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Abstract: This paper presents a real-time kinematically synchronous planning method for the col-
laborative manipulation of a multi-arms robot with physical coupling based on the self-organizing
competitive neural network. This method defines the sub-bases for the configuration of multi-arms
to obtain the Jacobian matrix of common degrees of freedom so that the sub-base motion converges
along the direction for the total pose error of the end-effectors (EEs). Such a consideration ensures the
uniformity of the EE motion before the error converges completely and contributes to the collabora-
tive manipulation of multi-arms. An unsupervised competitive neural network model is raised to
adaptively increase the convergence ratio of multi-arms via the online learning of the rules of the inner
star. Then, combining with the defined sub-bases, the synchronous planning method is established
to achieve the synchronous movement of multi-arms robot rapidly for collaborative manipulation.
Theory analysis proves the stability of the multi-arms system via the Lyapunov theory. Various
simulations and experiments demonstrate that the proposed kinematically synchronous planning
method is feasible and applicable to different symmetric and asymmetric cooperative manipulation
tasks for a multi-arms system.

Keywords: multi-arms robot; collaborative manipulation; self-organizing competitive neural
network; inner star rule; synchronous planning

1. Introduction

The development of artificial intelligence technology has facilitated the research on the
autonomous manipulation of robot manipulators. Meanwhile, the increase in requirement
of using robots to replace human hands’ manipulation has made the cooperative motion of
the robot important in the autonomous operations (e.g., manipulating the rudder, using
pliers or a wrench, carrying large objects, or other similar manual tasks in daily life) [1].
Various multi-arm robots, such as Baxter [2], YUMI [3], Justin [4], and Robonaut [5],
have been proposed to satisfy the requirement because of their outstanding capability of
cooperative manipulation in replacing humans.

Multi-arm robots can not only complete the manipulation task of single-arm robot
(or robot manipulator) but also accomplish more complex cooperative manipulation task,
which is attributed to their large workspace, more degrees of freedom (DOFs), and greater
flexibility. The cooperative manipulation of robots has been studied a lot. The methods for
the cooperative manipulation could be divided into force-based [6–9] and kinematics-based
strategies [10–29].

The force-based strategies include two types: One relies on dynamics control, but
the highly complicated nonlinear dynamic model makes it difficult to apply in robot sys-
tem. The other one depends on position compensation control that adjusts the position
of the end-effector (EE) to maintain a certain interaction force and that has been studied
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extensively. The hybrid control of force and position [6,7] and the impedance control [8,9]
are the typical method using position compensation control. The hybrid control of force
and position needs to accurately decompose the coordinate space of the EE into the po-
sition space and force space. The impedance control changes the contact force and the
EE position according to the impedance value, but the impedance parameters must be
adjusted adaptively to ensure the compliance of interaction in the cooperative manipula-
tion. Although the variable impedance is proposed to improve the flexibility of interaction,
the real impedance parameters are difficult to obtain. The intelligent control methods are
proposed to simplify the control schemes and reduce the difficulty of modeling the robot
control system caused by the strong coupling, time-varying, and uncertainty, such as a
neural network [10]. In addition, the force-based strategies rely on force/torque sensors
and the corresponding control algorithms and are mainly used in the non-redundant robot
system [11].

The kinematics-based strategies are simple and easy to combine with an intelligent
algorithm to realize robot autonomous manipulation, thereby resulting in the kinematics-
based strategies becoming a research focus of the cooperative manipulation. Thus, the
kinematics-based cooperative manipulation is mainly considered in this paper. Usually,
the higher requirement for the motion synchronization among the arms needs to be sat-
isfied in the kinematics-based cooperative manipulation. The existing kinematics-based
strategies for the cooperative manipulation rely on motion planning, including leader–
follower [12,13], cooperative-task space (CTS) [14–19], task-oriented [20,21], and intelligent
approaches [11,22,23].

The leader–follower approach defines the leader arm and the follower arm for the
robot system, and the follower carries out motion planning according to the movement of
the leader [12,13]. In the CTS approach, robot arms without a leader-follower relationship
are shared equally to achieve symmetrical cooperative manipulation tasks by defining
the relative and absolute motions. The extended CTS approach was further proposed
to accomplish asymmetric behavior and uncoordinated tasks [18,19]. The task-equation-
based approach uses the general formula of the defined cooperative task to transform the
coordinate system kinematics among arms to plan the motion of single arm [20,21]. The
intelligent approach considers the collaborative task of arms as the constrained quadratic
programming problems and utilizes the advanced neural network as the solver of the
problems to control the arms motion [11,22]. The intelligent approaches could simplify the
solving process of inverse kinematics for dual arms, but the adjustment of the EE attitudes
is neglected in cooperative tasks. In Ref. [23], the dual-arm path-planning problem was
transformed into a multi-objective optimization problem, and a co-evolutionary method
with shared workspace was proposed to serve as a solver. A motion planner based on
the kinematic model of a dual-arm robot system in [24] was designed to ensure grasping
stability and dexterity. The movement under the relative motion frame of EEs was studied
in [25] for the problem of two-hand assembly. An asymmetric task-planning method
based on the Lyapunov theory was proposed in [26] to solve the problems of designing
the control law of absolute motion tasks and updating the distribution of relative tasks
among arms. Fractional-order derivative and the uncertain fractional-order differential
equations were utilized to predict and correct motion trends, and the rationality of the
method is verified by different cases [27]. A state feedback robust controller based on
local information was designed to ensure that the states of multiple robots converge to a
common motion state [28]. An extended Kalman filter collaborative algorithm based on the
error compensation was proposed to reduce the state estimation error of delayed filtering
in multi robot systems [29].

