Pixel-Grouping G(E) Functions for Estimating Dose Rates from Unknown Source Distributions with a Position-Sensitive Detector
<p>Schematic of the real-time dose estimation using pixel-grouping G(E) functions compared with the conventional G(E) function.</p> "> Figure 2
<p>Example of a virtually divided position-sensitive detector (i.e., PSD) according to the rules; (<b>a</b>) a sphere shape of PSD; (<b>b</b>) a rectangular prism shape of PSD with the detector system.</p> "> Figure 3
<p>The cadmium zinc telluride (CZT) detector for experiment; (<b>a</b>) CZT detector module (H3D, M400) with the principle of PSD. (<b>b</b>) Experimental setup.</p> "> Figure 4
<p>Top view and slice view of 4 models for the evaluation of G(E)<sub>PG</sub> function.</p> "> Figure 5
<p>Schematic of the geometry of MCNP6 simulations.</p> "> Figure 6
<p>Comparison of the simulation results of normalized energy response to Cs137 in the AP direction using 4 G(E)<sub>PG</sub> models and 1 G(E)<sub>C</sub> model under source located at [Φ = 0, θ = 0].</p> "> Figure 7
<p>Comparison of the simulation results of normalized energy response to Cs137 in the AP direction using 4 G(E)<sub>PG</sub> models and 1 G(E)<sub>C</sub> model under source located at [Φ = 0, θ = 180].</p> "> Figure 8
<p>Comparison of the simulation results of normalized energy response to Cs137 in the AP direction using 4 G(E)<sub>PG</sub> models and 1 G(E)<sub>C</sub> model under source located at [Φ = 45, θ = 135].</p> "> Figure 9
<p>Layout of the group number for G(E)<sub>PG</sub> Model 3: Group 2 (blue), Group 4 (red), Group 6 (yellow), and Group 13 (green).</p> "> Figure 10
<p>G(E) function of G(E)<sub>PG</sub> Model 3: (<b>a</b>) G(E) function at Group 2; (<b>b</b>) G(E) function at Group 4; (<b>c</b>) G(E) function at Group 6; (<b>d</b>) G(E) function at Group 13.</p> "> Figure 11
<p>G(E)<sub>PG</sub> functions’ dose contributions for estimating doses at 662 keV: (<b>a</b>) source located at [Φ = 0, θ = 0]; (<b>b</b>) source located at [Φ = 0, θ = 90]; (<b>c</b>) source located at [Φ = 0, θ = 180].</p> "> Figure 12
<p>G(E)<sub>PG</sub> functions’ dose contributions for estimating doses at 122 keV: (<b>a</b>) source located at [Φ = 0, θ = 0]; (<b>b</b>) source located at [Φ = 0, θ = 90]; (<b>c</b>) source located at [Φ = 0, θ = 180].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pixel-Grouping G(E) Function
- Rule 1: If the proportions of the visible surfaces remain unchanged depending on the incidence direction, they should be grouped into one.
- Rule 2: Grouping should be depth-based from the surface.
- Rule 3: A geometrically symmetric structure must be divided into equal shapes.
