Applications of Nanosatellites in Constellation: Overview and Feasibility Study for a Space Mission Based on Internet of Space Things Applications Used for AIS and Fire Detection
<p>Diagram of the technology transfer.</p> "> Figure 2
<p>AIS architecture.</p> "> Figure 3
<p>Autonomous ground segment with sensor network for fire detection.</p> "> Figure 4
<p>Ground/Space segment interactions for managing maritime transportation systems with the potential inclusion of other developing and emerging countries.</p> "> Figure 5
<p>Ground/Space segment interactions for IoST application based on fire detection.</p> "> Figure 6
<p>Nanosatellite number vs orbit parameters [<a href="#B38-sensors-23-06232" class="html-bibr">38</a>].</p> "> Figure 7
<p>Revisit time versus the number of satellites.</p> "> Figure 8
<p>Performance results of each constellation for areas in the South China Sea.</p> "> Figure 9
<p>Performance results of each constellation for the forest in the Chinese mainland.</p> "> Figure 10
<p>Proposed missions’ modes for the nanosatellite.</p> "> Figure 11
<p>Ground station block diagram.</p> "> Figure 12
<p>BUAA Beihang Ground Station Implementation: (1) radio station, (2) TNC, (3) polarization switch, (4) mission computer, (5) power supply, (6) VHF/UHF antenna, and (7) antenna pedestal.</p> "> Figure 13
<p>Electrical architecture of the proposed nanosatellite platform.</p> "> Figure 14
<p>VHF uplink block diagram used as payload.</p> "> Figure 15
<p>UHF uplink/UHF downlink transceiver block diagram.</p> "> Figure 16
<p>Proposed EPS configuration for CubeSat with open solar panels structure: (<b>a</b>) power regulation and control unit, and (<b>b</b>) power distribution unit.</p> "> Figure 17
<p>OBC block diagram.</p> "> Figure 18
<p>ADCS block diagram.</p> "> Figure 19
<p>Profiles of power consumption, power generation, and battery capacity.</p> "> Figure 20
<p>Altitude decay according to the orbit cycles.</p> "> Figure 21
<p>Battery capacity degradation according to the orbit cycles.</p> "> Figure 22
<p>Low-cost sensor node architecture.</p> "> Figure 23
<p>Data of the temperature and humidity changes observed in the experiment.</p> "> Figure 24
<p>Data of the detection of gases at different levels in the experiment.</p> "> Figure 25
<p>Data of flame level detection in the experiment.</p> "> Figure 26
<p>(<b>a</b>) Wind speed and (<b>b</b>) wind direction.</p> "> Figure 27
<p>Position coordinates obtained by GPS used for AIS.</p> ">
Abstract
:1. Introduction
- ⮚
- Monitoring the marine navigation system;
- ⮚
- Fire detection for an effective emergency plan;
- ⮚
- Roadmap creation for the design and build of other nanosatellites able to join these proposed constellation missions;
- ⮚
- Creation of a platform for cooperation with developing and emerging countries.
- ⮚
- Suggesting educational uses for real-time satellite data;
- ⮚
- Providing data that can be interpreted by researchers and students to enrich their educational programs;
- ⮚
- Increasing the interest and motivation of students in the development of space technology area;
- ⮚
- Sharing field experiments between universities in different countries.
2. Overview of IoST Applications Used for AIS and Fire Detection
3. Mission Analysis
3.1. Orbital Parameters LEO Design and Selection
3.2. Mission Scenarios
3.3. Ground Station
4. Payload and Subsystem Architectures and Design
4.1. Payload Based on VHF Receiver
4.2. Platform Transceiver
4.3. Electrical Power Subsystem
4.4. On Board Computer
- ⮚
- Volatile Memory: 64 MB SDRAM;
- ⮚
- Code Storage: 1 MB NOR Flash;
- ⮚
- Critical Data Storage: 512 kb FRAM;
- ⮚
- Mass Data Storage: 2 × 2 GB high-reliability SD cards for fail-safe data storage (up to 32 GB on request) or 2× any size standard SD cards;
- ⮚
- A total of 2× redundant Real Time Clock (RTC);
- ⮚
- I2C, SPI, and UART interfaces to another OBC;
- ⮚
- On-board temperature sensor;
- ⮚
- External onboard watchdog and power controller.
