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Abstract: Machine learning techniques have progressively emerged as important and reliable tools
that, when combined with machine condition monitoring, can diagnose faults with even superior per-
formance than other condition-based monitoring approaches. Furthermore, statistical or model-based
approaches are often not applicable in industrial environments with a high degree of customization
of equipment and machines. Structures such as bolted joints are a key part of the industry; therefore,
monitoring their health is critical to maintaining structural integrity. Despite this, there has been little
research on the detection of bolt loosening in rotating joints. In this study, vibration-based detection
of bolt loosening in a rotating joint of a custom sewer cleaning vehicle transmission was performed
using support vector machines (SVM). Different failures were analyzed for various vehicle operating
conditions. Several classifiers were trained to evaluate the influence of the number and location of
accelerometers used and to determine the best approach between specific models for each operating
condition or a single model for all cases. The results showed that using a single SVM model with
data from four accelerometers mounted both upstream and downstream of the bolted joint resulted
in more reliable fault detection, with an overall accuracy of 92.4%.

Keywords: bolt looseness detection; support vector machines; vibration; fault diagnosis; structural
health monitoring

1. Introduction

Machine maintenance is a key aspect of ensuring the efficient and safe operation of
industrial equipment, preventing sudden breakdowns, and reducing downtime. The main-
tenance strategy adopted has a major impact on a company’s costs; in fact, if not properly
designed, up to one-third of the total cost of maintenance expenditure can be attributed to
unnecessary or excessively delayed interventions [1–3]. To address these issues, modern
maintenance approaches are based on continuous monitoring of machine conditions to de-
tect and respond to failure in a timely manner [4–8]. Based on condition monitoring, three
different approaches can be used to detect a failure: model-based, statistical-based, and arti-
ficial intelligence-based [9]. Machine learning techniques have emerged as a powerful tool
due to their accuracy, robustness, and high computational speed, often leading to superior
results compared to the other two condition-based approaches [3,5,10,11]. Furthermore,
there are industrial realities where the level of customization of equipment and machines
makes statistical and laborious model-based approaches inapplicable, thus requiring the
development of machine-learning approaches tailored to the specific case study. This is the
case, for example, of customized vehicles, where small batches of vehicles are produced
by adding new elements to obtain required functionalities. However, this situation can be
extended beyond the automotive sector to all areas where the degree of customization of
machines is a predominant factor.

In this context, due to their flexibility and ease of design, bolted joints are broadly used
in a variety of industrial applications to connect different structural components. However,
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these bolted joints can be subjected to a wide variety of load combinations during normal
operation and therefore tend to loosen, compromising the structural integrity or full func-
tionality of the particular machine. Furthermore, such problems can be exacerbated when
rotating bolted joints are considered, such as those found in heavy rotating machinery and
vehicles [12]. For these reasons, the detection of bolt loosening plays an important role in
maintenance, especially when it can lead to failure and subsequent machine downtime [13].

There are several techniques that can be used to monitor the condition of bolts:
vision-based [14–16], percussion-based [17–19], electro-mechanical impedance-based or
via piezoelectric transducers [20–23], ultrasonic-based [24,25], and vibration-based [26,27].
Huynh et al. used vision-based techniques by exploiting a deep learning algorithm to un-
derstand whether hex head bolts were loose by estimating the angle of rotation with respect
to the sound condition [14]. Additionally, using vision-based techniques, Ramana et al.
identified the failure based on the exposed shank length of the bolt and then trained a
support vector machine (SVM) algorithm for classification [15]. Zhang et al. implemented
automated bolt loosening detection based on the exposed length of the threaded bolt using
a region-based convolutional neural network to avoid the need to manually extract features
from machine vision images [16]. However, these methods require the installation of a
camera with a good viewing angle on the bolted connections, which can be difficult in
terms of available space and during the actual operating conditions of machines with mov-
ing or rotating elements, such as vehicles. Percussion-based loosening detection consists
of tapping the bolted joint, recording its acoustic response, processing these signals and
extracting characteristic features, such as power spectrum density, and classifying faults
using machine learning [17–19]. Although suitable for civil structures, this approach is not
well suited to continuous monitoring of machines under operating conditions. The other
techniques mentioned above for detecting bolt loosening are based on the use of sensors
in direct contact with the machine being monitored and are capable of detecting even the
early stages of failure, but differ in the principle of measurement.