The key focus of the kinematics-based strategies planning is ensuring the motion
synchronization in collaborative tasks. The motion of one arm is always taken as a reference
to plan the motion of other arms in the existing literature. Moreover, the application of
the existing approaches is more suitable for the multi-arms robot than those coupled with
the common and fixed base. Even if there is an application in the robot with a dynamic
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coupling base, the dynamic coupling base is set to be stationary to ensure the cooperation
between arms [24], and this is caused by the uncoordinated movement between the EEs of
redundant arms. Few studies have been devoted to the kinematics-based planning of the
redundant multi-arms with a dynamic coupling base to ensure the cooperation between
the arms.

Therefore, on this basis of the previous studies [24,30,31], this paper proposed a novel
kinematics-based synchronous planning for collaborative manipulation of the redundant
multi-arms with dynamic coupling, which involves the inverse kinematics based on the sub-
base method and the self-organizing competitive neural network. The following aspects
differ from those in the existing literature.

A class of cooperative manipulation tasks of multi-arm robot described by generalized
coordinate transformation matrix are summarized, such as carrying, manipulating the
rudder, using a wrench, manipulating pliers, multi-station manipulation, and other similar
cooperative manipulation. The configuration branch division of the multi-arm robot based
on the sub-base method is proposed to identify each branch of the robot, and the inverse
kinematics is calculated based on the damped least square method. Then, the multi-
arms robot system can synchronously converge along the reducing direction of the total
error. The self-organizing competitive neural network is proposed to promote motion
synchronization between multiple arms, and it regards the cooperative movement between
arms as the competitive relationship of neurons instead of relying on a defined arm motion
as a reference in existing research. The inner star learning rule is used to change the neuron
weight, and all neuron weight values are updated to adjust the motion of multi-arms in
every instance of competitive learning. Thus, the multi-arm robot motion planning method
is formed and realizes the synchronization of the arms’ motion state. The stability of the
motion-planning algorithm is analyzed by using the Lyapunov theory and the inner star
learning rule principle. The feasibility of the proposed method, the synchronization of
motion state, and its applicability are demonstrated by dual-arm and three-arm robots with
a dynamic base in different symmetric and asymmetric cooperative manipulations.

The remainder of this paper is organized as follows. Section 2 presents a type of
cooperative manipulation, the sub-base description, and the Jacobian matrix definition
for the multi-arms with physical coupling. Section 3 discusses the real-time kinematically
synchronous planning method of collaborative manipulation based on the self-organizing
competitive neural network and the stability. Sections 4 and 5 provide the simulation and
experimental results in different cases, respectively. Section 6 presents the conclusion.

2. Cooperative Manipulation of Multi-Arms
2.1. A Type of Kinematically Cooperative Manipulation

In Figure 1, a type of cooperative manipulation for multi-arms is considered for this
paper, such as carrying, manipulating rudder, using pliers and multi-station manipulation,
etc. Figure 2 presents the common features for the kinematically cooperative manipulations
that can be concluded as follows:
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(1) The coordinate system {Ti} in or out of the specified object is referenced for the
object pose, ti, of each arm EE in real time. The object pose, ti, is defined as follows:

Qi = QTi
− Ti

ti
RDi

Rti

(
^
fti , ψti

)
= O0

Ti
RTi

ti
R

ti =

(
Qi,

^
fti ·ψti

)T
, (1)

where Qi is the desired position vector of the i-th EE in coordinate system {O0}. QTi
is the

vector from the coordinate system {O0} to the i-th coordinate system {Ti}. Di is the position
vector in coordinate system {O0} for ti.

Ti
ti

R denotes the rotation matrix from the coordinate

system for ti to {Ti}.
O0
Ti

R refers to the rotation matrix from {Ti} to {O0}. Rti

(
^
fti , ψti

)
defines

the rotational operator about the axis direction
^
fti by ψti radians. ti∈ Rb×1. b = 3 for planar

robot. b = 6 for spatial robot. i = 1, 2, . . . , N. N is the number of arms (or EEs).
(2) When the arms perform collaborative operations, the arms form a closed loop, and

there is a certain motion constraint relationship between the EEs. Thus, the motion states of
EEs from “1, 2, . . . , i” to “1’, 2’, . . . , i’” are kinematically consistent and synchronous. The
descriptions for movement states are mutual during the execution of these tasks, like the
motion error and the motion rate for each EE. Such common motion states of cooperative
manipulations are expressed as the following problem in Equation (2), and Equation (2)
is used as the judgment criteria for coordinated synchronous motion and is proved in
Section 3.2.  lim

t→∞
ei = ti − si = 0 (a)

lim
t→∞

(
‖vi −

.
ti‖
)
= 0 (b)

, (2)

where ei denotes the pose error of the i-th EE, vi defines the i-th EE velocity, si is the pose of
the i-th EE, and t is the time. Equation (2a) refers to the pose errors of EEs along the direction
of error convergence, which not only can make the multi-arms reach the execution position
of the manipulated object at the same time but also can ensure the minimization of the
movement error between the arms in the process of cooperative manipulation. Equation (2b)
guarantees that the movement speeds of the EEs are synchronous and that the manipulation
speed of the EE is equal/close to the set or constraint value in the manipulation. Finally,
the synchronization of arms during cooperative manipulation can be achieved.
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The i-th EE pose, velocity, and object pose are si, vi and ti, respectively. si, vi, ti ∈ Rb×1.
The i-th EE pose error and velocity can be calculated as follows:

ei(T) = ti(T)− si(T) , (3)

vi(T) =
.
si =

si(T)− si(T− ∆T)
∆T

, (4)

where T signifies the current time, (T− ∆T) is the last sampling time, ∆T denotes the
sampling period, s = (s1, s2, . . . , sk)T, and t = (t1, t2, . . . , tk)T.

