Hybrid Feature Fusion-Based High-Sensitivity Fire Detection and Early Warning for Intelligent Building Systems
<p>Overall design of the early fire detection and warning system.</p> "> Figure 2
<p>The BPNN process with GA optimization.</p> "> Figure 3
<p>The PSO-LSSVM fire warning algorithm model.</p> "> Figure 4
<p>Schematic diagram of particle search for optimization.</p> "> Figure 5
<p>Particle swarm optimization process.</p> "> Figure 6
<p>The simulation analysis of in-building fire features: (<b>a</b>) fire model; (<b>b</b>) temperature change; (<b>c</b>) smoke concentration change; and (<b>d</b>) carbon monoxide concentration.</p> "> Figure 6 Cont.
<p>The simulation analysis of in-building fire features: (<b>a</b>) fire model; (<b>b</b>) temperature change; (<b>c</b>) smoke concentration change; and (<b>d</b>) carbon monoxide concentration.</p> "> Figure 7
<p>The fire detection and warning system: (<b>a</b>) collection node design; (<b>b</b>) gateway node design; (<b>c</b>) hardware.</p> "> Figure 8
<p>The output results of fire with (<b>a</b>) the BPNN and (<b>b</b>) the GA-BPNN.</p> "> Figure 9
<p>The output results of fire with the LSSVM for different kernel functions: (<b>a</b>) the radial basis kernel function; (<b>b</b>) the sigmoid kernel function; (<b>c</b>) the polypolynomial kernel function; (<b>d</b>) the linear kernel function.</p> "> Figure 10
<p>The output results of smolder with (<b>a</b>) the BPNN and (<b>b</b>) the GA-BPNN.</p> "> Figure 11
<p>The output results of smolder with the LSSVM for different kernel functions: (<b>a</b>) radial basis kernel function; (<b>b</b>) sigmoid kernel function; (<b>c</b>) polypolynomial kernel function; (<b>d</b>) linear kernel function.</p> "> Figure 12
<p>Comparative results of the D-S evidence theory fusion approach: (<b>a</b>) expected fire output and simulation outputs; (<b>b</b>) desired smolder output and simulation outputs.</p> "> Figure 13
<p>The polyurethane fire test: (<b>a</b>) the process of polyurethane combustion; (<b>b</b>) the fire scene.</p> "> Figure 14
<p>The alcohol fire test: (<b>a</b>) the process of alcohol combustion; (<b>b</b>) the fire scene.</p> "> Figure 15
<p>The beech wood smolder test: (<b>a</b>) the process of beech wood combustion; (<b>b</b>) the smolder scene.</p> "> Figure 16
<p>The cotton rope smolder test: (<b>a</b>) the process of cotton rope combustion; (<b>b</b>) the smolder scene.</p> "> Figure 17
<p>Distributed networking experiments: (<b>a</b>) Node 1; (<b>b</b>) Node 2; (<b>c</b>) Node 3.</p> ">
Abstract
:1. Introduction
2. Suggestions and Methodology
2.1. Genetic Algorithm–Back Propagation Neural Network Fire Warning Model
2.2. Particle Swarm Optimization–Least Squares Support Vector Machine Fire Warning Model
2.3. Decision-Level Feature Data Fusion
3. Results and Discussions
3.1. Experimental Setup
3.2. Results of Open Fire
3.3. Results of the Smolder
3.4. Model Performance Analysis
3.5. Results of the Proposed Method
4. Early Fire Warning Experiments
4.1. Results of the Warning Time
4.2. Accuracy Verification of Alarm System
4.3. Distributed Network Fire Response
