Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets
<p>Preprocessing and feature-extraction pipeline: The data are cleansed, preprocessed, classified, and labeled. Features are extracted using CM estimator before training the classifiers. The data are also partitioned using 10–fold cross–validation.</p> "> Figure 2
<p>MDM classifier: (<b>a</b>) calibration of the classifier using CMs of testing data; (<b>b</b>) evaluation of the classification performance. For the schematic diagrams of the rest of the classifiers with their adaptation strategies, please refer to the <a href="#app1-sensors-23-05051" class="html-app">Supplementary Materials</a>.</p> "> Figure 3
<p>MDM classifier accuracy: The Classifier Minimum Distance to the Riemannian Mean (MDM) performed better than the other classifiers under all scenarios. The performance of the MDM classifiers are ME 29 electrodes (76.483 ± 3.174 with lower and upper bounds 75.863 and 77.104), MI 29 electrodes (72.050 ± 2.825 with lower and upper bounds 71.497 and 72.602), ME 64 electrodes (81.521 ± 2.400 with lower and upper bounds 81.052 and 81.990), and MI 64 electrodes (76.419 ± 3.355 with lower and upper bounds 75.763 and 77.074). All upper and lower bounds are at 95% Confidence Interval. The error bars represent ± one standard deviation. The differences between the performance of the classifiers are statistically significant (see the significance bars spanning over the bar chart). Since it is a 4-class classification, the chance level is 25%.</p> ">
Abstract
:1. Introduction
- We compare the performances of different RGDA implementation adaptations on BL and UL MI tasks versus BL and UL ME tasks using single-trial classification for a large dataset.
- We compare the performances of the RGDA implementation adaptations using EEG signal readings from 64 electrodes covering the scalp versus the readings from 29 electrodes covering the sensorimotor area on BL and UL MI tasks versus BL and UL ME tasks using single-trial classification for a large dataset.
2. Related Work
2.1. Preprocessing
2.2. Feature Extraction
2.3. Classification
3. Materials and Methods
3.1. Dataset, Experimental Paradigm, and EEG Signal Preprocessing
3.2. Feature Extraction
3.3. RG-Based Decoding Algorithms
3.4. Model Training and Testing
4. Results
4.1. Sensorimotor Area (29 Electrodes) vs. 64 Electrodes with Motor-Execution Tasks
4.2. Sensorimotor Area (29 Electrodes) vs. 64 Electrodes with Motor-Imagery Tasks
4.3. ME vs. MI Tasks (29 Electrodes for Sensorimotor Area)
4.4. ME vs. MI Tasks (64 Electrodes)
4.5. Comparison of Classifiers
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCI | Brain–computer Interface |
BL | Bilateral |
BPF | Band-pass filter |
CM | Covariance matrix |
CSP | Common spatial pattern |
CV | Cross validation |
DTF | Directed transfer function |
EDF+ | European Data Format ’plus’ files |
EEG | Electroencephalography or Electroencephalogram |
ERD | Event-related desynchronization |
ERS | Event-related synchronization |
FGMDM | Geodesic minimum distance to Riemannian mean |
FgMDMRS | Supervised FgMDMR |
FGMDMRU | Unsupervised FgMDMR |
ITR | Information Transfer Rate |
MDM | Minimum distance to Riemannian mean |
MDMR | Rebias MDM |
MDMRS | Supervised MDMR |
MDMRU | Unsupervised MDMR |
MDMS | Supervised MDM |
MDMU | Unsupervised MDM |
ME | Motor execution |
MI | Motor imagery |
MLP | Multi-layer perceptron |
MRC-MLP | Multiple Riemannian covariance multilayer perception |
NF | Notch filtering |
R-MDRM | Regularized minimum distance to the Riemannian mean |
RCSP | Regularized CSP |
RG | Riemannian geometry |
RGDA | Riemannian geometry decoding algorithm |
RM ANOVA | Repeated measures Analysis of Variance |
RSP | Riemannian spatial pattern |
SCM | Spatial CM |
SMR | Sensorimotor Rhythms |
SNR | Signal-to-noise ratio |
SPD | Symmetric positive definite |