2.2. Multi-Arms Robot with Physical Coupling

This paper considers the general configuration of the multi-arm robot with physical
coupling to achieve the cooperative manipulation, as shown in Figure 3. Suppose that
there are r joints of the multi-arms and each value of θj is the joint angle. The completely
joint configuration of the multi-arms is defined as Θ = (θ1, . . . , θr)T, Θ ∈ Rr×1. The pose
mapping of the multi-arm robot from joint space to Cartesian space can be expressed
as follows:

s = f (Θ), (5)

and si = fi(Θ) for the EE.
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The corresponding inverse mapping is as follows:

Θ = f−1(s). (6)

where f is a highly nonlinear operator and difficult to solve. The iterative method via
Jacobian matrix is used to approach the good solution of the mapping problem.

The traditional Jacobian matrix, J, is the partial derivative matrix of the whole chain
system relative to the EE s. The Jacobian matrix is obtained via linear approximations of
inverse kinematic problems. They linearly simulate the motion of the EE with respect to
the instantaneous system changes of the link translation and joint angle. The traditional
Jacobian matrix, J, is a function of the joint angle, Θ, defined as follows:

J(Θ)ij =

(
∂si
∂θj

)
ij

, (7)

where I = 1, . . . , N. j = 1, . . . , r. J(Θ)ij ∈ Rb×1.
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2.3. Definition of Sub-Bases

The traditional Jacobian matrix can ensure that each EE converges along its own error
reduction direction. Unlike the traditional Jacobian matrix, J, the sub-bases are defined
to make the EEs converge along the reducing direction of the system’s total error and
guarantee that the EEs converge at the same time.

This paper defines that the nodes with multiple branches as the sub-bases for the
multi-arms configuration, as shown in Figure 3. The Jacobian matrix is modified as follows:

J(Θ) = diag
(
J1,1, Jn,1, . . . , Jn,k, J1, . . . , JN

)
. (8)

For the 1-th sub-base pose, P1,1, the corresponding element of the Jacobian matrix is
as follows:

J1,1(Θ)j =
N

∑
i=1

(
∂si
∂θj

)
j

, (9)

where J1,1(Θ)j ∈ Rb×1. J1,1(Θ) ∈ Rb×M0,1 . θj belongs to the chain P0¯P1,1 with M0,1 DoFs.
For the n,k-th sub-base pose, Pn,k, the corresponding element of the Jacobian matrix is

as follows:

Jn,k(Θ)j =

[
N

∑
i=N−Nk+1

(
∂si
∂θj

+ . . . +
∂sN

∂θj

)]
j

, (10)

where Jn,k(Θ)j ∈ Rb×1. Jn,k(Θ) ∈ Rb×Mn,k . θj belongs to the chain P1,1¯Pn,k with Mn,k DoFs.
By analogy, the Jacobian matrix corresponding to other sub-bases can be obtained.

For J1, . . . , JN without common degrees of freedom, the corresponding elements can
be obtained according to (6).

N = N1 + N2 + . . . + Nk, (11)

r = M0,1 + Mn,1 + . . . + Mn,k + M1 + . . . + MN . (12)

The velocities of 1-th sub-base and n,k-th sub-base are calculated by the following:

.
P1,1 = η1·

1
N
·

N

∑
i=1

kp·
d(ti − si)

dt
, (13)

.
Pn,k = ηn,k·

1
Nk
·

N

∑
i=N−Nk+1

kp·
d(ti − si)

dt
, (14)

where η1 and ηn,k are the gain coefficient. N and Nk are fixed value and related to the
configuration of multi-arms.

The inverse kinematics is as follows:

.
Θ = J∗(Θ)

.
S = J∗(Θ)

( .
P1,1

.
Pn,1 · · ·

.
Pn,k

.
s
)T

, (15)

where J* denotes the pseudo-inverse of Jacobian matrix, J(Θ), based on the damped least
squares method, and J*= JT(JJT + λI)−1. J(Θ) ∈ Rb(k+N+1)×r. J∗ ∈ Rr×b(k+N+1). λ (λ > 0)
represents the damping factor that can handle the ill-conditioned J in the neighborhood
of singular configurations for redundant manipulators and guarantee the EEs with the
minimum possible deviation at all configurations. I is a unit matrix with the dimension
b(k + N + 1) × b(k + N + 1). In accordance with the traditional fixed proportion-based
method [31] for the real-time tracking of a given object pose,

.
t, the EE velocities are planned

as follows:
.
s =

.
t + kp·(t− s), (16)

where kp is the gain coefficient.
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2.4. Iteration for Multi-Arms Robot Motion

The iterative method is utilized to achieve the real-time movement of multi-arms via
updating the joint angles, Θ, according to (17).

Θ(T) = Θ(T− ∆T) + ∆Θ. (17)

where ∆Θ deduced from (15) becomes

∆Θ ≈ J∗(Θ)∆S = J∗(Θ)(∆P1,1 ∆Pn,1 · · · ∆Pn,k ∆s)T

= J∗(Θ)



η1· 1
N ·

N
∑

i=1
µ·(ti − si)

ηn,1· 1
N1
·

N1
∑

i=1
µ·(ti − si)

...

ηn,k· 1
Nk
·

N
∑

i=N−Nk+1
µ·(ti − si)

∆t + µ·(t− s)


,

(18)

where µ = kp·∆T, and µ < 1. Moreover, ∆t represents the changing pose of the object at a
sampling time interval, ∆T.

Then, according to the sub-base method, the movement of the multi-arm robot can
be achieved. The sub-base motion facilitates the synchronous convergence, and the syn-
chronous performance is more obvious when the common DoFs are enough. The corre-
sponding verifications are presented in Sections 4 and 5.2.

3. Kinematically Synchronous Planning
3.1. Synchronous Planning Using Self-Organizing Competitive Neural Network

The DoFs of the sub-base are not always enough to ensure the system convergence
along the reducing error direction for the pose of the EEs, thereby resulting in the asyn-
chronous EE motion. Thus, the self-organizing competitive neural network based on the
rule of inner star model is proposed to adjust the synchronism of multi-arms movement.
Equation (2) indicates that the error ei and the vi will tend to a stable value. In accordance
with the principle of the self-organizing competitive neural network, the kinematically
synchronous planning for the multi-arm robot is designed as shown in Figure 4.