4.5. Attitude Determination and Control Subsystem
5. System Engineering Analyses
5.1. Data Budget
5.2. Link Budget
5.2.1. Downlink Budget
5.2.2. Uplink Budget
5.3. Power Budget
- ⮚
- On-Board Computer (OBC);
- ⮚
- Communication system (Transceiver (Tx) and Receiver (Rx));
- ⮚
- Attitude Determination and Control System (ADCS);
- ⮚
- Payload (AIS and VHF receiver for SN).
5.4. Mass Budget
6. Lifetime Estimation
7. Experimental Results of the Proposed Low-Cost Sensor Node Architecture and AIS
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, J.H.; Lee, S.; Yun, S.; Kim, H.; Kim, W.-T. Dependable fire detection system with multifunctional artificial intelligence framework. Sensors 2019, 19, 2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, C.; Viergever, K.; Vick, A.; Bryson, I. Achieving Global Awareness via Advanced Remote Sensing Techniques on 3U CubeSats. 2012. Available online: https://digitalcommons.usu.edu/smallsat/2012/all2012/31/ (accessed on 10 October 2022).
- Bartholomäus, J.; Barschke, M.F.; Werner, P.; Stoll, E. Initial results of the TUBIN small satellite mission for wildfire detection. Acta Astronaut. 2022, 200, 347–356. [Google Scholar] [CrossRef]
- Balogh, W.R. Space activities in the United Nations system—Status and perspectives of inter-agency coordination of outer space activities. Acta Astronaut. 2009, 65, 18–26. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van Der Putten, W.H. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Robards, M.; Silber, G.; Adams, J.; Arroyo, J.; Lorenzini, D.; Schwehr, K.; Amos, J. Conservation science and policy applications of the marine vessel Automatic Identification System (AIS)—A review. Bull. Mar. Sci. 2016, 92, 75–103. [Google Scholar] [CrossRef]
- Karim, A.; Utama, S.; Arifin, M. Algorithms for detecting vessel spoofing of space-based AIS data. Proc. AIP Conf. Proc. 2021, 2366, 060006. [Google Scholar]
- Ho, T.D.; Hagaseth, M.; Rialland, A.; Rødseth, Ø.J.; Criado, R.G.; Ziaragkas, G. Internet of Things at sea: Using AIS and VHF over satellite in remote areas. In Proceedings of the 7th Transport Research Arena TRA, Vienna, Austria, 16–19 April 2018; pp. 1–11. [Google Scholar]
- Lazreg, N.; Bahri, O.B.; Besbes, K. Analysis and design of Cubesat constellation for the Mediterranean south costal monitoring against illegal immigration. Adv. Space Res. 2018, 61, 1017–1024. [Google Scholar] [CrossRef]
- Yamazaki, M. Space Systems Engineering Education by Providing Hands-On Practices Using Pico-Satellite Training Kit. 2016. Available online: https://digitalcommons.usu.edu/smallsat/2016/TS13Education/6/ (accessed on 10 October 2022).
