Smart Chemical Sensor and Biosensor Networks for Healthcare 4.0
<p>Key elements in Healthcare 4.0.</p> "> Figure 2
<p>Body sensor network.</p> "> Figure 3
<p>Major layers in BSN information processing.</p> "> Figure 4
<p>BSN performance for tennis elbow injury monitoring.</p> "> Figure 5
<p>BSN performance for monitoring a group of injuries.</p> "> Figure 6
<p>BSN performance in different monitoring times.</p> ">
Abstract
:1. Introduction
2. Healthcare 4.0 and BSN Architecture
2.1. Healthcare 4.0 Elements
2.2. BSN Systems
3. BSN Modeling
3.1. Information Processing in BSNs
3.2. BSN Model
Algorithm 1: Smart sensor selection |
Input: TM, Smin |
Output: n, S |
Initialize PC, PS, and X as zero for i = 1: TC do r(i) = random Q(i) = random A(i) = πr2(i) v(i) = Q(i)/A(i) L = v(i −1) + v(i) end Update probability PC that a sensor passes the wearable data collector area for m = 1 do Update successful probability PS of collecting a readout from m sensors Update successfully collected readouts X from these sensors if X ≥ Smin // when readouts are no less than the requirement Update S Update n Break end m++ // Increase sensor amount when readouts are less than Smin end |
4. Case Study and Performance Evaluation
4.1. Elbow Injury
4.2. Multiple Area Examination in a Single Routine
4.3. Monitoring Time
5. Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaugel, S.; Reichert, M. Industrial Transfer Learning for Multivariate Time Series Segmentation: A Case Study on Hydraulic Pump Testing Cycles. Sensors 2023, 23, 3636. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Li, B.; Qu, W.; Ahmed, E.; Wang, X. TOSG: A topology optimization scheme with global small world for industrial heterogeneous internet of things. IEEE Trans. Ind. Inform. 2019, 15, 3174–3184. [Google Scholar] [CrossRef]
- Vakaruk, S.; Karamchandani, A.; Sierra-García, J.E.; Mozo, A.; Gómez-Canaval, S.; Pastor, A. Transformers for Multi-Horizon Forecasting in an Industry 4.0 Use Case. Sensors 2023, 23, 3516. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Qiu, M.; Liu, M.; Memmi, G. Secure health data sharing for medical cyber-physical systems for the healthcare 4.0. IEEE J. Biomed. Health Inform. 2020, 24, 2499–2505. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Pang, Z.; Jamal Deen, M.; Dong, M.; Zhang, Y.-T.; Lovell, N.; Rahmani, A.M. Homecare robotic systems for healthcare 4.0: Visions and enabling technologies. IEEE J. Biomed. Health Inform. 2020, 24, 2535–2549. [Google Scholar] [CrossRef]
- Qiu, T.; Chen, B.; Sangaiah, A.K.; Ma, J.; Huang, R. A survey of mobile social networks: Applications, social characteristics, and challenges. IEEE Syst. J. 2018, 12, 3932–3947. [Google Scholar] [CrossRef]
- Almalawi, A.; Khan, A.I.; Alsolami, F.; Abushark, Y.B.; Alfakeeh, A.S. Managing Security of Healthcare Data for a Modern Healthcare System. Sensors 2023, 23, 3612. [Google Scholar] [CrossRef]
- Qahtan, S.; Sharif, K.Y.; Zaidan, A.A.; Alsattar, H.A.; Albahri, O.S.; Zaidan, B.B.; Zulzalil, H.; Osman, M.H.; Alamoodi, A.H.; Mohammed, R.T. Novel multi security and privacy benchmarking framework for bockchain-based IoT healthcare industry 4.0 systems. IEEE Trans. Ind. Inform. 2022, 18, 6415–6423. [Google Scholar] [CrossRef]
- López, J.L.; Espinilla, M.; Verdejo, Á. Evaluation of the Impact of the Sustainable Development Goals on an Activity Recognition Platform for Healthcare Systems. Sensors 2023, 23, 3563. [Google Scholar] [CrossRef]