The learning rule of the inner star model defines the weight updating as follows:

∆wi = η(Pi − wi)Yi, (19)

where η denotes the learning rate; Pi is the i-th input element of the neuron and the
minimum pose velocity error norm, min(‖vi(T)−

.
ti‖); wi is the weight value; i = 1, 2, . . . ,

N; N is the number of arms (or EE); and Yi is the value of output neuron and is defined as

Yi =

{
1, if P′i Pi > ε
0, Otherwise

, (20)

where
ε =

PP
N

. (21)

The input element, Pi, and the weight value, wi, are defined as

Pi = ‖
~
v‖ = min

(
‖v1(T)−

.
t1‖, ‖v2(T)−

.
t2‖, . . . , ‖vN(T)−

.
tN‖
)

, (22)

wi = ‖vi(T)−
.
ti‖. (23)
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The input vector P is constituted by Pi and defined as

P = (P1, P2, . . . , PN)
T, P ∈ RN×1. (24)
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Uout = s = (s1, s2, . . . , sN)T.

Since the minimum of ‖~
v‖ is used as an input and each EE may become the one with

the minimum of ‖~
v‖, the proposed method makes the planner no longer use a manipulator

as a reference as in the existing literature. In each period, the new input vectors, P’, in
neural networks are defined as

P’ =
(

P′1, P′2, . . . , P′N
)T. (25)

where
P′i = ‖vi(T)−

.
ti‖. (26)

In order to make the system quickly reach the state of synchronization, the winning
weight value will get more rewards in a cycle. The new weight value, ∆ŵi, is designed as

∆ŵi = ∆wi·tanh

(
ci‖vi(T)−

.
ti‖

∑N
i=1 ‖vi(T)−

.
ti‖+ σi

)
, (27)

where σi is a small positive real number; and ci denotes a positive real number to adjust the
updating slope of neuron weight and contributes to the synchronization of the EE motion.
The response time of converges is shorter when the parameter ci becomes larger.
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The i-th EE’s planned related velocity is deduced according to the iterative method
as follows:

^
vi(T) = µ·(ti − si)·

[
1− ∆ŵi

‖vi(T)−
.
ti‖+ δi

]
. (28)

Then, the planned velocity for EEs is

¯
vi(T) =

^
vi(T) + ∆ti. (29)

Thus, (18) becomes

∆Θ ≈ J∗(Θ)∆S = J∗(Θ)



η1· 1
N ·

N
∑

i=1

^
vi(T)

ηn,1· 1
N1
·

N1
∑

i=1

^
vi(T)

...

ηn,k· 1
Nk
·

N
∑

i=N−Nk+1

^
vi(T)

¯
v(T)


, (30)

where
¯
v(T) =

[
¯
v1(T),

¯
v2(T), . . . ,

¯
vN(T)

]T
. The learning rate η, η1 and ηn,k are related to

the step size for each iteration. The response time of converges is shorter when the learning
rate becomes larger.

3.2. Stability Analysis

Supposing that the learning rate, i.e., η, η1, ηn,1, . . . , ηn,k, is small, based on the rule of
inner star model, the weight value with the minimum EE pose error, emin, is never updated,
and the minimum pose error changes in a cycle is ∆emin(T). Thus, for the EE with the
minimum pose error, the Lyapunov function is defined as follows:

V(T) =
1
2

e2
min(T), (31)

V(T + ∆T) =
1
2

e2
min(T + ∆T), (32)

The change of the pose error is

emin(T + ∆T) = emin(T)− ∆emin(T), (33)

For the EE with the minimum pose error, emin(T), the planned iterative step based on
the fixed proportion method [31] is µemin(T) in each control cycle, as shown in Figure 5.
However, the actual motion of EE will have a small deviation, ϕ, as follows:

∆emin(T) = µemin(T) +ϕ, (34)

where 0 < µ < 1.
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Figure 5. Motion planning and EE motion for the EE with the minimum pose error, emin(T).
^
vi(T) = µemin(T).

Due to the high-precision motion of the advanced manipulator and the small learning
rate in the proposed method, the deviation, ϕ, is usually in a very small range. The norm
of the deviation ‖ϕ‖ is less than ‖µemin(T)‖ to ensure that the EE can move along the
planned path, i.e., ‖ϕ‖ < ‖µemin(T)‖. Therefore,

∆V(T) = 1
2 e2

min(T + ∆T)− 1
2 e2

min(T)
= 1

2

{
[emin(T)− µemin(T)−ϕ]2 − e2

min(T)
}

= 1
2

{
[(1− µ)emin(T)−ϕ]2 − e2

min(T)
}

≤ 1
2

{
[(1− µ)emin(T) + ‖ϕ‖]2 − e2

min(T)
}

< 1
2

{
[(1− µ)emin(T) + µemin(T)]

2 − e2
min(T)

}
= 1

2

{
[(1− µ)emin(T) + µemin(T)]

2 − emin(T)
2
}

= 0

(35)

Thus,
lim

T→∞
emin(T) = 0, (36)

and the minimum pose error, emin, is convergent.
Based on Equations (3) and (4), the derivation of

.
emin(T) is

.
emin(T) =

.
tmin(T)− vmin(T) =

.
tmin(T)−

.
smin(T)

= tmin(T)−tmin(T−∆T)
∆T − smin(T)−smin(T−∆T)

∆T
= tmin(T)−smin(T)

∆T − tmin(T−∆T)−smin(T−∆T)
∆T

= 1
∆T [emin(T)− emin(T− ∆T)]