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, X.; Chen, F.; Lou, L.; Cheng, P.; Huang, Y. Real-Time Detection of Full-Scale Forest Fire Smoke Based on Deep Convolution Neural Network. Remote Sens. 2022, 14, 536. [Google Scholar] [CrossRef]
- Abdusalomov, A.; Baratov, N.; Kutlimuratov, A.; Whangbo, T.K. An improvement of the fire detection and classification method using YOLOv3 for surveillance systems. Sensors 2021, 21, 6519. [Google Scholar] [CrossRef]
- Yusuf, S.A.; Alshdadi, A.A.; Alghamdi, R.; Alassafi, M.O.; Garrity, D.J. An autoregressive exogenous neural network to model fire behavior via a naïve bayes filter. IEEE Access 2020, 8, 98281–98294. [Google Scholar] [CrossRef]
- Lou, L.; Chen, F.; Cheng, P.; Huang, Y. Smoke root detection from video sequences based on multi-feature fusion. J. For. Res. 2022, 33, 1841–1856. [Google Scholar] [CrossRef]
- Li, P.; Yang, Y.; Zhao, W.; Zhang, M. Evaluation of image fire detection algorithms based on image complexity. Fire Saf. J. 2021, 121, 103306. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W. Image fire detection algorithms based on convolutional neural networks. Case Stud. Therm. Eng. 2020, 19, 100625. [Google Scholar] [CrossRef]
- Li, Y.; Ko, Y.; Lee, W. RGB image-based hybrid model for automatic prediction of flashover in compartment fires. Fire Saf. J. 2022, 132, 103629. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, J.; Guo, Y.; You, J.; Feng, D.; Cao, Y. Early indoor occluded fire detection based on firelight reflection characteristics. Fire Saf. J. 2022, 128, 103542. [Google Scholar] [CrossRef]
- Ji, W.; Li, G.Q.; Zhu, S. Real-time prediction of key monitoring physical parameters for early warning of fire-induced building collapse. Comput. Struct. 2022, 272, 106875. [Google Scholar] [CrossRef]
- Sun, B.; Liu, X.; Xu, Z.-D.; Xu, D. Temperature data-driven fire source estimation algorithm of the underground pipe gallery. Int. J. Therm. Sci. 2022, 171, 107247. [Google Scholar] [CrossRef]
- Garrity, D.J.; Yusuf, S.A. A predictive decision-aid device to warn firefighters of catastrophic temperature increases using an AI-based time-series algorithm. Saf. Sci. 2021, 138, 105237. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, P.; Sivaparthipan, C.B.; Muthu, B.A. Big data and artificial intelligence based early risk warning system of fire hazard for smart cities. Sustain. Energy Technol. Assess. 2021, 45, 100986. [Google Scholar] [CrossRef]
- Pincott, J.; Tien, P.W.; Wei, S.; Calautit, J.K. Indoor fire detection utilizing computer vision-based strategies. J. Build. Eng. 2022, 61, 105154. [Google Scholar] [CrossRef]
- Qiu, X.; Wei, Y.; Li, N.; Guo, A.; Zhang, E.; Li, C.; Peng, Y.; Wei, J.; Zang, Z. Development of an early warning fire detection system based on a laser spectroscopic carbon monoxide sensor using a 32-bit system-on-chip. Infrared Phys. Technol. 2019, 96, 44–51. [Google Scholar] [CrossRef]