SPSS | Statistical Package for Social Sciences |
SSDT | Subject-specific decision tree |
SVM | Support vector machine |
UL | Unilateral |
WFDB | WaveForm DataBase |
References
- Belkacem, A.N.; Jamil, N.; Palmer, J.A.; Ouhbi, S.; Chen, C. Brain computer interfaces for improving the quality of life of older adults and elderly patients. Front. Neurosci. 2020, 14, 692. [Google Scholar] [CrossRef]
- Jamil, N.; Belkacem, A.N.; Ouhbi, S.; Lakas, A. Noninvasive electroencephalography equipment for assistive, adaptive, and rehabilitative brain–computer interfaces: A systematic literature review. Sensors 2021, 21, 4754. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, Y.; Chen, X.; Gao, S. Interface, interaction, and intelligence in generalized brain–computer interfaces. Trends Cogn. Sci. 2021, 25, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.; Sulaiman, N.; Majeed, A.P.P.A.; Musa, R.M.; Nasir, A.F.A.; Bari, B.S.; Khatun, S. Current status, challenges, and possible solutions of EEG-based brain–computer interface: A comprehensive review. Front. Neurorobot. 2020, 14, 25. [Google Scholar] [CrossRef]
- Zhidong, G.; Hui, Z.; Nuo, G. Motor imagery EEG signal classification algorithm based on Riemannian space. In Proceedings of the 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 3–5 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 680–684. [Google Scholar]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef] [PubMed]
- Jamil, N.; Belkacem, A.N.; Ouhbi, S.; Guger, C. Cognitive and affective brain–computer interfaces for improving learning strategies and enhancing student capabilities: A systematic literature review. IEEE Access 2021, 9, 134122–134147. [Google Scholar] [CrossRef]
- Craik, A.; He, Y.; Contreras-Vidal, J.L. Deep learning for electroencephalogram (EEG) classification tasks: A review. J. Neural Eng. 2019, 16, 031001. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Hong, B.; Jia, C.; Gao, S. Brain–computer interfaces based on visual evoked potentials. IEEE Eng. Med. Biol. Mag. 2008, 27, 64–71. [Google Scholar] [CrossRef]
- Kübler, A. The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome. Neuroethics 2020, 13, 163–180. [Google Scholar] [CrossRef]
- Krol, L.R.; Pawlitzki, J.; Lotte, F.; Gramann, K.; Zander, T.O. SEREEGA: Simulating event-related EEG activity. J. Neurosci. Methods 2018, 309, 13–24. [Google Scholar] [CrossRef]
- Yger, F.; Berar, M.; Lotte, F. Riemannian approaches in brain–computer interfaces: A review. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 1753–1762. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Zhao, K.; Yang, S. Motor imagery EEG classification based on decision tree framework and Riemannian geometry. Comput. Intell. Neurosci. 2019, 2019, 5627156. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Yger, F.; Lotte, F. Towards adaptive classification using Riemannian geometry approaches in brain–computer interfaces. In Proceedings of the 2019 7th International Winter Conference on Brain–Computer Interface (BCI), Gangwon, Republic of Korea, 18–20 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.H.; Faubert, J. Deep learning-based electroencephalography analysis: A systematic review. J. Neural Eng. 2019, 16, 051001. [Google Scholar] [CrossRef]
- Wan, Z.; Yang, R.; Huang, M.; Zeng, N.; Liu, X. A review on transfer learning in EEG signal analysis. Neurocomputing 2021, 421, 1–14. [Google Scholar] [CrossRef]
- Al-Saegh, A.; Dawwd, S.A.; Abdul-Jabbar, J.M. Deep learning for motor imagery EEG-based classification: A review. Biomed. Signal Process. Control 2021, 63, 102172. [Google Scholar] [CrossRef]
- Chowdhury, A.; Gaur, P.; McCreadie, P.; Pachori, R.B.; Wang, H. Logistic regression with tangent space based cross-subject learning for enhancing motor imagery classification. IEEE Trans. Cogn. Dev. Syst. 2021, 14, 1188–1197. [Google Scholar]