= 1
∆T [emin(T− ∆T)]

= 1
∆T [µemin(T− ∆T) +ϕ]

Since ‖ϕ‖ < ‖µemin(T)‖ and lim
T→∞

emin(T) = 0,

lim
T→∞

.
emin(T) = 0, (37)

According to the rule of inner star model, the input and the weight ultimately become
equal, as follows:

Pi = wi. (38)
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This is
‖~

v‖ = ‖ .
emin(T)‖ = ‖vi(T)−

.
ti‖ = 0, (39)

∆ŵi = ∆wi = 0. (40)

Then,
lim

T→∞
‖ei(T)‖ = lim

T→∞
‖emin(T)‖ = 0. (41)

lim
T→∞
‖ .

ei(T)‖ = lim
T→∞
‖ .

emin(T)‖ = 0. (42)

Therefore, the proposed planning method based on the self-organizing competitive
neural network is convergent, and Equation (2) is proved to be valid to achieve motion
synchronization.

4. Simulation

The three-arm robot with 15-DoFs is utilized to provide the contrast simulations for
inverse kinematics by using inverse kinematics based on the sub-bases and the traditional
method [31], as shown in Figure 6. The common DoFs are 3 that are enough for all EEs to
make the pose error converge along the decreasing direction of the total error simultane-
ously. The synchronization performances of EE movements are compared by tracking the
static-designated location on the specified-carried object. The robot configuration parame-
ters, initial parameters, and kinematics parameters are presented in Tables 1–3. The poses
of the static object are t1 = (2.49 m, 2.79 m, 1.536 rad)T, t2 = (5.0 m, −0.70 m, 1.536 rad)T,
and t3 = (4.49 m, 1.50 m, 1.536 rad)T. Moreover, t = (t1, t2, t3)T, and

.
t = 0. The simulation

results are presented in Figures 7 and 8.
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Figure 6. The configuration of three-arm robot with 15-DoFs.

Table 1. Parameters of three-arm robot.

li 1 2 3 4 5
Length (m) 1.18 0.88 0.88 0.88 0.88

li 6 7 8 9 10
Length (m) 0.88 57.85 0.88 0.88 0.88

li 11 12 13 14 15
Length (m) 57.85 0.88 0.88 0.88 57.85
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Table 2. Initial joint parameters of three-arm robot.

θi 1 2 3 4 5
Initial angle

(◦) −5.0 5.0 5.0 30.0 20.0

θi 6 7 8 9 10
Initial angle

(◦) 20.0 20.0 −70.0 20.0 20.0

θi 11 12 13 14 15
Initial angle

(◦) 20.0 10.0 10.0 20.0 20.0

Table 3. Kinematic parameters.

Parameters µ η1,1 N b k R
Value 0.08 1/6 3 3 1 15

Parameters M0,1 M1 M2 M3 λ ∆T
Value 3 4 4 4 0.01 0.05
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5. Experimental Verification 

5.1. Experimental Setup 

The two-arm robot with 13-DoFs is used to compare the proposed synchronous plan-

ning for the collaborative manipulation, and 1-DoF is common in the base joint, as shown 

in Figure 9. The D-H parameters of the two-arm robot are presented in Table 4. In Figure 

10, the principle of the experimental setup can be briefly described as follows.  

Figure 7. Inverse kinematics based on the traditional method in real time. (a) Motion of multi-arms.
(b) Joint angles. (c) EE position velocity. (d) EE attitude velocity. (e) EE position error. (f) EE
attitude error.

Both methods can make the EEs arrive at the designated location of the specified
object, as illustrated in Figures 7a and 8a. The joint angles are shown in Figures 7b and 8b.
Due to

.
t = 0, ∆ei(T) is equal to vi(T)∆T, and the velocity curves of the EE pose are similar

with those of the EE pose error, as shown in Figures 7c–f and 8c–f. Because of the sub-
base motion, the convergence of the EE pose error is much faster than that based on the
traditional method. Furthermore, the EE pose velocities form uniform motion states before
complete convergence in Figure 8c,d. Thus, the proposed sub-base method is conducive
to the synchronization from the initial motion state to the cooperative motion state and
improves the efficiency for the carrying of the multi-arm robot.
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5. Experimental Verification 
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ning for the collaborative manipulation, and 1-DoF is common in the base joint, as shown 

in Figure 9. The D-H parameters of the two-arm robot are presented in Table 4. In Figure 
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Figure 8. Inverse kinematics based on the sub-base method in real time. (a) Motion of multi-arms.
(b) Joint angles. (c) EE position velocity. (d) EE attitude velocity. (e) EE position error. (f) EE
attitude error.

5. Experimental Verification
5.1. Experimental Setup

The two-arm robot with 13-DoFs is used to compare the proposed synchronous
planning for the collaborative manipulation, and 1-DoF is common in the base joint, as
shown in Figure 9. The D-H parameters of the two-arm robot are presented in Table 4. In
Figure 10, the principle of the experimental setup can be briefly described as follows.
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Table 4. D-H parameters of two-arm robot *.

i di
ai

(mm) αi (rad) βi i di ai
αi

(mm) βi (rad)

Left
Arm

1 0 h1 = 42 0 0

Right
Arm

1 0 h1 = 42 π 0
2 0 h2 = 84 π/2 0 2 0 h2 = 84 π/2 0
3 0 h3 = 84 −π/2 0 3 0 h3 = 84 −π/2 0
4 0 h4 = 84 π/2 0 4 0 h4 = 84 π/2 0
5 0 h5 = 78 −π/2 0 5 0 h5 = 78 −π/2 0
6 0 h7 = 71 π/2 0 6 0 h7 = 71 π/2 0
7 0 h7 = 71 0 0 7 0 h7 = 71 0 0

* The base (i.e., θ1) is the common joint of two arms.
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Figure 10. The principle of two-arm robot with 13-DoFs.

