi.org/10.3390/s23208539
Su S, Niu T, Vogt T, Eckert S. In-Bulk Temperature Profile Mapping Using Fiber Bragg Grating in Fluids. Sensors. 2023; 23(20):8539. https://doi.org/10.3390/s23208539
Chicago/Turabian StyleSu, Sylvie, Tianyi Niu, Tobias Vogt, and Sven Eckert. 2023. "In-Bulk Temperature Profile Mapping Using Fiber Bragg Grating in Fluids" Sensors 23, no. 20: 8539. https://doi.org/10.3390/s23208539
APA StyleSu, S., Niu, T., Vogt, T., & Eckert, S. (2023). In-Bulk Temperature Profile Mapping Using Fiber Bragg Grating in Fluids. Sensors, 23(20), 8539. https://doi.org/10.3390/s23208539