- Congedo, M.; Barachant, A.; Bhatia, R. Riemannian geometry for EEG-based brain–computer interfaces; a primer and a review. Brain–Comput. Interfaces 2017, 4, 155–174. [Google Scholar] [CrossRef]
- Aggarwal, S.; Chugh, N. Signal processing techniques for motor imagery brain computer interface: A review. Array 2019, 1, 100003. [Google Scholar] [CrossRef]
- Salimpour, S.; Kalbkhani, H.; Seyyedi, S.; Solouk, V. Stockwell transform and semi-supervised feature selection from deep features for classification of BCI signals. Sci. Rep. 2022, 12, 11773. [Google Scholar] [CrossRef]
- Cheng, M.; Gao, X.; Gao, S.; Xu, D. Design and implementation of a brain–computer interface with high transfer rates. IEEE Trans. Biomed. Eng. 2002, 49, 1181–1186. [Google Scholar] [CrossRef]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Riemannian geometry applied to BCI classification. In Proceedings of the International Conference on Latent Variable Analysis and Signal Separation, St. Malo, France, 27–30 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 629–636. [Google Scholar]
- Singh, A.; Lal, S.; Guesgen, H.W. Small sample motor imagery classification using regularized Riemannian features. IEEE Access 2019, 7, 46858–46869. [Google Scholar] [CrossRef]
- Chen, C.; Chen, P.; Belkacem, A.N.; Lu, L.; Xu, R.; Tan, W.; Li, P.; Gao, Q.; Shin, D.; Wang, C.; et al. Neural activities classification of left and right finger gestures during motor execution and motor imagery. Brain–Comput. Interfaces 2021, 8, 117–127. [Google Scholar] [CrossRef]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Multiclass brain–computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 2011, 59, 920–928. [Google Scholar] [CrossRef]
- Padfield, N.; Zabalza, J.; Zhao, H.; Masero, V.; Ren, J. EEG-based brain–computer interfaces using motor-imagery: Techniques and challenges. Sensors 2019, 19, 1423. [Google Scholar] [CrossRef]
- Dong, E.; Li, C.; Li, L.; Du, S.; Belkacem, A.N.; Chen, C. Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces. Med. Biol. Eng. Comput. 2017, 55, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Larzabal, C.; Auboiroux, V.; Karakas, S.; Charvet, G.; Benabid, A.L.; Chabardes, S.; Costecalde, T.; Bonnet, S. The Riemannian spatial pattern method: Mapping and clustering movement imagery using Riemannian geometry. J. Neural Eng. 2021, 18, 056014. [Google Scholar] [CrossRef]
- Xie, X.; Yu, Z.L.; Gu, Z.; Zhang, J.; Cen, L.; Li, Y. Bilinear regularized locality preserving learning on Riemannian graph for motor imagery BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 698–708. [Google Scholar] [CrossRef]
- Chu, Y.; Zhao, X.; Zou, Y.; Xu, W.; Song, G.; Han, J.; Zhao, Y. Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression. J. Neural Eng. 2020, 17, 046029. [Google Scholar] [CrossRef]
- Yang, P.; Wang, J.; Zhao, H.; Li, R. MLP with Riemannian covariance for motor imagery based EEG analysis. IEEE Access 2020, 8, 139974–139982. [Google Scholar] [CrossRef]
- Pandey, G.; Panda, G.; Manchanda, F.; Chaudhary, P. Common spatial pattern versus Riemannian features for motor imagery EEG classification for brain–computer interface. In Proceedings of the Second International Conference on Information Management and Machine Intelligence, Jaipur, India, 8–9 May 2020; Springer: Singapore, 2021; pp. 235–243. [Google Scholar]
- Congedo, M.; Rodrigues, P.L.C.; Bouchard, F.; Barachant, A.; Jutten, C. A closed-form unsupervised geometry-aware dimensionality reduction method in the Riemannian Manifold of SPD matrices. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3198–3201. [Google Scholar]
- Rodrigues, P.L.C.; Bouchard, F.; Congedo, M.; Jutten, C. Dimensionality reduction for BCI classification using Riemannian geometry. In Proceedings of the 7th Graz Brain–Computer Interface Conference (BCI 2017), Graz, Austria, 18–22 September 2017. [Google Scholar]