- Jin, S.; Wang, Q.; Dardanelli, G. A review on multi-GNSS for earth observation and emerging applications. Remote Sens. 2022, 14, 3930. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, X.; Wang, L.; Feng, J.; Pan, C.; Li, Y. Satellite network task deployment method based on SDN and ICN. Sensors 2022, 22, 5439. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Zhang, G.; Cao, H.; Xie, J. LEO satellite constellation for Internet of Things. IEEE Access 2017, 5, 18391–18401. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.; Chen, X.; Zhao, Y.; Yang, L. Statistical analysis of the detection probability of the TianTuo-3 space-based AIS. J. Navig. 2018, 71, 467–481. [Google Scholar] [CrossRef]
- Bach Gia, D.; Vu, T.A. Design of A Novel Vessel Monitoring System Using Satellites. Int. J. Electr. Comput. Eng. 2018, 7, 1–9. [Google Scholar]
- Alincourt, E.; Ray, C.; Ricordel, P.-M.; Dare-Emzivat, D.; Boudraa, A. Methodology for AIS signature identification through magnitude and temporal characterization. In Proceedings of the OCEANS 2016, Shanghai, China, 10–13 April 2016; pp. 1–6. [Google Scholar]
- Challamel, R.; Calmettes, T.; Gigot, C.N. A European hybrid high performance Satellite-AIS system. In Proceedings of the 2012 6th Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC), Vigo, Spain, 5–7 September 2012; pp. 246–252. [Google Scholar]
- NTS Board. Special Investigation Report. The Use of Forward Collision Avoidance Systems to Prevent and Mitigate Rear-End Crashes; NTS Board: Washington, DC, USA, 2015. [Google Scholar]
- Orr, N.G.; Cain, J.; Stras, L.; Zee, R.E. Space based AIS detection with the maritime monitoring and messaging microsatellite. In Proceedings of the 64th International Astronautical Congress, Beijing, China, 23–27 September 2013. [Google Scholar]
- Cervera, M.A.; Ginesi, A.; Eckstein, K. Satellite-based vessel Automatic Identification System: A feasibility and performance analysis. Int. J. Satell. Commun. Netw. 2011, 29, 117–142. [Google Scholar] [CrossRef]
- Esturi, J.C.; Camps, A.; Corbera, J.; Alamús, R. 3 Cat-3/MOTS, an experimental nanosatellite for multispectral and GNSS-r earth observation: Mission concept and analysis. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2752–2755. [Google Scholar]
- Cogan, D.; Griffith, D.J.; Magidimisha, E.; van Zyl, R. Flight hardware verification and validation of the K-line fire sensor payload on ZACube-2. In Proceedings of the Fifth Conference on Sensors, MEMS, and Electro-Optic Systems, Skukuza, South Africa, 8–10 October 2018; pp. 417–424. [Google Scholar]
- Gupta, G.; Zyl, R.V. Survey Based on Configuration of CubeSats Used for Communication Technology. In Proceedings of the Second International Conference on Sustainable Technologies for Computational Intelligence, Dehradun, India, 22–23 May 2021; pp. 59–71. [Google Scholar]
- Skauen, A.N. Quantifying the tracking capability of space-based AIS systems. Adv. Space Res. 2016, 57, 527–542. [Google Scholar] [CrossRef] [Green Version]
- Nohka, F.; Drobczyk, M.; Heidecker, A. Experiences in Combining Cubesat Hardware and Commercial Components from Different Manufacturers in order to build the Nano Satellite AISat/Clavis-1. In Proceedings of the Small Satellite Conference, Salt Lake, UT, USA, 13–16 August 2012. [Google Scholar]
- Birkeland, R.; Hornig, A. On how a CubeSat swarm can improve the coverage for an Arctic ground based sensor network. In Proceedings of the 4S symposium, Valletta, Malta, 30 May–3 June 2016; pp. 1–13. [Google Scholar]
- Hannevik, T.N.; Olsen, Ø.; Skauen, A.N.; Olsen, R. Ship detection using high resolution satellite imagery and space-based AIS. In Proceedings of the 2010 International WaterSide Security Conference, Carrara, Italy, 3–5 November 2010; pp. 1–6. [Google Scholar]
- Purivigraipong, S. Review of satellite-based AIS for monitoring maritime fisheries. Eng. Trans. Res. Publ. Mahanakorn Univ. Technol. 2018, 21, 81–89. [Google Scholar]
