A Large-Scale Sensor Layout Optimization Algorithm for Improving the Accuracy of Inverse Finite Element Method
<p>Schematic diagram of Timoshenko beam.</p> "> Figure 2
<p>Normalized coordinate establishment.</p> "> Figure 3
<p><math display="inline"><semantics> <mrow> <mi>G</mi> <mi>b</mi> <mi>e</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math> selection and particle update strategies (<math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>j</mi> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>).</p> "> Figure 4
<p>Schematic diagram of the parameters of the CRD calculation method (<math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>).</p> "> Figure 5
<p>Algorithm Flowchart.</p> "> Figure 6
<p>Antenna Truss Model.</p> "> Figure 7
<p>Truss Meshing and Coordinate System.</p> "> Figure 8
<p>Forces and constraints of truss structures.</p> "> Figure 9
<p>Check point distribution.</p> "> Figure 10
<p>(<b>a</b>) PF of 10° working condition; (<b>b</b>) PF of 45° working condition; (<b>c</b>) PF of 80° working condition.</p> ">
Abstract
:1. Introduction
2. Optimization Model Based on iFEM for Beam Structures
2.1. Inverse Finite Element Method
2.2. Metrics to Evaluate Refactoring Effects
3. Improved Adaptive Large-Scale Cooperative Coevolutionary Algorithm
3.1. Introduction of MOPSO
3.2. Strategies Used by the Proposed Improved MOPSO
3.2.1. Initialization Strategy
3.2.2. Adaptive Region Partitioning Strategy
3.2.3. Selection of and Particle Update Strategies
3.3. Grouping Method Based on CRD Calculation and DD
3.3.1. Calculation Method of CRD
3.3.2. Grouping Strategy Based on DD
Algorithm 1: Framework based on CRD and DD grouping |
Input: X: particles after initialization; fx 1 and fx 2: objective function values RMSE and RBI; N: number of particles; D: number of decision variables; xlimit: particle position boundary; submin: minimum number of groups. 1. Set the reference point and obtain the reference vector . 2. Calculate the angle between each particle and each reference vector. 3. Select the two particles with the smallest angle as 4. Add perturbation in each dimension, fit the generated sampling solution to a straight line, and calculate the angle and projection ( and ) between the straight line and the reference vector. 5. Calculate CRDs according to Formula (21). 6. Grouping decision variables based on DD. Output: Group_num: number of groups; Subgroup: decision variables within subgroups. |
3.4. Algorithm Framework
Algorithm 2: Framework of IALSCC |
Input: : number of initial particles; : number of initial particle iterations; iter: the maximum number of iterations; D: number of decision variables; xlimit: particle position boundary; vlimit: particle velocity boundary; loop: co-evolution times;
: inertia weight;
and : self-awareness coefficient and group cognitive coefficient; ; number of divisions; : minimum number of groups. Termination condition: the maximum number of iterations is reached or region particle completeness is satisfied. Step 1: Initialization 1. Using and , perform two single-objective optimizations on the two objective functions. 2. Grouping decision variables using CRD and DD. 3. Using the initial region division strategy, filter out the non-dominated solutions and save them in the external file and then obtain the number of regions () that satisfy the particle existence condition. Step 2: Iteration For to loop do For to Group_num do
END Output: external archive. |
4. Algorithm Evaluation
4.1. Algorithm Effect Verification
4.2. Numerical Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassan, S.; Ka-Veng, Y. Structural health monitoring by a novel probabilistic machine learning method based on extreme value theory and mixture quantile modeling. Mech. Syst. Signal Process. 2022, 173, 109049. [Google Scholar]
- Xiao, F.; Sun, H.; Mao, Y.; Chen, G.S. Damage identification of large-scale space truss structures based on stiffness separation method. Structures 2023, 53, 109–118. [Google Scholar] [CrossRef]
- Xiao, F.; Zhu, W.W.; Meng, X.W.; Chen, G.S. Parameter Identification of Frame Structures by considering Shear Deformation. Int. J. Distrib. Sens. Netw. 2023, 6631716. [Google Scholar] [CrossRef]