- Rodrigues, P.L.C.; Jutten, C.; Congedo, M. Riemannian procrustes analysis: Transfer learning for brain–computer interfaces. IEEE Trans. Biomed. Eng. 2018, 66, 2390–2401. [Google Scholar] [CrossRef]
- Gao, C.; Liu, W.; Yang, X. Convolutional neural network and riemannian geometry hybrid approach for motor imagery classification. Neurocomputing 2022, 507, 180–190. [Google Scholar] [CrossRef]
- Nuo, G.; Kai, Z. Research of EEG Signal Analysis Method Based on Fusion of Riemannian Space and Convolutional Neural Network. In Proceedings of the 2022 7th International Conference on Signal and Image Processing (ICSIP), Suzhou, China, 20–22 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 188–194. [Google Scholar]
- Altindış, F.; Yilmaz, B. Sliding Window and Filterbank Utilization on Riemannian Geometry. In Proceedings of the 2022 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Biarritz, France, 8–12 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.G.; Filho, C.A.S.; Attux, R.; Castellano, G.; Soriano, D.C. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain–computer interfaces. Med. Biol. Eng. Comput. 2019, 57, 1709–1725. [Google Scholar] [CrossRef] [PubMed]
- Lotte, F.; Guan, C. Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms. IEEE Trans. Biomed. Eng. 2010, 58, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Belkacem, A.N.; Nishio, S.; Suzuki, T.; Ishiguro, H.; Hirata, M. Neuromagnetic decoding of simultaneous bilateral hand movements for multidimensional brain–machine interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1301–1310. [Google Scholar] [CrossRef]
- Koyama, S.; Chase, S.M.; Whitford, A.S.; Velliste, M.; Schwartz, A.B.; Kass, R.E. Comparison of brain–computer interface decoding algorithms in open-loop and closed-loop control. J. Comput. Neurosci. 2010, 29, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Mladenović, J.; Mattout, J.; Lotte, F. A generic framework for adaptive EEG-based BCI training and operation. arXiv 2017, arXiv:1707.07935. [Google Scholar]
- Shenoy, P.; Krauledat, M.; Blankertz, B.; Rao, R.P.N.; Müller, K.R. Towards adaptive classification for BCI. J. Neural Eng. 2006, 3, R13. [Google Scholar] [CrossRef]
- Ju, C.; Gao, D.; Mane, R.; Tan, B.; Liu, Y.; Guan, C. Federated transfer learning for EEG signal classification. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 3040–3045. [Google Scholar]
- Abenna, S.; Nahid, M.; Bajit, A. Motor imagery based brain–computer interface: Improving the EEG classification using Delta rhythm and LightGBM algorithm. Biomed. Signal Process. Control 2022, 71, 103102. [Google Scholar] [CrossRef]
- Nisar, H.; Boon, K.W.; Ho, Y.K.; Khang, T.S. Brain–computer Interface: Feature Extraction and Classification of Motor Imagery-Based Cognitive Tasks. In Proceedings of the 2022 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Shah Alam, Malaysia, 26–29 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 42–47. [Google Scholar]
- Hwaidi, J.F.; Chen, T.M. Classification of Motor Imagery EEG Signals Based on Deep Autoencoder and Convolutional Neural Network Approach. IEEE Access 2022, 10, 48071–48081. [Google Scholar] [CrossRef]
- Taşar, B.; Yaman, O. EEG Signals Based Motor Imagery and Movement Classification for BCI Applications. In Proceedings of the 2022 International Conference on Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand, 23–25 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1425–1429. [Google Scholar]
- Lazcano-Herrera, A.G.; Fuentes-Aguilar, R.Q.; Alfaro-Ponce, M. EEG motor/imagery signal classification comparative using machine learning algorithms. In Proceedings of the 2021 18th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 10–12 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- EEG Motor Movement/Imagery Dataset. 2009. Available online: https://physionet.org/content/eegmmidb/1.0.0/ (accessed on 1 March 2023).