Fault detection through continuous health monitoring based on vibration measure-
ment and machine learning has been successfully applied to various mechanical elements
such as gears and gearboxes [28–31], bearings [32,33], induction motors [34–36], and cen-
trifugal pumps [37]. However, research using this approach for bolt loosening detection
is limited [13]. Eraliev et al. used a variety of machine learning classifiers to detect the
early stages of loosening in a multi-bolted AC motor by acquiring vibration signals. In
this work, the authors employed a short-time Fourier transform to extract features from
the raw signals and then performed feature reduction on the obtained spectrograms to
improve classification accuracy [27]. Results presented in [27] clearly show that major
improvements of the SVM in this context are necessary to achieve sufficient accuracy.
Furthermore, most sensor-based studies have focused on civil structures [38,39] rather
than machines with rotating bolted joints and have tended to use approaches based on
electro-mechanical impedance changes. For civil structures, kernel-based machine learning
techniques such as SVM have been successfully applied to damage detection from vibra-
tion data by Santos et al. [40]. In addition, most research papers on bolt loosening have
developed methodologies using controlled laboratory experiments rather than industrial
case studies in a real world environment [6].

In this research work, SVM classifiers were developed to detect the loosening of bolts
in a rotating joint of the transmission unit of a sewer cleaning vehicle. Joint vibration moni-
toring was used to identify two different degrees of joint loosening for different vehicle
operating conditions. The influence of the number and the location of the installed ac-
celerometers was investigated, as well as the best approach between specific SVM models or
a single model for all operating conditions, finally achieving high classification accuracies.

2. Materials and Methods

A schematic diagram of the transmission unit of the sewer cleaning vehicle under
investigation is shown in Figure 1. The rotating joint to be examined consists of four



Sensors 2023, 23, 5345 3 of 16

bolts that connect the shaft at the output of the gearbox to the shaft at the input of the
gear reducer, which supplies both the rear axle and the pumps. The main gearbox at the
engine output consists of six gears. The vacuum, high-pressure water, and liquid transfer
pumps are operated by engaging the fourth, fifth, and sixth gears at 720 rpm. These are
the operating conditions under which it is necessary to detect the looseness of the bolted
connection to avoid failures while the pumps are in use.
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Figure 1. Schematic diagram of the transmission unit of the sewer cleaning vehicle.

2.1. Experimental Setup and Data Acquisition

Figure 2 displays the experimental setup employed to fully capture vibrations related
to periodic events caused by shaft rotations and gear angular velocity fluctuations under
the selected operational conditions. Our assessment of the system’s response, measuring
acceleration, focuses on two locations: one upstream and one downstream of the bolted
joint. Two accelerometers (A1 and A2) are placed between the gearbox and the joint, while
two others (A3 and A4) are placed between the joint and the gear reducer. The setup
incorporates (i) four B&K 4535-B triaxial accelerometers and (ii) an LMS SCADAS Recorder
09 mobile PC-based multichannel analyzer platform, running the LMS Test.Lab 14A suite.
This facilitates the acquisition and recording of time histories of the measured accelerations
alongside the engine speed. All signals are simultaneously recorded in the time domain
with a sampling frequency of 4096 Hz.
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Figure 2. The experimental setup is schematically represented, with four designated measurement
locations. Two are located upstream, while the other two are located downstream of the bolted joint
under examination.

In order to detect the appearance of fault conditions, a supervised approach was
adopted. Therefore, nine different cases of vehicle operation were established by varying
the gears engaged and the type of failure, as reported in Table 1. Two different types of
rotating joint failure were established, first by loosening two opposing bolts, condition F1,
and then by loosening all four bolts, condition F2. Condition corresponding to normal
operation is labeled by G.
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Table 1. Experimental cases for fault detection.