- Chu, T.; Guo, X. Remote sensing techniques in monitoring post-fire effects and patterns of forest recovery in boreal forest regions: A review. Remote Sens. 2013, 6, 470–520. [Google Scholar] [CrossRef] [Green Version]
- Barschke, M.F.; Bartholomäus, J.; Gordon, K.; Lehmann, M.; Brieß, K. The TUBIN nanosatellite mission for wildfire detection in thermal infrared. CEAS Space J. 2017, 9, 183–194. [Google Scholar] [CrossRef]
- Masters, D.; Duly, T.; Esterhuizen, S.; Irisov, V.; Jales, P.; Nguyen, V.; Nogués-Correig, O.; Tan, L.; Yuasa, T.; Angling, M. Status and accomplishments of the Spire Earth observing nanosatellite constellation. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXIV, Online, 21–25 September 2020; p. 115300V. [Google Scholar]
- Pérez-Lissi, F.; Aguado-Agelet, F.; Vázquez, A.; Yañez, P.; Izquierdo, P.; Lacroix, S.; Bailon-Ruiz, R.; Tasso, J.; Guerra, A.; Costa, M. FIRE-RS: Integrating land sensors, cubesat communications, unmanned aerial vehicles and a situation assessment software for wildland fire characterization and mapping. In Proceedings of the 69th International Astronautical Congress, Bremen, Germany, 1–5 October 2018. [Google Scholar]
- Nolde, M.; Plank, S.; Richter, R.; Klein, D.; Riedlinger, T. The DLR FireBIRD Small Satellite Mission: Evaluation of Infrared Data for Wildfire Assessment. Remote Sens. 2021, 13, 1459. [Google Scholar] [CrossRef]
- Rispler, A.; Gensemer, S.; Doody, T.; Sun, C.; Lagerstrom, R. Payload verification and testing for the CSIROSat-1 mission. In Proceedings of the 43rd COSPAR Scientific Assembly, Sydney, Australia, 28 January–4 February 2021; Volume 43, p. 49. [Google Scholar]
- Lee, Y.-M.; Ku, B.-J.; Ahn, D.-S. A satellite core network system for emergency management and disaster recovery. In Proceedings of the 2010 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 17–19 November 2010; pp. 549–552. [Google Scholar]
- Castelvi, J.; Lancheros, E.; Camps, A.; Park, H. Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection. In Proceedings of the FSS Workshop, Braunschweig, Germany, 8 June 2016; pp. 1–6. [Google Scholar]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A review on early forest fire detection systems using optical remote sensing. Sensors 2020, 20, 6442. [Google Scholar] [CrossRef] [PubMed]
- Kulu, C.b.E. Nanosats Database. Available online: https://www.nanosats.eu/ (accessed on 25 September 2022).
- Wertz, J.R.; Larson, W.J.; Kirkpatrick, D.; Klungle, D. Space Mission Analysis and Design; Springer: Berlin/Heidelberg, Germany, 1999; Volume 8. [Google Scholar]
- Wu, Z.; Li, M.; Wang, B.; Tian, Y.; Quan, Y.; Liu, J. Analysis of Factors Related to Forest Fires in Different Forest Ecosystems in China. Forests 2022, 13, 1021. [Google Scholar] [CrossRef]
- Bingham, B.; Young, Q.; Whitmore, S. Large Constellation Development Using Small Satellites. 2008. Available online: https://digitalcommons.usu.edu/smallsat/2008/all2008/62/ (accessed on 25 September 2022).
- ISIS. ISIS 1U CubeSat. Motorenweg 23, 2623CR; ISIS: Delft, The Netherlands, 2022. [Google Scholar]
- Jain, T.N.; Sibley, A.; Stryhn, H.; Hubloue, I. Comparison of UAV Technology vs No UAV Technology in Identification of Hazards at a MCI Scenario in Primary Care Paramedic Students. Prehosp. Disaster Med. 2017, 32, S229–S230. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, G.; Dagatti, M.; Olmedo, M.; Poveda, N.; Fraire, J.A. Satellite-Based AIS Trade-off Analysis in the Context of the PANSAT CubeSat Mission. In Proceedings of the 2021 IEEE 8th International Conference on Space Mission Challenges for Information Technology (SMC-IT), Pasadena, CA, USA, 26–30 July 2021; pp. 77–84. [Google Scholar]
- ISIS-Model UHF-Uplink/UHF Downlink Full Duplex Transceiver. Available online: https://www.environmental-expert.com/products/isis-model-uhf-uplink-uhf-downlink-full-duplex-transceiver-735219 (accessed on 25 September 2022).