- Xiao, F.; Zhu, W.W.; Meng, X.W.; Chen, G.S. Parameter identification of structures with different connections using static responses. Appl. Sci. 2022, 12, 5896. [Google Scholar] [CrossRef]
- Gherlone, M.; Cerracchio, P.; Mattone, M.; Disciuva, M.; Tessler, A. Shape sensing of 3D frame structures using an inverse Finite Element Method. Int. J. Solids Struct. 2012, 49, 3100–3112. [Google Scholar] [CrossRef]
- Zhao, Y.; Bao, H.; Duan, X.C.; Fang, H.M. Research of Situ Strain of Measuring Flexible Truss Deformation Based on Fuzzy Network Method. In Proceedings of the 2016 International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2016), Guilin, China, 24–25 September 2016. [Google Scholar]
- Ma, T.S.; Kuang, P.; Tian, W.H. An improved recurrent neural network for 3D object reconstruction. Appl. Intell. 2020, 50, 905–923. [Google Scholar] [CrossRef]
- Kim, H.I.; Kang, L.H.; Han, J.H. Shape estimation with distributed fiber Bragg grating sensors for rotating structures. Smart Mater. Struct. 2011, 20, 035011. [Google Scholar] [CrossRef]
- Rapp, S.; Kang, L.H.; Han, J.H. Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors. Smart Mater. Struct. 2009, 18, 025006. [Google Scholar] [CrossRef]
- Jineesh, T.; Gurusamy, S.; Rajanna, T.R.; Sundarrajan, A. Structural Shape Estimation by Mode Shapes Using Fiber Bragg Grating Sensors: A Genetic Algorithm Approach. IEEE Sens. J. 2020, 20, 2945–2952. [Google Scholar]
- Zhu, M.; Michael, T. Comparison of Shape Reconstruction Strategies in a Complex Flexible Structure; University of California: San Diego, CA, USA, 2008; p. 6932. [Google Scholar]
- Tessler, A.; Spangler, J.L. Inverse FEM for Full-Field Reconstruction of Elastic Deformations in Shear Deformable Plates and Shells; DEStech Publications, Inc.: Lancaster, PA, USA, 2004. [Google Scholar]
- Tessler, A.; Spangler, J.L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells. Comput. Methods Appl. Mech. Eng. 2005, 194, 327–339. [Google Scholar] [CrossRef]
- Gherlone, M.; Cerracchio, P.; Mattone, M. An inverse finite element method for beam shape sensing: Theoretical framework and experimental validation. Smart Mater. Struct. 2014, 23, 045027. [Google Scholar] [CrossRef]
- Cerracchio, P.; Gherlone, M.; Tessler, A. Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads. Meccanica 2015, 50, 2487–2496. [Google Scholar] [CrossRef]
- Niu, S.T.; Zhao, Y.; Bao, H. Shape sensing of plate structures through coupling inverse finite element method and scaled boundary element analysis. Measurement 2022, 190, 110676. [Google Scholar] [CrossRef]
- Chen, K.Y.; He, D.H.; Zhao, Y. A unified full-field deformation measurement method for beam-like structure. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Xiao, F.; Hulsey, J.L.; Chen, G.S.; Xiang, Y. Optimal static strain sensor placement for truss bridges. Int. J. Distrib. Sens. Netw. 2017, 13, 155014771770792. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, J.L.; Bao, H.; Xu, Q. Optimal Sensor Placement for Inverse Finite Element Reconstruction of Three-Dimensional Frame Deformation. Int. J. Aerosp. Eng. 2018, 2018, 6121293. [Google Scholar] [CrossRef]
- Zhao, F.F.; Bao, H.; Xue, S.; Xu, Q. Multi-Objective Particle Swarm Optimization of Sensor Distribution Scheme with Consideration of the Accuracy and the Robustness for Deformation Reconstruction. Sensors 2019, 19, 1306. [Google Scholar] [CrossRef]
- Li, X.H.; Niu, S.T.; Bao, H.; Hu, N.G. Improved Adaptive Multi-Objective Particle Swarm Optimization of Sensor Layout for Shape Sensing with Inverse Finite Element Method. Sensors 2022, 22, 5203. [Google Scholar] [CrossRef]
- Potter, M.A.; De Jong, K.A. A cooperative coevolutionary approach to function optimization. In International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 1994; pp. 249–257. [Google Scholar]
- Omidvar, M.N.; Li, X.; Yang, Z. Cooperative co-evolution for large scale optimization through more frequent random grouping. In IEEE Congress on Evolutionary Computation; IEEE: New York, NY, USA, 2010; pp. 1–8. [Google Scholar]
- Van, A.S.; Wang, X.S.; Zamar, R.H. Linear grouping using orthogonal regression. Comput. Stat. Data Anal. 2006, 50, 1287–1312. [Google Scholar]