(1) The global depth camera transfers the observed frame of depth and color images to
the computer by using a universal serial bus (USB) in real time. The robot operating
system (ROS) node runs in the computer and extracts the position information of the
object from each frame image. The vision-processing procedures in the computer are
developed based on the morphology, using the Open Source Computer Vision Library
and the camera Software Development Kit.

(2) The joint feedback data, Θ, of the robot are transmitted to the TMS320F28335 con-
troller through the Controller Area Network (CAN) bus. At the same time, the
controller transfers the received joint data, Θ, to the ROS nodes through the Serial
Communication Interface (SCI) bus in real time.

(3) The ROS nodes receive the data (xobj, Θ) and execute the forward and inverse kine-
matics calculation and motion-planning algorithm. The real-time control command
data, Θd and

.
Θd, are sent to the robot joint actuator through the RS485 bus to control

the motion. The baud rate of the CAN bus, USB serial bus, SCI bus, and RS485 bus
is set to 1 MHz. The control period of the whole system containing the proposed
kinematically synchronous planning method is less than 10 ms.
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5.2. Synchronous Planning Experiments

(1) Collaboration Carrying

The collaboration carrying an object was provided to verify the feasibility of the
proposed planning method, as illustrated in Figure 11. The parameters for carrying are
shown in Tables 5 and 6, respectively. The carried object has translational and rotational
motion. The rotation center position is (−1.5 mm, −342.7 mm, −0.85 mm)T. The EEs of
left and right arms reach the initial locations, as shown in Figure 11a. The tracked initial
locations on the carried object are tinit

1 = (115.841,−342.7,−0.85, 1.2092,−1.2092,−1.2092)T,
tinit
2 = (−118.841, −342.7, −0.85, 1.2092, −1.2092, −1.2092)T. At 6.75 s, two arms begin to

carry the object, as shown in Figure 11b. The rotation angle relative to the rotation center is
0.0005 rad, and the translational motion of the rotation center is 0.15 mm in a cycle period,
∆T. During the collaboration process, the position of the tracked locations on the carried
object moves back and forth in a 5 s cycle, and the tracked pose trajectory in the initial
2.25 s (from 6.75 s to 9 s) is as follows:

t1 = tinit
1 −


117.341·[sin(0.0005(T− 6.75) + 0.0005∆T)− sin(0.0005(T− 6.75))] + 0.15(T− 6.75)

117.341·[cos(0.0005(T− 6.75) + 0.0005∆T)− cos(0.0005(T− 6.75))]
−0.15(T− 6.75)

^
f1·ψ1

 (43)

t2 = tinit
2 +


117.341·[sin(0.0005(T− 6.75) + 0.0005∆T)− sin(0.0005(T− 6.75))] + 0.15(T− 6.75)

117.341·[cos(0.0005(T− 6.75) + 0.0005∆T)− cos(0.0005(T− 6.75))]
0.15(T− 6.75)

^
f2·ψ2

 (44)

where
^
f1, ϕ1,

^
f2, and ϕ2 can be obtained according to the following equations:

R1

(
^
f1, ϕ1

)
= R2

(
^
f2, ϕ2

)
=

cos
(
−π

2 − 0.0005(T − 6.75)
)
− sin

(
−π

2 − 0.0005(T − 6.75)
)

0
sin
(
−π

2 − 0.0005(T − 6.75)
)

cos
(
−π

2 − 0.0005(T − 6.75)
)

0
0 0 1

1 0 0
0 0 1
0 −1 0

 (45)
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Figure 11. Carrying task. (a) Initial configuration. (b) Manipulating process.
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Table 5. Kinematic parameters of two-arm robot.

Parameters µ η1,1 N b k r

Value 0.005 5 2 2 1 13

Parameters M0,1 M1 M2 λ ∆T —

Value 1 6 6 0.01 0.05 —

Table 6. The parameters of self-organizing competitive neural network.

Parameters δi σi ci η

Value 1 × 10−5 1 × 10−5 2.0 0.03

All the parameters in Tables 5 and 6, the rotation center position, tinit
1 , and tinit

1 , were
used in Figure 4. The inverse kinematics is based on Equation (30) to obtain the joint
angle, Θ. The change of the new weight value, ∆ŵi, of the self-organizing competitive
neural network is obtained according to Equation (27). The learning rate, i.e., η, η1, ηn,1,
. . . , ηn,k, is used to calculate the carrying step size of EE motion in Cartesian space. With
the continuous learning and competition of the proposed planning method, the position
velocities of EEs gradually form a consistent movement. Figure 12a,b show the motion
paths of EEs and joint trajectories, respectively. Figure 12c,d show the periodic change of
pose in Cartesian space where the Y-axis position, the Z-axis position, and the attitude of
the EEs remain the same. The position velocity and the attitude velocity reach synchronous
motion states when the position velocity error and the attitude velocity error decrease to 0,
as illustrated in Figure 12e–h.
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Figure 12. Trajectories for dual arms in carrying task. (a) EE movement. (b) Joint trajectory. (c) EE
position. (d) EE attitude. (e) Position velocity. (f) Attitude velocity. (g) Pose velocity error. (h) EE
pose error.