- ISIS. Antenna Systems. Motorenweg23, 2623CR; ISIS: Delft, The Netherlands, 2022. [Google Scholar]
- Oredsson, M. Electrical Power System for the CubeSTAR Nanosatellite. Master’s Thesis, University of Oslo, Oslo, Norway, 2010. [Google Scholar]
- Yaqoob, M.; Lashab, A.; Vasquez, J.C.; Guerrero, J.M.; Orchard, M.E.; Bintoudi, A.D. A comprehensive review on small satellite microgrids. IEEE Trans. Power Electron. 2022, 37, 12741–12762. [Google Scholar] [CrossRef]
- Kerrouche, K.D.E.; Seddjar, A.; Khorchef, N.; Bendoukha, S.A.; Wang, L.; Aoudeche, A. CubeSat project: Experience gained and design methodology adopted for a low-cost Electrical Power System. Automatika 2022, 63, 695–717. [Google Scholar] [CrossRef]
- Kerrouche, K.D.E.; Wang, L.; Bendoukhad, S. Reliable protection strategy of power distribution module for university CubeSat. In Proceedings of the Fifth IAA Conference on University Satellite Missions and CubeSat Workshop, Rome, Italy, 28–31 January 2020. [Google Scholar]
- Kerrouche, K.; Wang, L.; Aoudeche, A. Low-Cost EPS for nanosatellites constellation of belt and road countries. In Proceedings of the Fourth IAA Conference on Dynamics and Control of Space Systems, DyCoSS, Changsha, China, 21–23 May 2018. [Google Scholar]
- Seddjar, A.; Kerrouche, K.D.E.; Arezki, F.; Khorchef, N. Comprehensive Review of Maximum Power Point Tracking Techniques And Proposed Fuzzy Logic Controller of An Electrical Power System for Nano Satellites. Rev. Roum. Sci. Tech.-Série Électrotechnique Énergétique 2022, 67, 123–131. [Google Scholar]
- Seddjar, A.; Kerrouche, K.D.E.; Wang, L. Simulation of the proposed combined Fuzzy Logic Control for maximum power point tracking and battery charge regulation used in CubeSat. Arch. Electr. Eng. 2020, 69, 521–543. [Google Scholar]
- Jallad, A.-H.; Marpu, P.; Abdul Aziz, Z.; Al Marar, A.; Awad, M. MeznSat—A 3U CubeSat for monitoring greenhouse gases using short wave infra-red spectrometry: Mission concept and analysis. Aerospace 2019, 6, 118. [Google Scholar] [CrossRef] [Green Version]
- ECSS-E-TM-E-10-25A; Space Engineering Engineering Design Model Data Exchange (CDF). ESA Requirements and Standards Division: Noordwijk, The Netherlands, 2010.
CAT-3 | ZACube-2 | AAUSAT-4 | AISSat 2 | AISAT | AAUSAT-3 | AISSat 1 | CanX-6 (NTS) | |
Operator | Universidad Politécnica de Cataluña [21] | Cape Peninsula University [22] | Aalborg University [23] | UTIAS [24] | DLR [25] | Aalborg University [26] | UTIAS [27] | UTIAS [28] |
NanosatMass (kg) | 9 | 4 | 0.88 | 6 | 14 | 0.8 | 6 | 6.5 |
Size | 6 U | 3 U | 1 U | - | 1 U | 1 U | - | 2 U |
Power Consumption | - | - | 1.15 W | 0.97 W | 15 W | 1.15 W | 0.97 W | 5.6 W |
Launch date | - | 2017 | 2016 | 2014 | 2014 | 2013 | 2010 | 2008 |
Payload | AIS + High resolution VIS and VNIR camera | AIS + Low resolution NIR imager | AIS | AIS | AIS | AIS | AIS | AIS |
TUBIN | Spire Nanosat | Lume-1 | FIREBIRD | CSIROSat-1 | |
---|---|---|---|---|---|
Operator or contractor | Technische Universität Berlin [30] | OroraTech [31] | l’Université de Vigo [32] | DLR [33] | Commonwealth Scientific and Industrial Research Organisation (CSIRO) [34] |