Case ID Engaged Gear Fault Description Class

M4-G 4th No fault G
M5-G 5th No fault G
M6-G 6th No fault G
M4-F1 4th Two opposite bolts are loosened F1
M5-F1 5th Two opposite bolts are loosened F1
M6-F1 6th Two opposite bolts are loosened F1
M4-F2 4th All four bolts are loosened F2
M5-F2 5th All four bolts are loosened F2
M6-F2 6th All four bolts are loosened F2

2.2. Feature Selection

Extracting features from raw vibration signals before feeding them into machine
learning models has a significant impact on the performance of the model itself. This
step can only be omitted if deep learning techniques are used, but these have a much
higher computational cost. Lei et al. found that combining features from both the time
and frequency domains was a simple and effective way to detect and identify a fault in a
planetary gearbox [31]. In addition, Li et al. developed a deep learning model for fault
detection in a gearbox which, by taking the same signal in both the time, frequency, and
time-frequency domains as input, achieved higher classification accuracies than models
using only one of the domains [30].

In this study, after a settling period, 11 different signals (batches) lasting 10 s each were
recorded for every experimental case in a series of different tests. For each of these batches,
features were extracted in both the time and frequency domains. Taking both domains into
account increases the information power of the signal [30,31,41,42]. In the time domain,
the maximum acceleration and the root mean square (RMS) were used as features, while
moving to the frequency domain using the fast Fourier transform, the amplitude of the
maximum peak was considered. Let x(t) be the acquired signal. The features considered
can be defined as:

Max Acceleration = max[x(t)], (1)

RMS =
√

E[x(t)], (2)

Peak = max(|X(ω)|), (3)

where E[x(t)] is the mean value of the signal, and X(ω) is the Fourier transform of the signal.
These features were selected because a deviation from the proper operating conditions
of the bolted joint due to loosened bolts results in attenuation of the maximum signal
amplitude, a change in the signal dispersion which influences the recorded amplitude
of the maximum peak in the frequency domain, and the introduction of other harmonic
components which affect the RMS value.

2.3. Support Vector Machines Models

The SVM, introduced by Cortes and Vapnik, is a supervised machine-learning model
that can classify two different classes of data [43]. This algorithm uses a hyperplane that
separates these two different classes of data, thus establishing a decision boundary. The
SVM finds the optimal hyperplane by maximizing the margin between the two classes,
where the margin refers to the distance between the hyperplane itself and the nearest data
point of each class. The data points that lie on the margin, i.e., closest to the hyperplane,
are called ‘support vectors’. The hyperplane is defined as:

ω·x + b = 0, (4)
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where x is the input vector of data points xi (i = 1, 2, . . . , N), ω ∈ RN is the normal vector
to the hyperplane and b ∈ R. The width of the margin to be maximized is:

margin width =
2
‖ω‖ . (5)

For mathematical convenience, the optimal hyperplane can be obtained by minimizing:

1
2
‖ω‖2. (6)

When the data points are non-linearly separable, an approach called soft-margin SVM
is used to allow for the misclassification of some observations xi which fall in the wrong
part of the margin. A slack variable ξi(i = 1, 2, . . . , N) is introduced into the minimization
problem together with a penalty parameter C, which defines a trade-off between the
complexity of the hypothesis space and the number of errors allowed:

1
2
‖ω‖2 + C

N

∑
i=1

ξi. (7)

In addition to the soft-margin SVM, in order to correctly classify non-linearly separable
data points while avoiding overfitting, a kernel trick can be used. It exploits Cover’s
Theorem, which states that mapping a non-linearly separable input space to a higher-
dimensional space makes the linear separation more likely [44]. After using this kernel
trick, the optimal hyperplane is defined within this new space, where classification is easier
to perform. In this work, the radial basis function (RBF) kernel was used:

K
(
xj, xk

)
= exp

(
−
(
xj − xk

)2

σ2

)
, (8)

where xj and xk are two elements of the input vector x and the kernel parameter σ ∈ R.
SVM can be extended to perform multi-class classifications using mainly two coding

designs: ‘one vs. one’ (OVO) and ‘one vs. all’ (OVA) [45,46]. If m is the number of classes,
in the OVO approach, m(m− 1)/2 binary classifiers are constructed, each trained with
data from two of the m classes, and the rest are ignored. Whereas in the OVA approach, m
binary classifiers are constructed, each trained with one class defined as positive and the
rest of the classes defined as negative. In this research, error-correcting output codes and
a loss-weighted decoding scheme were used to aggregate the results of the constructed
binary classifiers and generate the predictions [47,48].

Therefore, in a multi-class SVM classifier defined so far, the hyperparameters to be
optimized are the penalty parameter C, the kernel parameter σ, and the multiclassification
coding design OVO or OVA.

To build the SVM model, the input data set was first shuffled to avoid model condi-
tioning and increase its generalization ability and then divided into a training set and a
test set (80–20%). The training set was subsequently normalized using the z-score. Let xTR
be the average of the input training data vector xTR and S be the standard deviation, the
z-score zi of an observation xi (i = 1, 2, . . . , NTR) is defined as:

zi =
xi − xTR

S
. (9)

Since a real industrial case study is analyzed in this research, it is important to use this
normalization method, which not only returns a data set with a mean of 0 and a standard
deviation of 1 but is also less affected by the presence of outliers and also preserves the
shape properties of the original data set, such as skewness and kurtosis. Afterward, the
test set was normalized using the normalization parameters of the training set. In this way,
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the model is not biased by the data of the test set, which remain unseen until the moment
when the generalization ability of the model is evaluated.

To optimize the hyperparameters, avoid overfitting and thus increase the general-
ization power of the model, a k-fold cross-validation approach with 10 folds was used
on the training set [49]. With this approach, the training set is randomly divided into k
subsets of equal size. Of these k folds, k-1 is used to train the model, and in the last, called
validation, the trained model is evaluated. This cross-validation process is repeated k times,
with each of the k subsets used exactly once as the validation set. Finally, the k-validation
results obtained are averaged to produce a single estimate. Along with cross-validation, the
hyperparameters were optimized using Bayesian optimization and grid search. Bayesian
optimization iteratively develops a global statistical model related to the objective function
to be minimized. This approach typically uses a Gaussian process model of the objective
function, computing a posterior distribution at each iteration using previous evaluations
of the objective function and exploiting nonlinear Bayesian regression. An acquisition
function is then used to determine the next point in the hyperparameter space where it is
most convenient to evaluate the objective function. This is done by finding the point that
maximizes the acquisition function. For the sake of brevity, the reader is referred to the
reference literature for further details on these optimization methods [50,51]. Bayesian opti-
mization with 30 iterations and “expected improvement plus” as the acquisition function
was employed. Subsequently, a 10 × 10 grid search around the found point was used to
fine-tune the hyperparameters.

Finally, the unseen test set was used to evaluate the performance of the trained SVM
classifier. The confusion matrix, overall accuracy, precision, recall, and F-measure were the
metrics used to evaluate the model predictions.

In this research, several SVM models were developed to identify the best approach for
detecting bolt loosening. The influence of the number of accelerometers used was evaluated.
In addition, the number of gears considered in each model was varied to assess whether a
gear-specific approach, with a different classifier for each gear, or a global approach, where
a single classifier can make accurate predictions for each gear indiscriminately, would
be more suitable. Table 2 shows the 12 models that were constructed, using at least two
accelerometers to have sufficient data to be statistically reliable.

Table 2. SVM models developed.