(2) Manipulating the pliers

Figure 13 shows that the two arms manipulated a pair of pliers. The parameters are
illustrated in Tables 5 and 6. The rotation center position is (−50.0 mm, −347.55 mm,
and 0.85 mm)T. The length of the pliers’ handle is 135 mm. The tracked initial locations
on the carried object for the EEs of left and right arms are tinit

1 = (86.841, −212.7, 0.85,
1.2092, −1.2092, −1.2092)T and tinit

2 = (−186.841, −212.7, 0.85, 1.2092, −1.2092, −1.2092)T.
At 6.25 s, two arms begin to manipulate the pliers, as shown in Figure 14b. During the
collaboration process, the position of the tracked locations on the pliers moves back and
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forth in a 3 s cycle, and the tracked pose trajectory in the initial 1.5 s (from 6.25 s to 7.75 s) is
as follows:

t1 = tinit
1 +


135·[sin(0.0005(T− 6.25) + 0.0005∆T)− sin(0.0005(T− 6.25))]
135·[cos(0.0005(T− 6.25) + 0.0005∆T)− cos(0.0005(T− 6.25))]

0
^
f1·ψ1

 (46)

t2 = tinit
2 +


135·[sin(−0.0005(T− 6.25)− 0.0005∆T)− sin(−0.0005(T− 6.25))]

135·[cos(0.0005(T− 6.25) + 0.0005∆T)− cos(0.0005(T− 6.25))]
0

^
f2·ψ2

 (47)

where
^
f1, ψ1,

^
f2, and ψ2 can be obtained according to the following equations:

R1

(
^
f1, ϕ1

)
=

cos
(
−π

2 − 0.0005(T− 6.25)
)
− sin

(
−π

2 − 0.0005(T− 6.25)
)

0
sin
(
−π

2 − 0.0005(T− 6.25)
)

cos
(
−π

2 − 0.0005(T− 6.25)
)

0
0 0 1

1 0 0
0 0 1
0 −1 0

 (48)

R2

(
^
f2, ϕ2

)
=

cos
(
−π

2 + 0.0005(T− 6.25)
)
− sin

(
−π

2 + 0.0005(T− 6.25)
)

0
sin
(
−π

2 + 0.0005(T− 6.25)
)

cos
(
−π

2 + 0.0005(T− 6.25)
)

0
0 0 1

1 0 0
0 0 1
0 −1 0

 (49)
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0.85 mm)T. The length of the pliers’ handle is 135 mm. The tracked initial locations on the 

carried object for the EEs of left and right arms are 𝐭1
init = (86.841, −212.7, 0.85, 1.2092, 

−1.2092, −1.2092)T and 𝐭2
init  = (−186.841, −212.7, 0.85, 1.2092, −1.2092, −1.2092)T. At 6.25 s, 

two arms begin to manipulate the pliers, as shown in Figure 14b. During the collaboration 

process, the position of the tracked locations on the pliers moves back and forth in a 3 s 

cycle, and the tracked pose trajectory in the initial 1.5 s (from 6.25 s to 7.75 s) is as follows: 

𝐭1 = 𝐭1
init +

(

  
 

135 ∙ [sin(0.0005(T − 6.25) + 0.0005∆T) − sin(0.0005(T − 6.25))]

135 ∙ [cos(0.0005(T − 6.25) + 0.0005∆T) − cos(0.0005(T − 6.25))]

0

𝐟1 ∙ 𝜓1 )

  
 
  (46) 

𝐭2 = 𝐭2
init +

(

  
 

135 ∙ [sin(−0.0005(T − 6.25) − 0.0005∆T) − sin(−0.0005(T − 6.25))]

135 ∙ [cos(0.0005(T − 6.25) + 0.0005∆T) − cos(0.0005(T − 6.25))]

0

𝐟2 ∙ 𝜓2 )

  
 

 (47) 

where f̂1, ψ
1
, f̂2, and ψ

2
 can be obtained according to the following equations: 

𝐑1(f̂1,ψ1
) =

[
 
 
 
 
 cos (−

𝜋

2
− 0.0005(T − 6.25)) −sin (−

𝜋

2
− 0.0005(T − 6.25)) 0

sin (−
𝜋

2
− 0.0005(T − 6.25)) cos (−

𝜋

2
− 0.0005(T − 6.25)) 0

0 0 1]
 
 
 
 
 

[
 
 
 
 
1 0 0

0 0 1

0 −1 0]
 
 
 
 

 (48) 

𝐑2(f̂2,ψ2
) =

[
 
 
 
 
 cos (−

𝜋

2
+ 0.0005(T − 6.25)) −sin (−

𝜋

2
+ 0.0005(T − 6.25)) 0

sin (−
𝜋

2
+ 0.0005(T − 6.25)) cos (−

𝜋

2
+ 0.0005(T − 6.25)) 0

0 0 1]
 
 
 
 
 

[
 
 
 
 
1 0 0

0 0 1

0 −1 0]
 
 
 
 

   (49) 

 

  
(a) (b) 

Figure 13. Manipulating pilers. (a) Initial configuration. (b) Manipulating process. Figure 13. Manipulating pilers. (a) Initial configuration. (b) Manipulating process.

The inverse kinematics is based on Equation (30) to obtain the joint angle, Θ. The
change of the new weight value, ·ŵi, is obtained according to Equation (27) and used to
adjust the EE motions according to Equation (28). The learning rate, i.e., η, η1, ηn,1, . . . ,
ηn,k, is used to calculate the step size of manipulating the pilers in the Cartesian space. The
proposed planning method makes the position velocities of EEs gradually form a consistent
movement. Figure 14a,b show the motion paths of EEs and joint trajectories, respectively.
Figure 14c,d show the periodic change of pose in Cartesian space, where the Y-axis position,
the Z-axis position, and the attitude of the EEs remain the same. The position velocity
and the attitude velocity of the EEs are almost the same and showed a small error when
synchronous motion states were reached, as illustrated in Figure 14e–h.
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Figure 14. Trajectories for dual arms in manipulating pilers. (a) EE movement. (b) Joint trajectory. 

(c) EE position. (d) EE attitude. (e) Position velocity. (f) Attitude velocity. (g) Pose velocity error. 

(h) EE pose error. 
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𝐭2 = 𝐭2
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Figure 14. Trajectories for dual arms in manipulating pilers. (a) EE movement. (b) Joint trajectory. (c)
EE position. (d) EE attitude. (e) Position velocity. (f) Attitude velocity. (g) Pose velocity error. (h) EE
pose error.