Nanosatellite Mass (kg) | 17 | 9 | 2.1 | 15 | 4 |
Size | - | 6 U | 2 U | two 1.5 U CubeSats | 3 U |
Power Consumption | - | - | - | - | - |
Launch date | 2017 | 2021 | 2018 | 2012 | Not launched, but expected in 2022 |
Payload | Infrared microbolometer | Thermal-infrared camera | Software-defined radio (SDR) and HUMPL | Imaging multi-spectral radiometers (vis/IR) | Detector of invisible infrared light |
Acceptable | Desired | |
---|---|---|
Access duration for AIS | 7.5 min | More than 8 min |
Access duration for Fire Detection | 7.5 min | More than 8 min |
Revisit time for AIS | 2 h | Less than 1 h |
Revisit time for Fire Detection | 3 h | Less than 1 h |
Response time for AIS | 2 h | Less than 1 h |
Response time for Fire Detection | 3 h | Less than 1 h |
Orbit Type | CO |
---|---|
Semi-major axis | A = 6771 km |
Inclination | I = 49° |
Eccentricity | E = 0.0017 |
RAAN | 0° |
Argument of periapsis | 0° |
True anomaly | 0° |
Parameter | Value |
---|---|
Power Supply | 5 V DC |
Power Consumption | <1 W (receiver only during full load) |
Mass | 55 g |
Dimensions | 90 × 96 × 15 mm |
First Receiver Frequency Range | 156.025–162.025 MHz |
Second Receiver Frequency Range | 144–146 MHz |
First and Second Receiver Modulation Scheme | Gaussian Minimum Shift Keying (GMSK) |
First and Second Downlink Data Rate | 9600 bps |
Channel Bandwidth | RSSI of 100 kHz |
Operating Temperature Range | −30 to +70 °C |
Parameter | Value |
---|---|
Power Supply | 6.5–20 V DC |
Power Consumption | 4 W (transmitter on), 0.48 W (receiver only) |
Mass | 75 g |
Dimensions | 90 × 96 × 15 mm |
Transmitter Frequency Range | 267–273 MHz |
Transmitter Power | 27 dBm |
Transmitter Modulation Scheme | Binary Phase Shift Keying (BPSK) with G3RUH scrambling |
Transmitter Data Rate | 1200, 2400, 4800, and 9600 bps |
Receiver Frequency Range | 312–322 MHz |
Receiver Sensitivity | −104 dBm Sensitivity for BER 1E-5 |
Receiver Modulation Scheme | Frequency Shift Keying (FSK) with G3RUH scrambling |
Downlink Data Rate | 9600 bps |
Protocol | AX.25 or HDLC |
Operating Temperature Range | −20 to +60 °C |
AIS Data Budget | |
---|---|
Maximum payload frame size | 72 Kbyte |
Data rate download of communication radio | 9600 bps |
Time to download 1 payload frame | 60 s |
Fire Detection data budget | |
Maximum payload frame size (from 100 nodes) | 800 byte |
Data rate download of communication radio | 9600 bps |
Time tso download 1 payload frame | 666.67 ms |
Telemetry data budget | |
EPS (10 bits of resolution for each measurement) | 120 bits |
ADCS (10 bits of resolution for each measurement) | 120 bits |
GPS | 24 bits |
Thermal (10 bits of resolution for each measurement) | 120 bits |
Orbital Period | 5063.45 s |
Communication time interval | 5 s |
Total telemetry budget | 48.6 Kbyte |
Data rate download of communication radio | 9600 bps |
Time to download 1 frame of telemetry | 40.5 s |
Total time to download AIS data frame + telemetry frame | 100.5 s |
Total time to download fire detection data frame + telemetry frame | 41.17 s |
Parameter | Value |
---|---|
EIRP (dBW) | −3.1 |
Rcvd. Frequency (GHz) | 0.27 |
Rcvd. Iso. Power (dBW) | −149.81 |
Flux Density (dBW/m2) | −139.73 |