- Li, Y.; Yu, L.; Zheng, C.; Ma, Z.; Yang, S.; Song, F.; Zheng, K.; Ye, W.; Zhang, Y.; Wang, Y.; et al. Development and field deployment of a mid-infrared CO and CO2 dual-gas sensor system for early fire detection and location. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120834. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ren, J.; Yan, Y.; Sun, M.; Hu, F.; Zhao, H. Multi-sourced sensing and support vector machine classification for effective detection of fire hazard in early stage. Comput. Electr. Eng. 2022, 101, 108046. [Google Scholar] [CrossRef]
- Hsu, T.W.; Pare, S.; Meena, M.S.; Jain, D.K.; Li, D.L.; Saxena, A.; Prasad, M.; Lin, C.T. An Early Flame Detection System Based on Image Block Threshold Selection Using Knowledge of Local and Global Feature Analysis. Sustainability 2020, 12, 8899. [Google Scholar] [CrossRef]
- Cao, C.-F.; Yu, B.; Guo, B.-F.; Hu, W.-J.; Sun, F.-N.; Zhang, Z.-H.; Li, S.-N.; Wu, W.; Tang, L.-C.; Song, P.; et al. Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chem. Eng. J. 2022, 439, 134516. [Google Scholar] [CrossRef]
- Tian, Z.; Gan, W.; Zou, X.; Zhang, Y.; Gao, W. Performance prediction of a cryogenic organic Rankine cycle based on back propagation neural network optimized by genetic algorithm. Energy 2022, 254, 124027. [Google Scholar] [CrossRef]
- Al-Jarrah, R.; AL-Oqla, F.M. A novel integrated BPNN/SNN artificial neural network for predicting the mechanical performance of green fibers for better composite manufacturing. Compos. Struct. 2022, 289, 115475. [Google Scholar] [CrossRef]
- Álvarez Antón, J.C.; García Nieto, P.J.; García Gonzalo, E.; Viera Pérez, J.C.; González Vega, M.; Blanco Viejo, C. A New Predictive Model for the State-of-Charge of a High-Power Lithium-Ion Cell Based on a PSO-Optimized Multivariate Adaptive Regression Spline Approach. IEEE Trans. Veh. Technol. 2016, 65, 4197–4208. [Google Scholar] [CrossRef]
- Wu, L.; Chen, L.; Hao, X. Multi-Sensor Data Fusion Algorithm for Indoor Fire Early Warning Based on BP Neural Network. Information 2021, 12, 59. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, G.; Li, Y.; Duo, Z.; Sun, C. Optimization of hydrogen liquefaction process based on parallel genetic algorithm. Int. J. Hydrog. Energy 2022, 47, 27038–27048. [Google Scholar] [CrossRef]
- Cao, H.; Liu, L.; Wu, B.; Gao, Y.; Qu, D. Process optimization of high-speed dry milling UD-CF/PEEK laminates using GA-BP neural network. Compos. Part B Eng. 2021, 221, 109034. [Google Scholar] [CrossRef]
- Mota, B.; Faria, P.; Vale, Z. Residential load shifting in demand response events for bill reduction using a genetic algorithm. Energy 2022, 260, 124978. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Chamkalani, A.; Zendehboudi, S.; Bahadori, A.; Kharrat, R.; Chamkalani, R.; James, L.; Chatzis, I. Integration of LSSVM technique with PSO to determine asphaltene deposition. J. Pet. Sci. Eng. 2014, 124, 243–253. [Google Scholar] [CrossRef]
- Song, Y.; Niu, W.; Wang, Y.; Xie, X.; Yang, S. A Novel Method for Energy Consumption Prediction of Underwater Gliders Using Optimal LSSVM with PSO Algorithm. In Proceedings of the Global Oceans 2020: Singapore–U.S. Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Amirteimoori, A.; Mahdavi, I.; Solimanpur, M.; Ali, S.S.; Tirkolaee, E.B. A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation. Comput. Ind. Eng. 2022, 173, 108672. [Google Scholar] [CrossRef]
