A Novel Force-Sensing Smart Textile: Inserting Silicone-Embedded FBG Sensors into a Knitted Undergarment
<p>(<b>a</b>) Three-dimensional illustration of smart textile, (<b>b</b>) structure of optical fiber warp-inlaid into the single jersey fabric, (<b>c</b>) cross-section of the warp-inlaid structure, and (<b>d</b>) configuration of the optical fiber and allocation of FBG 1 to 4.</p> "> Figure 2
<p>Schematic of embedding FBG sensors into a silicone membrane: The process entails (<b>a</b>) filling the mold with silicone, (<b>b</b>) peeling off the resulting silicone membrane, (<b>c</b>) exposing the FBG sensing area for embedding, (<b>d</b>) embedding the FBG sensor into the groove of the silicone membrane, (<b>e</b>) covering the embedded FBG sensor with silicone, and (<b>f</b>) showcasing a cross-sectional view of an embedded FBG sensor that is warp-inlaid into the knitted structure.</p> "> Figure 3
<p>Equipment setup and schematic of transverse force applied to smart textile on artificial skin.</p> "> Figure 4
<p>Schematic of amplifying string axial and transverse forces.</p> "> Figure 5
<p>Schematic of transverse force applied to Pliance<sup>®</sup>-X pressure sensor: (<b>a</b>) between two glass clips and (<b>b</b>) on artificial skin.</p> "> Figure 6
<p>Seamless knitted undergarment created using Shima Seki knitting machine, and silicone-embedded FBG sensor inlaid in the warp direction.</p> "> Figure 7
<p>Linearity of Bragg wavelength when applying force on (<b>a</b>) silicone-embedded FBG sensors, and (<b>b</b>) bare FBG sensors.</p> "> Figure 8
<p>Force detected by Pliance<sup>®</sup>-X pressure sensor (<b>a</b>) between two glass clips and (<b>b</b>) on artificial skin.</p> "> Figure 9
<p>Linear regression between Bragg wavelength delta difference and force when applying force to silicone-embedded FBG sensors 1 to 4.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Construction of Smart Textile: Inlaying FBG Sensor into a Highly Elastic Knitted Undergarment
2.2. Embedding FBG Sensors into Silicone Membranes
2.3. Wear Trial to Simulate Bracing
2.3.1. Smart Textile
2.3.2. Pliance®-X Pressure Sensor
2.4. Data Analysis
3. Results and Discussion
3.1. Smart Textile Design
3.2. Linearity of Silicone-Embedded FBG Sensors and Bare FBG Sensors
3.3. Linearity and Reliability of Silicone-Embedded FBG Sensors and Pliance®-X Pressure Sensor
Challenges of Conventional Integration Methods
4. Limitations of Experiments and Future Works
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lonstein, J.E. Scoliosis: Surgical versus nonsurgical treatment. Clin. Orthop. Relat. Res. 2006, 443, 248–259. [Google Scholar] [CrossRef]
- Negrini, S.; Minozzi, S.; Bettany-Saltikov, J.; Chockalingam, N.; Grivas, T.B.; Kotwicki, T.; Maruyama, T.; Romano, M.; Zaina, F. Braces for idiopathic scoliosis in adolescents. Cochrane Database Syst. Rev. 2015, 2015, CD006850. [Google Scholar] [CrossRef]
- Schwieger, T.; Campo, S.; Weinstein, S.L.; Dolan, L.A.; Ashida, S.; Steuber, K.R. Body Image and Quality of Life and Brace Wear Adherence in Females with Adolescent Idiopathic Scoliosis. J. Pediatr. Orthop. 2017, 37, e519–e523. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S.L.; Dolan, L.A.; Wright, J.G.; Dobbs, M.B. Effects of Bracing in Adolescents with Idiopathic Scoliosis. N. Engl. J. Med. 2013, 369, 1512–1521. [Google Scholar] [CrossRef]