- Kemp, B.; Olivan, J. European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data. Clin. Neurophysiol. 2003, 114, 1755–1761. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- WFDB Toolbox for MATLAB and Octave. 2017. Available online: https://archive.physionet.org/physiotools/matlab/wfdb-app-matlab/ (accessed on 1 March 2023).
- Silva, I.; Moody, G.B. An open-source toolbox for analysing and processing physionet databases in MATLAB and Octave. J. Open Res. Softw. 2014, 2, e27. [Google Scholar] [CrossRef] [PubMed]
- Appriou, A.; Cichocki, A.; Lotte, F. Modern machine learning algorithms to classify cognitive and affective states from electroencephalography signals. IEEE Syst. Man Cybern. Mag. 2020, 6, 29–38. [Google Scholar] [CrossRef]
29 Electrodes | 64 Electrodes | |||||||
---|---|---|---|---|---|---|---|---|
ME Tasks | MI Tasks | ME Tasks | MI Tasks | |||||
Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | |
Classifier | Accuracy | Deviation | Accuracy | Deviation | Accuracy | Deviation | Accuracy | Deviation |
MDM | 0.76483 | 0.03174 | 0.72050 | 0.02825 | 0.81521 | 0.02400 | 0.76419 | 0.03355 |
MDMS | 0.75394 | 0.03342 | 0.70496 | 0.02693 | 0.80701 | 0.02873 | 0.75070 | 0.02971 |
MDMU | 0.73970 | 0.03661 | 0.69827 | 0.02804 | 0.80334 | 0.03436 | 0.74768 | 0.03229 |
MDMR | 0.31348 | 0.04985 | 0.33085 | 0.03849 | 0.34401 | 0.04615 | 0.35750 | 0.03532 |
MDMRS | 0.30043 | 0.04841 | 0.31866 | 0.03409 | 0.33290 | 0.04340 | 0.34800 | 0.03438 |
MDMRU | 0.29633 | 0.04330 | 0.31715 | 0.03547 | 0.32902 | 0.04321 | 0.34520 | 0.03058 |
FgMDM | 0.39827 | 0.06295 | 0.39666 | 0.06615 | 0.41241 | 0.07459 | 0.41446 | 0.07614 |
FgMDMS | 0.39331 | 0.06716 | 0.38749 | 0.06767 | 0.39482 | 0.07815 | 0.40216 | 0.07624 |
FgMDMU | 0.39687 | 0.06075 | 0.39353 | 0.06523 | 0.41413 | 0.06969 | 0.41564 | 0.07025 |
FgMDMR | 0.33517 | 0.05742 | 0.34714 | 0.05630 | 0.34725 | 0.06702 | 0.36321 | 0.06413 |
FgMDMRS | 0.32643 | 0.05558 | 0.34790 | 0.05584 | 0.33204 | 0.05715 | 0.36117 | 0.06270 |
FgMDMRU | 0.32783 | 0.06074 | 0.34509 | 0.05048 | 0.33592 | 0.06444 | 0.34747 | 0.06106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuqfa, Z.; Belkacem, A.N.; Lakas, A. Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets. Sensors 2023, 23, 5051. https://doi.org/10.3390/s23115051
Shuqfa Z, Belkacem AN, Lakas A. Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets. Sensors. 2023; 23(11):5051. https://doi.org/10.3390/s23115051
Chicago/Turabian StyleShuqfa, Zaid, Abdelkader Nasreddine Belkacem, and Abderrahmane Lakas. 2023. "Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets" Sensors 23, no. 11: 5051. https://doi.org/10.3390/s23115051
APA StyleShuqfa, Z., Belkacem, A. N., & Lakas, A. (2023). Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets. Sensors, 23(11), 5051. https://doi.org/10.3390/s23115051