SVM Model Gears Accelerometers Dataset Size

A1-A2 M4 4th A1 and A2 198
A1-A2 M5 5th A1 and A2 198
A1-A2 M6 6th A1 and A2 198

A1-A2 M4-M5-M6 4th-5th-6th A1 and A2 594
A3-A4 M4 4th A3 and A4 198
A3-A4 M5 5th A3 and A4 198
A3-A4 M6 6th A3 and A4 198

A3-A4 M4-M5-M6 4th-5th-6th A3 and A4 594
A1-A2-A3-A4 M4 4th A1, A2, A3 and A4 396
A1-A2-A3-A4 M5 5th A1, A2, A3 and A4 396
A1-A2-A3-A4 M6 6th A1, A2, A3 and A4 396

A1-A2-A3-A4 M4-M5-M6 4th-5th-6th A1, A2, A3 and A4 1188

3. Results and Discussion

Extracting features from raw signals is useful for algorithms such as SVM because
it increases the separability of the different classes to be identified. Figure 3 shows the
maximum acceleration, root mean square, and peak amplitude in the frequency domain
calculated for different batches of signals acquired from the x-axis of accelerometer A1
during experiments M4-G, M4-F1, and M4-F2. From Figure 3, it can be seen how well
these three features separate the three different classes. However, the separations are not
particularly well defined, especially between classes F1 and F2. The same degree of one-
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dimensional separation between the classes can also be observed for the other experimental
tests and with the other accelerometers, only one of which has been reported so as not to
burden the reading.
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Figure 3. Features evaluated for each batch number of the signals recorded by accelerometer A1
along the x-axis during the experiments M4-G, M4-F1, and M4-F2: (a) Max Acceleration; (b) Root
Mean Square; (c) Amplitude of the Peak in the frequency domain.

Figure 4 illustrates the feature space of the signals acquired from the X, Y, and Z
axes of the A1 accelerometer during the M4-G, M4-F1, and M4-F2 experiments using two-
dimensional scatter plots. From Figure 4, it is clear that the use of these features creates
defined clusters of the different classes, but these clusters cannot be separated linearly,
necessitating the use of a kernel such as RBF. Furthermore, considering the points relative
to the z-axis of class F2 in Figure 4b,c, it can be seen that the soft-margin SVM approach is
necessary to correctly handle misclassifications.
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from the X, Y, and Z axes of the A1 accelerometer during the M4-G, M4-F1, and M4-F2 experiments;
(a) Max Acceleration-RMS; (b) Max Acceleration-Peak; (c) RMS-Peak.

The data distributions of each feature are described using boxplots for all the 12 SVM
models developed (Figure 5). The interquartile range (IQR), the difference between the
75th and 25th percentiles, of the maximum acceleration and RMS distributions varies
significantly as the number and position of the accelerometers considered and the gear
engaged vary. In particular, when considering the data obtained from accelerometers A3
and A4, located downstream of the bolted joint under consideration, this descriptor is
significantly reduced compared to the other cases, indicating a lower spread of the data.
Furthermore, the models built using only the data from these two accelerometers have the
highest number of outliers, which can negatively affect the model performance. In contrast,
for the peak amplitude feature, less variability in the IQR is observed between the data
sets of the different models. To enrich the analysis of the data distributions for each of the
constructed SVM models, the data have been added to the boxplots and colored according
to the three classes G, F1, and F2. In this way, it is possible to see that the RMS and the peak
amplitude present distributions formed by many clusters of the different classes, while
for the maximum acceleration, the distributions are continuous with less clear separations
between the different conditions of joint loosening.
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Figure 5. Boxplots of the data distribution of each feature for the 12 SVM models developed: (a) Max
Acceleration; (b) RMS; (c) Amplitude of the Peak in the frequency domain. Red horizontal lines show
the median of each distribution. From the box, whiskers extend to the most extreme observation
within 1.5 times the interquartile range (equal to the distance between the 75th and 25th percentiles).
Outliers are indicated by a red plus symbol. Within each boxplot, the corresponding data are
illustrated and colored according to the three classes G, F1, and F2.