- Wang, X.; Peng, M.; Lin, H.; Wu, Y.; Fan, X. A privacy-enhanced multiarea task allocation strategy for healthcare 4.0. IEEE Trans. Ind. Inform. 2023, 19, 2740–2748. [Google Scholar] [CrossRef]
- Derogarian Miyandoab, F.; Canas Ferreira, J.; Grade Tavares, V.M.; Machado da Silva, J.; Velez, F.J. A multifunctional integrated circuit router for body area network wearable systems. IEEE/ACM Trans. Netw. 2020, 28, 1981–1994. [Google Scholar] [CrossRef]
- Moin, A.; Thielens, A.; Araujo, A.; Sangiovanni-Vincentelli, A.; Rabaey, J.M. Adaptive body area networks using kinematics and biosignals. IEEE J. Biomed. Health Inform. 2021, 25, 623–633. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Yu, G.; Yong, Y.-T. Deep reinforcement learning-based resource scheduling strategy for reliability-oriented wireless body area networks. IEEE Sens. Lett. 2021, 5, 1–4. [Google Scholar] [CrossRef]
- Mao, P.; Li, H.; Yu, Z. A Review of Skin-Wearable Sensors for Non-Invasive Health Monitoring Applications. Sensors 2023, 23, 3673. [Google Scholar] [CrossRef]
- Peng, C.; Luo, M.; Li, L.; Choo, K.-K.R.; He, D. Efficient certificateless online/offline signature scheme for wireless body area networks. IEEE Internet Things J. 2021, 8, 14287–14298. [Google Scholar] [CrossRef]
- Misra, S.; Bishoyi, P.K.; Sarkar, S. i-MAC: In-body sensor MAC in wireless body area networks for healthcare IoT. IEEE Syst. J. 2021, 15, 4413–4420. [Google Scholar] [CrossRef]
- Simonjan, J.; Unluturk, B.D.; Akyildiz, I.F. In-body bionanosensor localization for anomaly detection via inertial positioning and thz backscattering communication. IEEE Trans. NanoBioscience 2022, 21, 216–225. [Google Scholar] [CrossRef]
- Garcia-Pardo, C.; Andreu, C.; Fornes-Leal, A.; Castelló-Palacios, C.; Perez-Simbor, S.; Barbi, M.; Vallés-Lluch, A.; Cardona, N. Ultrawideband technology for medical in-body sensor networks: An overview of the human body as a propagation medium, phantoms, and approaches for propagation analysis. IEEE Antennas Propag. Mag. 2018, 60, 19–33. [Google Scholar] [CrossRef]
- Mohamed, M.; Maiseli, B.J.; Ai, Y.; Mkocha, K.; Al-Saman, A. In-body sensor communication: Trends and challenges. IEEE Electromagn. Compat. Mag. 2021, 10, 47–52. [Google Scholar] [CrossRef]
- Yeung, K.K.; Huang, T.; Hua, Y.; Zhang, K.; Yuen, M.M.F.; Gao, Z. Recent advances in electrochemical sensors for wearable sweat monitoring: A review. IEEE Sens. J. 2021, 21, 14522–14539. [Google Scholar] [CrossRef]
- Body Area Network Market. FACT7208MR, April 2022. Available online: https://www.factmr.com/report/body-area-network-market (accessed on 12 March 2023).
- He, L. Hamstring injury detection using body-centric nano networks. In Proceedings of the IEEE Integrated STEM Education Conference (ISEC), Virtual Event, 26 March 2022. [Google Scholar]
- He, L.; Eastburn, M. Smart nanosensor networks for body injury detection. In Proceedings of the IEEE International Conference on Smart Internet of Things (SmartIoT), Suzhou, China, 19–21 August 2022. [Google Scholar]
- IEEE Standard 1906.1-2015; IEEE Recommended Practice form Nanoscale and Molecular Communication Framework. IEEE: Piscataway, NJ, USA, 2015.
- IEEE Standard 1906.1.1-2020; IEEE Standard Data Model for Nanoscale Communication Systems. IEEE: Piscataway, NJ, USA, 2020.
- ISO/IEC/IEEE International Standard 8802-15-6; Local and Metropolitan Area Networks-Specific Requirements—Part 15-6: Wireless Body Area Network. IEEE: Piscataway, NJ, USA, 2017.