- Bunge, E.M.; de Bekker-Grob, E.W.; van Biezen, F.C.; Essink-Bot, M.-L.; de Koning, H.J. Patients’ Preferences for Scoliosis Brace Treatment: A Discrete Choice Experiment. Spine 2010, 35, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Konieczny, M.R.; Hieronymus, P.; Krauspe, R. Time in brace: Where are the limits and how can we improve compliance and reduce negative psychosocial impact in patients with scoliosis? A retrospective analysis. Spine J. 2017, 17, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Weiss, H.-R. Spinal deformities rehabilitation-state of the art review. Scoliosis 2010, 5, 28. [Google Scholar] [CrossRef]
- Tessadri, F.; Pellegrini, A.; Tavernaro, M.; Zonta, A.; Negrini, S. Importance of team to increase compliance in adolescent spinal deformities brace treatment: A cross-sectional study of two different settings. Scoliosis 2012, 7, O5. [Google Scholar] [CrossRef]
- Rigo, M.; Negrini, S.; Weiss, H.R.; Grivas, T.B.; Maruyama, T.; Kotwicki, T. SOSORT consensus paper on brace action: TLSO biomechanics of correction (investigating the rationale for force vector selection). Scoliosis 2006, 1, 11. [Google Scholar] [CrossRef]
- Chalmers, E.; Lou, E.; Hill, D.; Zhao, V.H.; Wong, M.S. Development of a Pressure Control System for Brace Treatment of Scoliosis. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 557–563. [Google Scholar] [CrossRef]
- Fuss, F.K.; Ahmad, A.; Tan, A.M.; Razman, R.; Weizman, Y. Pressure Sensor System for Customized Scoliosis Braces. Sensors 2021, 21, 1153. [Google Scholar] [CrossRef] [PubMed]
- Mak, A.F.T.; Zhang, M.; Tam, E.W.C. Biomechanics of pressure ulcer in body tissues interacting with external forces during locomotion. Annu. Rev. Biomed. Eng. 2010, 12, 29–53. [Google Scholar] [CrossRef] [PubMed]
- Lou, E.; Hill, D.L.; Raso, J.V. A wireless sensor network system to determine biomechanics of spinal braces during daily living. Med. Biol. Eng. Comput. 2010, 48, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Krištof, M.; Hudák, R.; Takáčová, A.; Živčák, J.; Fialka, L.; Takáč, R. Contact pressure measurement in trunk orthoses. In Proceedings of the 2010 International Joint Conference on Computational Cybernetics and Technical Informatics, Timisoara, Romania, 27–29 May 2010; pp. 175–179. [Google Scholar]
- Sensor Products Inc. Surface Pressure Mapping Sensors. Available online: https://www.sensorprod.com/pressurex_micro.php (accessed on 14 April 2023).
- Chan, W.-Y.; Yip, J.; Yick, K.-L.; Ng, S.-P.; Lu, L.; Cheung, K.M.-C.; Kwan, K.Y.-H.; Cheung, J.P.-Y.; Yeung, K.W.-K.; Tse, C.-Y. Mechanical and Clinical Evaluation of a Shape Memory Alloy and Conventional Struts in a Flexible Scoliotic Brace. Ann. Biomed. Eng. 2018, 46, 1194–1205. [Google Scholar] [CrossRef]
- Plümpe, M.; Beckers, M.; Mecnika, V.; Seide, G.; Gries, T.; Bunge, C.A. 9—Applications of polymer-optical fibres in sensor technology, lighting and further applications. In Polymer Optical Fibres; Bunge, C.-A., Gries, T., Beckers, M., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 311–335. [Google Scholar]
- Carmo, J.P.; Da Silva, A.M.F.; Rocha, R.P.; Correia, J.H. Application of Fiber Bragg Gratings to Wearable Garments. IEEE Sens. J. 2012, 12, 261–266. [Google Scholar] [CrossRef]