g/T (dB/K) | −7.1 |
C/No (dB*Hz) | 72.07 |
Bandwidth (kHz) | 19.2 |
C/N (dB) | 29.24 |
Eb/No (dB) | 9.6 |
G.S. Rcvr (dB) | 20.1 |
S/N required (dB) | 9.6 |
BER | 1.0 × 10−3 |
System Link Margin (dB) | 10.5 |
Parameter | Value |
---|---|
EIRP (dBW) | 34.9 |
Rcvd. Frequency (GHz) | 0.32 |
Rcvd. Iso. Power (dBW) | −117.56 |
Flux Density (dBW/m2) | −106.09 |
g/T (dB/K) | −25.92 |
C/No (dB*Hz) | 84.97 |
Bandwidth (kHz) | 3.00 |
C/N (dB) | 50.20 |
Eb/No (dB) | 19 |
BER | 1.0 × 10−3 |
System link Margin (dB) | 30.4 |
Parameter | Value |
---|---|
EIRP (dBW) | 32.51 |
Rcvd. Frequency (GHz) | 0.14 |
Rcvd. Iso. Power (dBW) | −117.29 |
Flux Density (dBW/m2) | −112.61 |
g/T (dB/K) | −25.9 |
C/No (dB*Hz) | 85.27 |
Bandwidth (kHz) | 3.00 |
C/N (dB) | 50.5 |
Eb/No (dB) | 45.45 |
BER | 1.0 × 10−3 |
Parameter | Value |
---|---|
EIRP (dBW) | 21.76 |
Rcvd. Frequency (GHz) | 0.16 |
Rcvd. Iso. Power (dBW) | −128.88 |
Flux Density (dBW/m2) | −123.23 |
g/T (dB/K) | −25.88 |
C/No (dB*Hz) | 73.7 |
Bandwidth (kHz) | 3.0 |
C/N (dB) | 38.93 |
Eb/No (dB) | 33.88 |
BER | 1.0 × 10−3 |
Subsystems | Minimum Power | Maximum Power |
---|---|---|
EPS | 120 mW | 160 mW |
OBC | - | 400 mW |
TT and C | 480 mW | 4000 mW |
ADCS | 1005 mW | 1125 mW |
Payload | - | 480 mW |
Modes | Minimum Power | Maximum Power | Duration |
---|---|---|---|
Common mode | 520 mW | 560 mW | 68.4 min |
Mission mode | 2025 mW | 2065 mW | 8 min |
Communication mode | 2025 mW | 4520 mW | 8 min |
Components | Mass (g) |
---|---|
Chassis | 155 |
Solar panels | 50 × 5 |
ADCS | 351 |
EPS (with accumulators) | 163 |
Communication System | 75 |
Payload | 55 |
OBC | 56 |
Antenna | 85 |
Harnessing | 15 |
Margin | ±10% |
Total | 1325.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerrouche, K.D.E.; Wang, L.; Seddjar, A.; Rastinasab, V.; Oukil, S.; Ghaffour, Y.M.; Nouar, L. Applications of Nanosatellites in Constellation: Overview and Feasibility Study for a Space Mission Based on Internet of Space Things Applications Used for AIS and Fire Detection. Sensors 2023, 23, 6232. https://doi.org/10.3390/s23136232
Kerrouche KDE, Wang L, Seddjar A, Rastinasab V, Oukil S, Ghaffour YM, Nouar L. Applications of Nanosatellites in Constellation: Overview and Feasibility Study for a Space Mission Based on Internet of Space Things Applications Used for AIS and Fire Detection. Sensors. 2023; 23(13):6232. https://doi.org/10.3390/s23136232
Chicago/Turabian StyleKerrouche, Kamel Djamel Eddine, Lina Wang, Abderrahmane Seddjar, Vahid Rastinasab, Souad Oukil, Yassine Mohammed Ghaffour, and Larbi Nouar. 2023. "Applications of Nanosatellites in Constellation: Overview and Feasibility Study for a Space Mission Based on Internet of Space Things Applications Used for AIS and Fire Detection" Sensors 23, no. 13: 6232. https://doi.org/10.3390/s23136232
APA StyleKerrouche, K. D. E., Wang, L., Seddjar, A., Rastinasab, V., Oukil, S., Ghaffour, Y. M., & Nouar, L. (2023). Applications of Nanosatellites in Constellation: Overview and Feasibility Study for a Space Mission Based on Internet of Space Things Applications Used for AIS and Fire Detection. Sensors, 23(13), 6232. https://doi.org/10.3390/s23136232