2.2. Experimental Setup and Data Generation
3. Results and Discussion
3.1. Comparison between the G(E)PG and G(E)C Functions for Dose Estimation
3.2. Evaluation of the G(E)PG Functions’ Dose Contributions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhang, F. Event Reconstruction in 3-D Position Sensitive CdZnTe Gamma Ray Spectrometers; University of Michigan: Ann Arbor, MI, USA, 2005. [Google Scholar]
- Zaider, M. International Commission on Radiological Units and Measurements, Determination of dose equivalents resulting from external radiation sources. Radiat. Res. 1989, 120, 375. [Google Scholar] [CrossRef]
- International Commission on Radiological Units and Measurements. ICRU Report 95: Operational Quantities for External Radiation Exposure; International Commission on Radiological Units and Measurements: Stockholm, Sweden, 2020. [Google Scholar]
- Yi, C.Y.; Jun, J.S.; Chai, H.S.; Oh, J.J.; Yun, J.Y. Measurement of ambient dose equivalent using a NaI(Tl) scintillation detector. Radiat. Prot. Dosim. 1997, 74, 273–278. [Google Scholar] [CrossRef]
- Park, K.; Kim, J.; Lim, K.T.; Kim, J.; Chang, H.; Kim, H.; Sharma, M.; Cho, G. Ambient dose equivalent measurement with CsI(Tl) based electronic personal dosimeter. Nucl. Eng. Technol. 2019, 51, 1991–1997. [Google Scholar] [CrossRef]
- Huang, P. Measurement of air kerma rate and ambient dose equivalent rate using the G(E) function with hemispherical CdZnTe detector. Nucl. Sci. Tech. 2018, 29, 35. [Google Scholar] [CrossRef]
- Ji, Y.Y.; Lim, T.; Choi, H.Y.; Ch, K.H.; Kang, M.J. Development and Performance of a Multipurpose System for the Environmental Radiation Survey Based on a LaBr3(Ce) Detector. IEEE. Nucl. Sci. 2019, 66, 12. [Google Scholar] [CrossRef]
- Lobdell, J.L.; Hertel, N.E. Photon spectra and dose measurements using a tissue-equivalent plastic scintillator. Radiat. Prot. Dosim. 1997, 72, 95–103. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement, 4th ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 724–727. [Google Scholar]
- Tsuda, S.; Yoshida, T.; Tsutsumi, M.; Saito, K. Characteristics and verification of a car-borne survey system for dose rates in air: KURAMA-II. J. Environ. Radioact. 2015, 139, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Terada, H.; Sakai, E.; Katagiri, M. Environmental Gamma-Ray Exposure Rates Measured by In-Situ Ge(Li) Spectrometer. J. Nucl. Sci. Technol. 1980, 17, 281–290. [Google Scholar] [CrossRef]
- Kessler, P.; Behnke, B.; Dabrowski, R.; Dombrowski, H.; Rottger, A.; Neumaier, S. Novel spectrometers for environmental dose rate monitoring. J. Environ. Radioact. 2018, 187, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Kim, J.; Jeon, B.; Ko, K.; Ko, E.; Cho, G. Estimation of ambient dose equivalent rate with a plastic scintillation detector using the least-square and first-order methods-based G(E) function. Appl. Radiat. Isot. 2023, 194, 110707. [Google Scholar] [CrossRef]