- Dempster, A.P. Upper and Lower Probabilities Induced by a Multivalued Mapping. Ann. Math. Stat. 1967, 38, 325–339. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar] [CrossRef]
- Sung, W.T.; Chang, K.Y. Evidence-based multi-sensor information fusion for remote health care systems. Sens. Actuators A Phys. 2013, 204, 1–19. [Google Scholar] [CrossRef]
- Feng, R.; Che, S.; Wang, X.; Yu, N. Trust Management Scheme Based on D-S Evidence Theory for Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2013, 9, 948641. [Google Scholar] [CrossRef]
- Wang, W.; He, T.; Huang, W.; Shen, R.; Wang, Q. Optimization of switch modes of fully enclosed platform screen doors during emergency platform fires in underground metro station. Tunn. Undergr. Sp. Technol. 2018, 81, 277–288. [Google Scholar] [CrossRef]
- Mi, H.; Liu, Y.; Jiao, Z.; Wang, W.; Wang, Q. A numerical study on the optimization of ventilation mode during emergency of cable fire in utility tunnel. Tunn. Undergr. Sp. Technol. 2020, 100, 103403. [Google Scholar] [CrossRef]
Types | Symbols | Interval |
---|---|---|
The coding length | N | 20~200 |
The crossover probability | Pc | 0.4~0.99 |
The mutation probability | \ | 0.005~0.1 |
The number of terminated evolutionary generations | \ | 100~1000 |
Kernel Function | Forms |
---|---|
The polynomial kernel function | |
The radial basis kernel function | |
The sigmoid kernel function | |
The linear kernel function |
Types | Symbols | Interval |
---|---|---|
The acceleration factor | c1 | 1.5 |
c2 | 1.7 | |
The maximum number of population evolution | \ | 300 |
The population size | \ | 30 |
The penalty factor range | \ | 0.1~1000 |
The kernel function width factor range | σ | 0.01~1000 |
Algorithm Model | Fire | Smolder | ||||
---|---|---|---|---|---|---|
MSE | RMSE | MAE | MSE | RMSE | MAE | |
BP | 0.0185 | 0.1361 | 0.0412 | 0.0083 | 0.0910 | 0.0362 |
GA-BP | 0.0037 | 0.0612 | 0.0164 | 0.0025 | 0.0498 | 0.0140 |
Kernel Function | Fire | Smolder | ||||
---|---|---|---|---|---|---|
MSE | RMSE | MAE | MSE | RMSE | MAE | |
RBF | 0.0028 | 0.0529 | 0.0293 | 0.000984 | 0.0314 | 0.0152 |
Sigmoid | 0.0188 | 0.1370 | 0.0639 | 0.0155 | 0.1247 | 0.0603 |
Poly | 0.0172 | 0.1310 | 0.0640 | 0.0146 | 0.1209 | 0.0619 |
Linear | 0.0192 | 0.1386 | 0.0694 | 0.0169 | 0.1300 | 0.0681 |
Algorithm Model | Simulation Output | Expected Output | Results | ||||
---|---|---|---|---|---|---|---|
The GA-BP neural network | 0.62745 | 0.00138 | 0.37117 | 1 | 0 | 0 | Uncertainty |
0.68278 | 0.01471 | 0.30251 | 1 | 0 | 0 | Uncertainty | |
0.9969 | 0.0025 | 0.0006 | 1 | 0 | 0 | Fire | |
0.5986 | 0.3927 | 0.0087 | 1 | 0 | 0 | Uncertainty | |
0.99792 | 0.002 | 0.00008 | 1 | 0 | 0 | Fire | |
The PSO-LSSVM network | 0.86354 | 0.07689 | 0.07941 | 1 | 0 | 0 | Fire |
0.87026 | 0.04597 | 0.0794 | 1 | 0 | 0 | Fire | |
0.64114 | 0.29953 | 0.05933 | 1 | 0 | 0 | Uncertainty | |
0.87451 | 0.11074 | 0.07941 | 1 | 0 | 0 | Fire | |
0.97166 | 0.00114 | 0.02283 | 1 | 0 | 0 | Fire |
Sample | m(A1) | m(A2) | m(A3) | Results |
---|---|---|---|---|