- Kannojiya, V.; Das, A.K.; Das, P.K. Simulation of blood as fluid: A review from rheological aspects. IEEE Rev. Biomed. Eng. 2021, 14, 327–341. [Google Scholar] [CrossRef]
- Boisvert, J.; Poirier, G.; Borgeat, L.; Godin, G. Real-time blood circulation and bleeding model for surgical training. IEEE Trans. Biomed. Eng. 2013, 60, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Fadnes, S.; Ekroll, I.K.; Nyrnes, S.A.; Torp, H.; Lovstakken, L. Robust angle-independent blood velocity estimation based on dual-angle plane wave imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1757–1767. [Google Scholar] [CrossRef]
- Ricci, S.; Ramalli, A.; Bassi, L.; Boni, E.; Tortoli, P. Real-time blood velocity vector measurement over a 2-d region. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Blumenfeld, J.; Kocinski, M.; Materka, A. A centerline-based algorithm for estimation of blood vessels radii from 3D raster images. In Proceedings of the 2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 23–25 September 2015; pp. 38–43. [Google Scholar]
- Mosayebi, R.; Ahmadzadeh, A.; Wicke, W.; Jamali, V.; Schober, R.; Nasiri-Kenari, M. Early cancer detection in blood vessels using mobile nanosensors. IEEE Trans. NanoBioscience 2019, 18, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Moretti, R.; Caruso, P. Small Vessel Disease: Ancient Description, Novel Biomarkers. Int. J. Mol. Sci. 2022, 23, 3508. [Google Scholar] [CrossRef]
- Xie, G.P.; Qi, J.; Liu, B.P.; Zhong, R.S. Therapeutic effect of double needle acupuncture therapy for 63 case of tennis elbow. In Proceedings of the International Conference on Information Technology and Contemporary Sports (TCS), Guangzhou, China, 15–17 January 2021. [Google Scholar]
- Cutts, S.; Gangoo, S.; Modi, N.; Pasapula, C. Tennis elbow: A clinical review article. J. Orthop. 2019, 17, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Fallahtafti, F.; Alavikia, M.; Arshi, A.R. Bond graph application in sports engineering: Evaluating the effects of impact parameters on tennis elbow injury. In Proceedings of the 20th Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 18–20 December 2013. [Google Scholar]
- Vaquero-Picado, A.; Barco, R.; Antuña, S.A. Lateral epicondylitis of the elbow. EFORT Open Rev. 2016, 1, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, C. Research on knee injuries in college football training based on artificial neural network. In Proceedings of the IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Shenyang, China, 11–13 December 2020. [Google Scholar]
- Mellinger, S.; Neurohr, G.A. Evidence based treatment options for common knee injuries in runners. Ann. Transl. Med. 2019, 7, 249. [Google Scholar] [CrossRef]
- Petersen, W.; Ellermann, A.; Gösele-Koppenburg, A.; Best, R.; Rembitzki, I.V.; Brüggemann, G.P.; Liebau, C. Patellofemoral pain syndrome. Knee Surg Sport. Traumatol. Arthrosc. 2014, 22, 2264–2274. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.M.; Baptista, J.S.; Conceição, F.; Duarte, J.; Ferraz, J.; Costa, J.T. Patellofemoral pain syndrome risk associated with squats: A systematic review. Int. J. Env. Res. Public Health 2022, 19, 9241. [Google Scholar] [CrossRef]
- Bolgla, L.A.; Boling, M.C.; Mace, K.L.; DiStefano, M.J.; Fithian, D.C.; Powers, C.M. National athletic trainers’ association position statement: Management of individuals with patellofemoral pain. J. Athl. Train. 2018, 53, 820–836. [Google Scholar] [CrossRef] [Green Version]
- Alaia, M.J. Shin Splints. OrthoInfo, American Academy of Orthopaedic Surgeons, August 2019. Available online: https://orthoinfo.aaos.org/en/diseases--conditions/shin-splints (accessed on 12 March 2023).