- Tsuda, S.; Saito, K. Spectrume-dose conversion operator of NaI(Tl) and CsI(Tl) scintillation detectors for air dose rate measurement in contaminated environments. J. Environ. Radioact. 2017, 166, 419–426. [Google Scholar] [CrossRef]
- Casanovas, R.; Prieto, E.; Salvado, M. Calculation of the ambient dose equivalent H*(10) from gamma-ray spectra obtained with scintillation detectors. Appl. Radiat. Isot. 2016, 118, 154–159. [Google Scholar] [CrossRef]
- Kim, J.; Lim, K.T.; Park, K.; Kim, Y.; Cho, G. Uncertainty Estimation of the Dose Rate in Real-Time Applications Using Gaussian Process Regression. Sensors 2020, 20, 2884. [Google Scholar] [CrossRef] [PubMed]
- Moriuchi, S. A New Method of Dose Evaluation by Spectrum-Dose Conversion Operator and Determination of the Operator; JAERI: Tokai, Japan, 1990. [Google Scholar]
Parameters | The G(E)PG Functions | The G(E)C Function |
---|---|---|
# of tallies | 4840 (22 × 22 × 10) | 1 |
Source direction | Random direction | AP direction |
Energies of the gamma rays | 100–2000 keV | 100–2000 keV |
# of dataset | 2000 | 100 |
# of A(K) coefficients | 5 × 10 (Model 1) 5 × 11 (Model 2) 5 × 14 (Model 3) 5 × 22 (Model 4) | 5 |
Average MAPEs (%) | Standard Deviation of MAPE | |
---|---|---|
Conventional Model | 11.81 | 10.40 |
Model 1 | 7.05 | 11.56 |
Model 2 | 9.89 | 14.41 |
Model 3 | 6.36 | 5.85 |
Model 4 | 6.30 | 5.79 |
Cs137 | H*(10)True | H*(10)C,Simul | MAPE | H*(10)PG,Simul | MAPE | H*(10)C,Ex | MAPE | H*(10)PG,Ex | MAPE |
---|---|---|---|---|---|---|---|---|---|
[Φ = 0, θ = 0] | 43.7 | 43.1 ± 0.7 | 1.4 ± 1.6 | 47.6 ± 1.1 | 8.9 ± 2.5 | 39.1 ± 0.9 | 10.5 ± 2.1 | 48.5 ± 2.1 | 11.0 ± 4.8 |
[Φ = 0, θ = 90] | 33.8 ± 0.9 | 22.7 ± 2.1 | 36.2 ± 1.6 | 17.2 ± 3.7 | 30.2 ± 0.5 | 30.9 ± 1.1 | 33.3 ± 1.4 | 23.8 ± 3.2 | |
[Φ = 0, θ = 180] | 33.2 ± 0.6 | 24.0 ± 1.4 | 35.6 ± 1.4 | 18.5 ± 3.2 | 30.7 ± 0.4 | 29.7 ± 0.9 | 36.1 ± 1.2 | 17.4 ± 2.7 | |
[Φ = 45, θ = 45] | 47.9 ± 0.4 | 9.6 ± 0.9 | 45.4 ± 1.8 | 3.9 ± 4.1 | 42.2 ± 0.5 | 3.4 ± 1.1 | 40.2 ± 1.9 | 8.0 ± 4.3 | |
[Φ = 45, θ = 90] | 35.7 ± 0.6 | 18.3 ± 1.4 | 43.2 ± 1.2 | 1.1 ± 2.7 | 30.4 ± 0.7 | 30.4 ± 1.6 | 38.1 ± 1.6 | 12.8 ± 3.7 | |
[Φ = 45, θ = 135] | 36.0 ± 1.0 | 17.6 ± 2.3 | 43.8 ± 1.3 | 0.2 ± 3.0 | 36.9 ± 0.7 | 15.6 ± 1.6 | 42.2 ± 1.1 | 3.4 ± 2.5 | |
Average | 43.7 | 38.3 ± 0.7 | 15.6 ± 1.6 | 42.0 ± 1.4 | 8.3 ± 3.2 | 34.9 ± 0.6 | 20.1 ± 1.4 | 39.7 ± 1.6 | 12.7 ± 3.5 |
Eu152 | H*(10)True | H*(10)C,Simul | MAPE | H*(10)PG,Simul | MAPE | H*(10)C,Ex | MAPE | H*(10)PG,Ex | MAPE |
---|---|---|---|---|---|---|---|---|---|
[Φ = 0, θ = 0] | 80.5 | 80.6 ± 1.9 | 0.1 ± 2.4 | 89.1 ± 3.1 | 10.7 ± 3.9 | 86.9 ± 3.9 | 8.0 ± 4.8 | 91.8 ± 4.5 | 14.0 ± 5.6 |