Sensors 2023, 23, 5345 10 of 16

Table 3 reports the overall classification accuracy, precision, recall, and F-measure of
each SVM model built, along with the numerosity of the test set on which the performance
evaluation was carried out. The models trained with data from the two accelerometers
downstream of the rotating bolted joint (A3-A4) are the worst-performing models, with
accuracies even below 90 percent. In fact, performance is lowest with either a gear-specific
approach or a global approach that considers all gears together. By contrast, using data
from the accelerometers upstream of the bolted joint, the gear-specific approach has high
accuracies of 94.9%, 100.0%, and 94.9% for the fourth, fifth, and sixth gears, respectively.
Nevertheless, the accuracy of the model using accelerometers A1 and A2 drops to 90.7%
when the data from all three engaged gears are used as input. On the other hand, exploit-
ing data from all four accelerometers, the gear-specific models achieve high accuracies
of 87.3%, 91.1%, and 93.7% for the three engaged gears, and the global approach also
proves to be high-performing with an accuracy of 92.4%. In addition, all models exhibit
balanced precision and recall scores, with F-measure performance equal to or better than
overall accuracy.

Table 3. Classification accuracy, precision, recall, and F-measure of the SVM models developed.

SVM Model Test Set
Size

Overall
Accuracy

Overall
Precision

Overall
Recall

Overall
F-Measure

A1-A2 M4 39 94.9% 94.9% 94.9% 94.9%
A1-A2 M5 39 100.0% 100.0% 100.0% 100.0%
A1-A2 M6 39 94.9% 95.0% 94.9% 95.0%

A1-A2 M4-M5-M6 119 90.7% 90.7% 90.7% 90.7%
A3-A4 M4 39 92.3% 93.8% 92.3% 93.0%
A3-A4 M5 39 79.5% 84.6% 79.5% 82.0%
A3-A4 M6 39 82.1% 82.5% 82.0% 82.3%

A3-A4 M4-M5-M6 119 89.8% 90.0% 89.9% 90.0%
A1-A2-A3-A4 M4 79 87.3% 88.0% 87.5% 87.7%
A1-A2-A3-A4 M5 79 91.1% 91.2% 91.2% 91.2%
A1-A2-A3-A4 M6 79 93.7% 93.8% 93.7% 93.7%

A1-A2-A3-A4 M4-M5-M6 237 92.4% 92.4% 92.4% 92.4%

However, it is also important to note the sample size on which the performance of
the constructed models was evaluated. Although the gear-specific approach using the
two accelerometers upstream of the bolted joint seems to give the best results, the small
test set on which it was evaluated should be mentioned. In general, SVMs maintain
high classification accuracy when the data sets involved are small, up to a few thousand
observations at most [7]. Nonetheless, within these limits, the availability of a larger
amount of data leads to a better generalization ability of the model. In this context, the
model that uses all accelerometers together and is able to detect defects for all three gears
indiscriminately proves to be more reliable, even if the overall accuracy is slightly lower.
Furthermore, in order to understand which solution is best suited to the case study under
consideration, it is possible to compare this model with gear-specific models (with A1-A2)
by exploiting other metrics such as confusion matrix, accuracy, and recall.

Figure 6 shows the confusion matrices, together with the accuracy and recall scores
for each class and the overall accuracy of one of the gear-specific models, the A1-A2 M4,
and the model with the more general approach, A1-A2-A3-A4 M4-M5-M6. It can be seen
that the results between the two models are comparable, especially for the precision score,
which is related to the occurrence of false positives, which need to be avoided or minimized
in the industrial case under investigation.
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the bottom row, while the overall accuracy is given in the bottom right box.

From the performance shown in Table 3, the SVM algorithm has proven reliable for
detecting bolt loosening from vibration signals. Compared to the proposed approach,
in [27], the short-time Fourier transform (STFT) was used to extract features from the raw
signals. Each frequency was considered a feature, and the change in the STFT over time
formed the dataset. Multiple classification algorithms were tested, but the accuracy of the
SVM was only about 60%. This difference in classification performance could be attributed
to two main factors: the selected features and the size of the dataset. In [27], the SVM
algorithm was trained on approximately twenty thousand data points. Such a dataset size
is likely too large for the SVM classifier to handle, resulting in a high training time and
low performance. In addition, in [27], only frequency-based features were used, while in
the proposed approach, both time and frequency domain features are considered, which
helps to increase the performance of the algorithm. In [21], multi-bolt joint loosening
detection was performed by using piezoelectric transducers through the active sensing
method instead of using vibration signals. Least square SVM was applied to exploit a
damage index based on multivariate multi-scale fuzzy entropy, and classification accuracies
of 89% and 96% were achieved on two different multi-bolt connections. This corroborates
the results obtained with the proposed global approach, which exploits a different physical
principle and the same machine learning algorithm, and yields a comparable overall
accuracy of 92.4%.