- Menéndez, C.; Batalla, L.; Prieto, A.; Rodríguez, M.Á.; Crespo, I.; Olmedillas, H. Medial tibial stress syndrome in novice and recreational runners: A systematic review. Int. J. Env. Res. Public Health 2020, 17, 7457. [Google Scholar] [CrossRef]
- Reinking, M.F.; Austin, T.M.; Richter, R.R.; Krieger, M.M. Medial tibial stress syndrome in active individuals: A systematic review and meta-analysis of risk factors. Sport. Health 2017, 9, 252–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattock, J.; Steele, J.R.; Mickle, K.J. Lower leg muscle structure and function are altered in long-distance runners with medial tibial stress syndrome: A case control study. J. Foot Ankle Res. 2021, 14, 47. [Google Scholar] [CrossRef] [PubMed]
- Mattock, J.; Steele, J.R.; Mickle, K.J. Are leg muscle, tendon and functional characteristics associated with medial tibial stress syndrome? a systematic review. Sport. Med. Open 2021, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Heel Pain; Harvard Health Publishing: Cambridge, MA, USA, 2019. Available online: https://www.health.harvard.edu/a_to_z/heel-pain-a-to-z (accessed on 12 March 2023).
- Rhim, H.C.; Kwon, J.; Park, J.; Borg-Stein, J.; Tenforde, A.S. A systematic review of systematic reviews on the epidemiology, evaluation, and treatment of plantar fasciitis. Life 2021, 11, 1287. [Google Scholar] [CrossRef]
- Cho, B.W.; Choi, J.H.; Han, H.S.; Choi, W.Y.; Lee, K.M. Age, body mass index, and spur size associated with patients’ symptoms in plantar fasciitis. Clin. Orthop. Surg. 2022, 3, 458–465. [Google Scholar] [CrossRef]
- Aggarwal, P.; Jirankali, V.; Garg, S.K. Evaluation of plantar fascia using high-resolution ultrasonography in clinically diagnosed cases of plantar fasciitis. Pol. J. Radiol. 2020, 85, e375–e380. [Google Scholar] [CrossRef]
- Matthews, W.; Ellis, R.; Furness, J.; Hing, W.A. The clinical diagnosis of Achilles tendinopathy: A scoping review. PeerJ 2021, 9, e12166. [Google Scholar] [CrossRef]
- Merry, K.; Napier, C.; Waugh, C.M.; Scott, A. Foundational principles and adaptation of the healthy and pathological achilles tendon in response to resistance exercise: A narrative review and clinical implications. J. Clin. Med. 2022, 11, 4722. [Google Scholar] [CrossRef] [PubMed]
Item | Meaning and Unit |
---|---|
n | In-body sensor amount |
S | Successfully collected readouts |
Smin | Minimum number of readouts for healthcare decisions |
v | Sensor flowing velocity (cm/s) |
Q | Blood volume flow per unit time (mL/s) |
A | Cross-sectional area of a blood vessel (cm2) |
r | Blood vessel radius (cm) |
TC | Time for blood to circulate through a human body (s) |
TM | Healthcare monitoring time (s) |
L | Path length of the circulation system (cm) |
w | Length of the wearable data collector (cm) |
PC | Probability that a sensor passes the wearable data collector area |
PS | Successful probability of collecting a readout from n sensors |
Goal of BSN System Design | BSN System and Biomedical Constraints |
---|---|
Obtain the minimum n to satisfy S ≥ Smin | v(t) = Q(t)/A(t) |
PC = w/L | |
PS = PC(1 − PC)n−1 | |
TM >> TC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Eastburn, M.; Smirk, J.; Zhao, H. Smart Chemical Sensor and Biosensor Networks for Healthcare 4.0. Sensors 2023, 23, 5754. https://doi.org/10.3390/s23125754
He L, Eastburn M, Smirk J, Zhao H. Smart Chemical Sensor and Biosensor Networks for Healthcare 4.0. Sensors. 2023; 23(12):5754. https://doi.org/10.3390/s23125754
Chicago/Turabian StyleHe, Lawrence, Mark Eastburn, James Smirk, and Hong Zhao. 2023. "Smart Chemical Sensor and Biosensor Networks for Healthcare 4.0" Sensors 23, no. 12: 5754. https://doi.org/10.3390/s23125754
APA StyleHe, L., Eastburn, M., Smirk, J., & Zhao, H. (2023). Smart Chemical Sensor and Biosensor Networks for Healthcare 4.0. Sensors, 23(12), 5754. https://doi.org/10.3390/s23125754