- Mac-Thiong, J.-M.; Petit, Y.; Aubin, C.-É.; Delorme, S.; Dansereau, J.; Labelle, H. Biomechanical Evaluation of the Boston Brace System for the Treatment of Adolescent Idiopathic Scoliosis: Relationship between Strap Tension and Brace Interface Forces. Spine 2004, 29, 26–32. [Google Scholar] [CrossRef]
- Massaroni, C.; Saccomandi, P.; Schena, E. Medical smart textiles based on fiber optic technology: An overview. J. Funct. Biomater. 2015, 6, 204–221. [Google Scholar] [CrossRef]
- Quandt, B.M.; Braun, F.; Ferrario, D.; Rossi, R.M.; Scheel-Sailer, A.; Wolf, M.; Bona, G.-L.; Hufenus, R.; Scherer, L.J.; Boesel, L.F. Body-monitoring with photonic textiles: A reflective heartbeat sensor based on polymer optical fibres. J. R. Soc. Interface 2017, 14, 20170060. [Google Scholar] [CrossRef]
- Krehel, M.; Rossi, R.M.; Bona, G.-L.; Scherer, L.J. Characterization of flexible copolymer optical fibers for force sensing applications. Sensors 2013, 13, 11956–11968. [Google Scholar] [CrossRef]
- Kanellos, G.T.; Papaioannou, G.; Tsiokos, D.; Mitrogiannis, C.; Nianios, G.; Pleros, N. Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications. Opt. Express 2010, 18, 179–186. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Díaz, C.R.; Marques, C.; Pontes, M.J.; Frizera, A. 3D-printed POF insole: Development and applications of a low-cost, highly customizable device for plantar pressure and ground reaction forces monitoring. Opt. Laser Technol. 2019, 116, 256–264. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Frizera, A.; Vargas-Valencia, L.; dos Santos, W.M.; Bo, A.P.L.; Siqueira, A.A.G.; Pontes, M.J. Polymer Optical Fiber Sensors in Wearable Devices: Toward Novel Instrumentation Approaches for Gait Assistance Devices. IEEE Sens. J. 2018, 18, 7085–7092. [Google Scholar] [CrossRef]
- Koyama, Y.; Nishiyama, M.; Watanabe, K. A Motion Monitor Using Hetero-Core Optical Fiber Sensors Sewed in Sportswear to Trace Trunk Motion. IEEE Trans. Instrum. Meas. 2013, 62, 828–836. [Google Scholar] [CrossRef]
- Leber, A.; Cholst, B.; Sandt, J.; Vogel, N.; Kolle, M. Stretchable Optical Fibers: Stretchable Thermoplastic Elastomer Optical Fibers for Sensing of Extreme Deformations (Adv. Funct. Mater. 5/2019). Adv. Funct. Mater. 2019, 29, 1970030. [Google Scholar] [CrossRef]
- Lee, K.-P.; Yip, J.; Yick, K.-L.; Lu, C.; Lo, C.K. Textile-based fiber optic sensors for health monitoring: A systematic and citation network analysis review. Text. Res. J. 2022, 92, 2922–2934. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, K.; Zhou, B.; Ning, W.; Jiang, K.; Yang, C.; Kong, L.; Dai, Q. Wearable and Skin-Mountable Fiber-Optic Strain Sensors Interrogated by a Free-Running, Dual-Comb Fiber Laser. Adv. Opt. Mater. 2019, 7, 1900086. [Google Scholar] [CrossRef]
- Presti, D.L.; Massaroni, C.; D’Abbraccio, J.; Massari, L.; Caponero, M.; Longo, U.G.; Formica, D.; Oddo, C.M.; Schena, E. Wearable system based on flexible FBG for respiratory and cardiac monitoring. IEEE Sens. J. 2019, 19, 7391–7398. [Google Scholar] [CrossRef]
- Chan, W.Y. Evaluation and enhancement of thermal and mechanical performance of posture correction girdle for adolescent idiopathic scoliosis (AIS). Ph.D. Thesis, Hong Kong Polytechnic University, Hong Kong, China, 2019. [Google Scholar]