(3) Manipulating a rudder

Manipulating a rudder is illustrated in Figure 15. The parameters are shown in Tables 5
and 6. The rotation center position is (0.0 mm, −342.7 mm, −0.85 mm)T. The diameter
of the rudder is 136.84 mm. The tracked initial locations on the carried object for the EEs
of left and right arms are tinit

1 = (136.84, −342.7, −0.85, 1.2092, −1.2092, −1.2092)T and
tinit
2 = (−136.84, −342.7, 0.85, 1.2092, −1.2092, −1.2092)T. At 6.75 s, two arms begin to

manipulate the rudder, as shown in Figure 16b. During the collaboration process, the
position of the tracked locations on the rudder moves back and forth in a 2.5 s cycle, and
the tracked pose trajectory in the initial 1.25 s (from 6.75 s to 8 s) is as follows:

t1 = tinit
1 −


136.841·[sin(0.0005(T− 6.75) + 0.0005∆T)− sin(0.0005(T− 6.75))]
136.841·[cos(0.0005(T− 6.75) + 0.0005∆T)− cos(0.0005(T− 6.75))]

0
^
f1·ψ1

 (50)

t2 = tinit
2 +


136.841·[sin(0.0005(T− 6.75) + 0.0005∆T)− sin(0.0005(T− 6.75))]
136.841·[cos(0.0005(T− 6.75) + 0.0005∆T)− cos(0.0005(T− 6.75))]

0
^
f2·ψ2

 (51)

where
^
f1, ψ1,

^
f2, and ψ2 can be obtained according to the following equations:

R1

(
^
f1, ϕ1

)
= R2

(
^
f2, ϕ2

)
=

cos
(
−π

2 − 0.0005(T− 6.75)
)
− sin

(
−π

2 − 0.0005(T− 6.75)
)

0
sin
(
−π

2 − 0.0005(T− 6.75)
)

cos
(
−π

2 − 0.0005(T− 6.75)
)

0
0 0 1

1 0 0
0 0 1
0 −1 0

 (52)
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Figure 15. Manipulating rudder. (a) Initial configuration. (b) Manipulating process.
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Figure 16. Trajectories for dual arms in manipulating rudder. (a) EE movement. (b) Joint trajec-

tory. (c) EE position. (d) EE attitude. (e) Position velocity. (f) Attitude velocity. (g) Pose 

velocity error. (h) EE pose error. 

6. Conclusions 

This paper presents a real-time kinematically synchronous planning method for col-

laborative manipulation through the self-organizing competitive neural network. This 

method considers a type of collaborative manipulation known as the synchronization of 

EE motion. The sub-bases are defined for the configuration of multi-arms to obtain the 

Jacobian matrix of common DoFs and ensure the pose errors converging along the reduc-

ing direction of the EE total pose errors. The simulations of multi-arms with common DoFs 

display the consistency before the pose errors converge completely and make contribu-

tions to the collaborative manipulation of multi-arms. On this basis, an unsupervised com-

petitive neural network is raised to regard the EE synchronous motion as the competition 

of neurons and adaptively increase the convergence ratio of multi-arms through the mu-

tual learning and competition of neurons by using the inner star rules. The stability of 

multi-arms system is analyzed through the Lyapunov theory. Various simulations and 

experiments confirm that the proposed synchronous planning method is feasible, syn-

chronous, and has the application potentiality in different cooperative manipulation tasks. 
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Figure 16. Trajectories for dual arms in manipulating rudder. (a) EE movement. (b) Joint trajectory.
(c) EE position. (d) EE attitude. (e) Position velocity. (f) Attitude velocity. (g) Pose velocity error.
(h) EE pose error.

Similar to the previous experiments, the inverse kinematics is based on Equation (30)
to obtain the joint angle, Θ. The change of the new weight value, ∆ŵi, is obtained according
to Equation (27) and used to adjust the EE motions according to Equation (28). The learning
rate, i.e., η, η1, ηn,1, . . . , ηn,k, is used to calculate the step size of manipulating the rudder
in Cartesian space. Since the shape of the rudder is symmetrical at the center, the tracked
locations are also symmetrical, and the EE attitude changes are the same. In Figure 16c,d,
the two arms begin to manipulate the rudder at 6.75 s. In Figure 16e–h, the EE pose
errors can converge to 0, and the corresponding EE motions own almost the same states
ultimately by using the proposed planning method with the learning of the self-organizing
competitive neural network.

Considering (1)–(3) in Section 5.2 comprehensively, the pose speed and pose error
converge to 0 for the successful execution of coordination manipulation and correspond
to Equation (2), and no arm motion is set as the reference for the other arms. Hence, the
proposed planning method based on the self-organizing competitive neural network owns
the feasibility, synchronism, and effectiveness in achieving the collaboration manipulations
for the arms with physical coupling and has the contributions to the practical application.
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6. Conclusions

This paper presents a real-time kinematically synchronous planning method for collab-
orative manipulation through the self-organizing competitive neural network. This method
considers a type of collaborative manipulation known as the synchronization of EE motion.
The sub-bases are defined for the configuration of multi-arms to obtain the Jacobian matrix
of common DoFs and ensure the pose errors converging along the reducing direction of
the EE total pose errors. The simulations of multi-arms with common DoFs display the
consistency before the pose errors converge completely and make contributions to the col-
laborative manipulation of multi-arms. On this basis, an unsupervised competitive neural
network is raised to regard the EE synchronous motion as the competition of neurons and
adaptively increase the convergence ratio of multi-arms through the mutual learning and
competition of neurons by using the inner star rules. The stability of multi-arms system
is analyzed through the Lyapunov theory. Various simulations and experiments confirm
that the proposed synchronous planning method is feasible, synchronous, and has the
application potentiality in different cooperative manipulation tasks.
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