1 | 0.9997 | 0.0001 | 0.0002 | Fire |
2 | 0.9983 | 0.0011 | 0.0006 | Fire |
3 | 1 | 0 | 0 | Fire |
4 | 1 | 0 | 0 | Fire |
5 | 1 | 0 | 0 | Fire |
Fire Types | Experiments/n | Alarms/n | Missed Alarms/n | Accuracy/% |
---|---|---|---|---|
Polyurethane fire | 50 | 49 | 1 | 98% |
Alcohol fire | 50 | 48 | 2 | 96% |
Beech wood smolder | 50 | 48 | 2 | 96% |
Cotton rope smolder | 50 | 49 | 1 | 98% |
Temperature/°C | Smoke/103 ppm | CO/ppm | Fire Output | Smolder Output | No Fire Output | |
---|---|---|---|---|---|---|
Node 1 | 25.6 | 2.36 | 6 | 0.6949 | 0.0532 | 0.2519 |
31.6 | 3.68 | 26 | 0.7247 | 0.0513 | 0.2239 | |
35.9 | 2.56 | 17 | 0.9296 | 0.0011 | 0.0692 | |
Node 2 | 26.3 | 1.84 | 2 | 0.6762 | 0.1522 | 0.1716 |
33.7 | 2.28 | 14 | 0.8124 | 0.0524 | 0.1350 | |
36.9 | 2.44 | 7 | 0.9456 | 0.0325 | 0.0219 | |
Node 3 | 25.3 | 2.6 | 6 | 0.7025 | 0.2305 | 0.0670 |
32.4 | 1.95 | 23 | 0.7952 | 0.1248 | 0.0800 | |
37 | 1.6 | 9 | 0.9033 | 0.0362 | 0.0605 |
Temperature/°C | Smoke/103 ppm | CO/ppm | Fire Output | Smolder Output | No Fire Output | |
---|---|---|---|---|---|---|
Node 1 | 25.6 | 2.36 | 6 | 0.6314 | 0.1250 | 0.2436 |
31.6 | 3.68 | 26 | 0.7615 | 0.0215 | 0.2171 | |
35.9 | 2.56 | 17 | 0.8703 | 0.0460 | 0.0838 | |
Node 2 | 26.3 | 1.84 | 2 | 0.7043 | 0.1453 | 0.1504 |
33.7 | 2.28 | 14 | 0.8021 | 0.1320 | 0.0659 | |
36.9 | 2.44 | 7 | 0.9382 | 0.0044 | 0.0573 | |
Node 3 | 25.3 | 2.6 | 6 | 0.6125 | 0.2310 | 0.1566 |
32.4 | 1.95 | 23 | 0.7493 | 0.0816 | 0.1691 | |
37 | 1.6 | 9 | 0.8853 | 0.0333 | 0.0814 |
Temperature/°C | Smoke/103 ppm | CO/ppm | Fire Output | Smolder Output | No Fire Output | |
---|---|---|---|---|---|---|
Node 1 | 25.6 | 2.36 | 6 | 0.8658 | 0.0131 | 0.1211 |
31.6 | 3.68 | 26 | 0.9174 | 0.0018 | 0.0808 | |
35.9 | 2.56 | 17 | 0.9928 | 0.0001 | 0.0071 | |
Node 2 | 26.3 | 1.84 | 2 | 0.9086 | 0.0422 | 0.0492 |
33.7 | 2.28 | 14 | 0.9763 | 0.0104 | 0.0133 | |
36.9 | 2.44 | 7 | 0.9984 | 0.0002 | 0.0014 | |
Node 3 | 25.3 | 2.6 | 6 | 0.8710 | 0.1078 | 0.0212 |
32.4 | 1.95 | 23 | 0.9617 | 0.0164 | 0.0218 | |
37 | 1.6 | 9 | 0.9924 | 0.0015 | 0.0061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; Wang, S.; Ge, L.; Weng, H.; Fang, X.; Peng, Z.; Zeng, W. Hybrid Feature Fusion-Based High-Sensitivity Fire Detection and Early Warning for Intelligent Building Systems. Sensors 2023, 23, 859. https://doi.org/10.3390/s23020859
Xiao S, Wang S, Ge L, Weng H, Fang X, Peng Z, Zeng W. Hybrid Feature Fusion-Based High-Sensitivity Fire Detection and Early Warning for Intelligent Building Systems. Sensors. 2023; 23(2):859. https://doi.org/10.3390/s23020859
Chicago/Turabian StyleXiao, Shengyuan, Shuo Wang, Liang Ge, Hengxiang Weng, Xin Fang, Zhenming Peng, and Wen Zeng. 2023. "Hybrid Feature Fusion-Based High-Sensitivity Fire Detection and Early Warning for Intelligent Building Systems" Sensors 23, no. 2: 859. https://doi.org/10.3390/s23020859
APA StyleXiao, S., Wang, S., Ge, L., Weng, H., Fang, X., Peng, Z., & Zeng, W. (2023). Hybrid Feature Fusion-Based High-Sensitivity Fire Detection and Early Warning for Intelligent Building Systems. Sensors, 23(2), 859. https://doi.org/10.3390/s23020859