- Li, K.; Chan, T.H.; Yau, M.H.; Thambiratnam, D.P.; Tam, H.Y. Maximum amplification of a string transverse-force amplifier in fiber Bragg grating accelerometers. OSA Contin. 2019, 2, 938–945. [Google Scholar] [CrossRef]
- Lai, C.H.Y.; Li-Tsang, C.W.P. Validation of the Pliance X System in measuring interface pressure generated by pressure garment. Burns 2009, 35, 845–851. [Google Scholar] [CrossRef]
- Ghadikolaee, M.S.; Sharifmoradi, K.; Karimi, M.T.; Tafti, N. Evaluation of a Functional Brace in ACL-Deficient Subjects Measuring Ground Reaction Forces and Contact Pressure: A Pilot Study. JPO J. Prosthet. Orthot. 2020, 32, 142–148. [Google Scholar] [CrossRef]
- Wiseman, J.; Simons, M.; Kimble, R.; Tyack, Z. Reliability and clinical utility of the Pliance X for measuring pressure at the interface of pressure garments and burn scars in children. Burns 2018, 44, 1820–1828. [Google Scholar] [CrossRef]
- Yamada, Y. Textile-integrated polymer optical fibers for healthcare and medical applications. Biomed. Phys. Eng. Express 2020, 6, 062001. [Google Scholar] [CrossRef] [PubMed]
- Grillet, A.; Kinet, D.; Witt, J.; Schukar, M.; Krebber, K.; Pirotte, F.; Depre, A. Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring. IEEE Sens. J. 2008, 8, 1215–1222. [Google Scholar] [CrossRef]
- Rothmaier, M.; Luong, M.P.; Clemens, F. Textile Pressure Sensor Made of Flexible Plastic Optical Fibers. Sensors 2008, 8, 4318–4329. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Sakaguchi, A.; Ishizawa, H.; Yasue, K.; Oshiro, H.; Kimura, H. Vital Sign Measurement Using Covered FBG Sensor Embedded into Knitted Fabric for Smart Textile. J. Fiber Sci. Technol. 2017, 73, 300–308. [Google Scholar] [CrossRef]
- Guo, K.; He, J.; Shao, L.; Xu, G.; Wang, Y. Simultaneous Measurement of Strain and Temperature by a Sawtooth Stressor-Assisted Highly Birefringent Fiber Bragg Grating. J. Light. Technol. 2020, 38, 2060–2066. [Google Scholar] [CrossRef]
- Barkov, F.L.; Konstantinov, Y.A.; Burdin, V.V.; Krivosheev, A.I. Theoretical and Experimental Estimation of the Accuracy in Simultaneous Distributed Measurements of Temperatures and Strains in Anisotropic Optical Fibers Using Polarization-Brillouin Reflectometry. Instrum. Exp. Tech. 2020, 63, 487–493. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-P.; Yip, J.; Yick, K.-L.; Lu, C.; Lu, L.; Lei, Q.-W.E. A Novel Force-Sensing Smart Textile: Inserting Silicone-Embedded FBG Sensors into a Knitted Undergarment. Sensors 2023, 23, 5145. https://doi.org/10.3390/s23115145
Lee K-P, Yip J, Yick K-L, Lu C, Lu L, Lei Q-WE. A Novel Force-Sensing Smart Textile: Inserting Silicone-Embedded FBG Sensors into a Knitted Undergarment. Sensors. 2023; 23(11):5145. https://doi.org/10.3390/s23115145
Chicago/Turabian StyleLee, Ka-Po, Joanne Yip, Kit-Lun Yick, Chao Lu, Linyue Lu, and Qi-Wen Emma Lei. 2023. "A Novel Force-Sensing Smart Textile: Inserting Silicone-Embedded FBG Sensors into a Knitted Undergarment" Sensors 23, no. 11: 5145. https://doi.org/10.3390/s23115145
APA StyleLee, K.-P., Yip, J., Yick, K.-L., Lu, C., Lu, L., & Lei, Q.-W. E. (2023). A Novel Force-Sensing Smart Textile: Inserting Silicone-Embedded FBG Sensors into a Knitted Undergarment. Sensors, 23(11), 5145. https://doi.org/10.3390/s23115145