[Φ = 0, θ = 90] | 64.6 ± 3.1 | 19.8 ± 3.9 | 68.4 ± 3.0 | 15.0 ± 3.7 | 55.4 ± 0.6 | 31.2 ± 0.7 | 72.1 ± 2.6 | 10.4 ± 3.2 | |
[Φ = 0, θ = 180] | 63.5 ± 1.5 | 21.1 ± 1.9 | 72.7 ± 2.1 | 9.7 ± 2.6 | 54.5 ± 1.1 | 32.3 ± 1.4 | 85.7 ± 2.4 | 6.5 ± 2.9 | |
[Φ = 45, θ = 45] | 89.5 ± 1.0 | 11.2 ± 1.2 | 81.6 ± 2.7 | 1.4 ± 3.4 | 90.4 ± 1.8 | 12.3 ± 2.2 | 72.7 ± 2.2 | 9.7 ± 2.8 | |
[Φ = 45, θ = 90] | 67.9 ± 1.7 | 15.7 ± 2.1 | 78.0 ± 3.5 | 3.1 ± 4.3 | 54.1 ± 1.6 | 32.8 ± 2.0 | 76.5 ± 4.1 | 5.0 ± 5.0 | |
[Φ = 45, θ = 135] | 66.8 ± 2.4 | 17.0 ± 3.0 | 84.8 ± 3.3 | 5.3 ± 4.1 | 66.1 ± 2.0 | 17.9 ± 2.5 | 89.7 ± 3.0 | 11.4 ± 3.7 | |
Average | 80.5 | 72.2 ± 1.9 | 14.1 ± 2.4 | 79.1 ± 3.0 | 7.5 ± 3.7 | 67.9 ± 1.8 | 22.4 ± 2.3 | 81.4 ± 3.1 | 9.5 ± 3.9 |
Co60 | H*(10)True | H*(10)C,Simul | MAPE | H*(10)PG,Simul | MAPE | H*(10)C,Ex | MAPE | H*(10)PG,Ex | MAPE |
---|---|---|---|---|---|---|---|---|---|
[Φ = 0, θ = 0] | 139.2 | 137.8 ± 2.7 | 1.0 ± 1.9 | 149.9 ± 6.4 | 7.7 ± 4.6 | 131.7 ± 2.3 | 5.4 ± 1.6 | 155.5 ± 7.9 | 11.7 ± 5.7 |
[Φ = 0, θ = 90] | 118.5 ± 1.3 | 14.9 ± 0.9 | 129.3 ± 3.8 | 7.1 ± 2.7 | 113.7 ± 1.6 | 18.3 ± 1.1 | 123.1 ± 3.7 | 11.6 ± 2.6 | |
[Φ = 0, θ = 180] | 113.9 ± 2.9 | 18.2 ± 2.1 | 123.0 ± 4.8 | 11.6 ± 3.4 | 112.6 ± 3.7 | 19.1 ± 2.7 | 141.6 ± 4.0 | 1.7 ± 2.9 | |
[Φ = 45, θ = 45] | 151.7 ± 2.1 | 9.0 ± 1.5 | 140.2 ± 3.2 | 0.7 ± 2.3 | 144.4 ± 1.9 | 3.7 ± 1.4 | 157.3 ± 4.0 | 13.0 ± 2.9 | |
[Φ = 45, θ = 90] | 122.0 ± 3.8 | 12.4 ± 2.7 | 145.9 ± 5.1 | 4.8 ± 3.7 | 114.5 ± 4.0 | 17.7 ± 2.9 | 122.6 ± 5.1 | 11.9 ± 3.7 | |
[Φ = 45, θ = 135] | 119.1 ± 3.8 | 14.4 ± 2.7 | 148.8 ± 4.7 | 6.9 ± 3.4 | 118.1 ± 3.5 | 15.2 ± 2.5 | 135.2 ± 4.9 | 2.9 ± 3.5 | |
Average | 139.2 | 127.2 ± 2.8 | 11.6 ± 2.0 | 139.5 ± 4.7 | 6.5 ± 3.4 | 122.5 ± 2.8 | 13.2 ± 2.0 | 139.2 ± 4.9 | 8.8 ± 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kim, J.; Hwang, J.; Ko, K.; Cho, G. Pixel-Grouping G(E) Functions for Estimating Dose Rates from Unknown Source Distributions with a Position-Sensitive Detector. Sensors 2023, 23, 4591. https://doi.org/10.3390/s23104591
Kim H, Kim J, Hwang J, Ko K, Cho G. Pixel-Grouping G(E) Functions for Estimating Dose Rates from Unknown Source Distributions with a Position-Sensitive Detector. Sensors. 2023; 23(10):4591. https://doi.org/10.3390/s23104591
Chicago/Turabian StyleKim, Hojik, Junhyeok Kim, Jisung Hwang, Kilyoung Ko, and Gyuseong Cho. 2023. "Pixel-Grouping G(E) Functions for Estimating Dose Rates from Unknown Source Distributions with a Position-Sensitive Detector" Sensors 23, no. 10: 4591. https://doi.org/10.3390/s23104591
APA StyleKim, H., Kim, J., Hwang, J., Ko, K., & Cho, G. (2023). Pixel-Grouping G(E) Functions for Estimating Dose Rates from Unknown Source Distributions with a Position-Sensitive Detector. Sensors, 23(10), 4591. https://doi.org/10.3390/s23104591