Finally, Figure 7 illustrates the normalized data space of the SVM model A1-A2-A3-A4
M4-M5-M6, showing training and test data, support vectors, and misclassified observations
(framed by a red square). It can be seen that the machine learning approach used in
this research work is particularly effective in defining the non-linearly separable regions
of the space associated with each class (indicated by the colored lines) bounded by the
support vectors.
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Figure 7. Scatter plots of the predictions of the trained A1−A2−A3−A4 M4−M5−M6 SVM model: (a) 
three-dimensional view of the feature space; (b) Normalized Max Acceleration—Normalized RMS; Figure 7. Scatter plots of the predictions of the trained A1−A2−A3−A4 M4−M5−M6 SVM model:

(a) three-dimensional view of the feature space; (b) Normalized Max Acceleration—Normalized
RMS; (c) Normalized Max Acceleration—Normalized Peak; (d) Normalized RMS—Normalized Peak.
Training data are indicated by stars, while test data are indicated by solid dots. Among the training
data, the support vectors are surrounded by a circle. Incorrectly classified data are framed by a red
square. The regions of the data space enclosed by the support vectors, in which the predictions of the
multi-class model have the highest probability using the loss-weighted decoding scheme, are colored
according to the corresponding class [47,48].
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4. Conclusions

In this paper, an SVM classifier has been developed to detect different failure condi-
tions due to the loosening of bolts in a rotating joint in the transmission unit of a sewer
cleaning vehicle. Condition monitoring of the bolted joint was performed using vibration
measurements under two different failure scenarios (two or four loose bolts) and under
healthy operating conditions. Four triaxial accelerometers were installed, two upstream
and two downstream of the joint. Three types of vehicle working conditions corresponding
to the engagement of different gears were analyzed.

Both time and frequency domain features were extracted from the raw signals to
enhance the performance of the SVM classifier. Several models were trained to evaluate
the influence of the number and location of the accelerometers used and to determine
the best approach to fault detection between gear-specific models with a classifier for
each gear or a more general model capable of making predictions for all gears engaged.
All models developed were trained using a 10-fold cross-validation approach to avoid
over-fitting and to increase the generalization power of the models themselves, also given
the small size of the datasets. The results showed that an approach using data from all
four accelerometers, mounted both upstream and downstream of the bolted joint, to detect
failures for all different vehicle operating conditions produced the most reliable predictions,
with an overall accuracy of 92.4% and, in particular, high precision, with values greater
than 92% for each class.

The machine learning approach developed in this research has proven to be able to
identify different types of failures in a real industrial environment, using a methodology
suitable for dealing with small datasets typical of small to medium industrial realities
while maintaining excellent generalization capabilities in unseen cases. However, for
larger datasets, other classification algorithms may be more appropriate than SVM. Several
future directions of research can be identified. First of all, an extension of this approach
could introduce more complex signal descriptors, such as Renyi’s entropy [52] and the
Lempel–Ziv complexity [53], to evaluate their possible influence in improving classification
accuracy. As the number of features considered increases due to the black-box nature of
SVM classifiers, a further development would be to perform feature ranking to identify
those features that have the most significant impact on the performance of the SVM
algorithm. Moreover, the output from the classifier could be used to design a predictive
maintenance protocol with the scope to optimize maintenance operations. Finally, the
influence of the size of the dataset given as input to the classifier could also be evaluated
by acquiring more experimental data. In particular, the performance of the SVM classifier
could be compared with the performance of other algorithms, such as neural networks and
random forests, which could capture more complex patterns in larger datasets.
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