- Omidvar, M.N.; Li, X.; Yao, X. Cooperative co-evolution with delta grouping for large scale non-separable function optimization. In IEEE Congress on Evolutionary Computation; IEEE: New York, NY, USA, 2010; pp. 1–8. [Google Scholar]
- Zhang, X.Y.; Gong, Y.J.; Lin, Y. Dynamic cooperative coevolution for large scale optimization. IEEE Trans. Evol. Comput. 2019, 23, 935–948. [Google Scholar] [CrossRef]
- Li, M.; Wei, J. A cooperative co-evolutionary algorithm for large-scale multi-objective optimization problems. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Kyoto, Japan, 15–19 July 2018; pp. 1716–1721. [Google Scholar]
- Ma, L.; Huang, M.; Yang, S. An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 2021, 52, 6684–6696. [Google Scholar] [CrossRef] [PubMed]
- Gordis, J.H.; Shin, J.C.; Bouwense, M.D. Minimum condition number by orthogonal projection row selection of artificial boundary conditions for finite element model update and damage detection. J. Sound Vib. 2018, 433, 179–197. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Coello, C.A.C.; Lechuga, M.S. MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA, 12–17 May 2022; pp. 1051–1056. [Google Scholar]
- Feng, Q.; Li, Q.; Chen, P. Multiobjective particle swarm optimization algorithm based on adaptive angle division. IEEE Access 2019, 7, 87916–87930. [Google Scholar] [CrossRef]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8, 173–195. [Google Scholar] [CrossRef] [PubMed]
- Sierra, M.R.; Coello, C.C. A new multi-objective particle swarm optimizer with improved selection and diversity mechanisms. Technical Report of CINVESTAV-IPN. 23 November 2004. [Google Scholar]
Test Function | Grouping Method | Random Grouping | Linear Grouping | CRD and DD | CRD and DD |
---|---|---|---|---|---|
Optimizer | Improved MOPSO | Improved MOPSO | Improved MOPSO | AADMOPSO | |
ZDT1 | Mean | 2.668 × 10−1 | 8.803 × 10−2 | 8.628 × 10−2 | 2.32 |
Std | 2.376 × 10−1 | 8.394 × 10−2 | 4.967 × 10−2 | 6.377 × 10−2 | |
ZDT2 | Mean | 1.282 | 6.916 × 10−1 | 4.603 × 10−1 | 3.726 |
Std | 8.706 × 10−1 | 4.881 × 10−1 | 1.828 × 10−1 | 1.839 × 10−1 | |
ZDT3 | Mean | 1.887 × 10−1 | 6.280 × 10−1 | 1.085 × 10−1 | 3.096 |
Std | 7.045 × 10−1 | 1.106 × 10−1 | 2.311 × 10−2 | 1.189 × 10−1 | |
ZDT6 | Mean | 8.818 × 10−1 | 8.793 × 10−1 | 8.789 × 10−1 | 8.798 × 10−1 |
Std | 1.723 × 10−3 | 1.487 × 10−3 | 1.579 × 10−3 | 5.541 × 10−4 |
IALSCC | Threshold | 20 | 50 | 100 | 200 |
---|---|---|---|---|---|
ZDT1 | IGD | 2.191 × 10−1 | 1.274 × 10−1 | 8.628 × 10−2 | 6.617 × 10−2 |
Running time(s) | 78.154 | 82.934 | 93.264 | 137.079 | |
ZDT2 | IGD | 1.102 | 7.317 × 10−1 | 4.603 × 10−1 | 3.217 × 10−1 |
Running time(s) | 67.120 | 73.372 | 82.853 | 130.267 | |
ZDT3 | IGD | 2.387 × 10−1 | 2.199 × 10−1 | 1.085 × 10−1 | 9.681 × 10−2 |
Running time(s) | 71.291 | 75.679 | 83.676 | 124.128 | |
ZDT6 | IGD | 8.834 × 10−1 | 8.812 × 10−1 | 8.789 × 10−1 | 8.770 × 10−1 |
Running time(s) | 80.588 | 86.400 | 91.917 | 133.022 |
Optimization Algorithm | Test Function | ZDT1 | ZDT2 | ZDT3 | ZDT6 |
---|---|---|---|---|---|
IALSCC | IGD | 8.628 × 10−2 | 4.603 × 10−1 | 1.085 × 10−1 | 8.789 × 10−1 |
Running time(s) | 93.264 | 82.853 | 83.676 | 91.917 | |
Improved MOPSO | IGD | 8.648 × 10−2 | 3.059 × 10−1 | 9.167 × 10−2 | 7.977 × 10−1 |
Running time(s) | 170.376 | 160.654 | 150.267 | 169.386 |
Load | 10° | 45° | 80° |
---|---|---|---|
Gravity component in X direction | −1700.898 | −6926.89 | −9649.91 |
Gravity component in Z direction | −9651.267 | −6932.41 | −1708.58 |
Concentration force in X direction | −4512.6 | −18,377.5 | −25,601.8 |
Concentration force in Z direction | −25,605.4 | −18,392.1 | −4532.98 |
Condition | Direction | Max_disp | C1 | C2 |
---|---|---|---|---|
10° | X | 4.9752 | 1.9373 | 2.2805 |
Z | −55.6114 | 7.0224 | 8.3916 | |
45° | X | −7.2117 | 1.2756 | 1.8588 |
Z | −30.2659 | 4.3316 | 4.8450 | |
80° | X | −10.0236 | 3.0336 | 3.6807 |
Z | −11.4974 | 3.1346 | 3.6880 |
Condition | Scheme | X | Z |
---|---|---|---|
10° | C1 | 2.7534 | 9.7508 |
C2 | 2.6112 | 9.0987 | |
45° | C1 | 2.3212 | 5.6491 |
C2 | 2.4418 | 5.4987 | |
80° | C1 | 4.1647 | 4.2683 |
C2 | 4.3429 | 4.2425 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Chen, K.; Liu, Y.; Bao, H. A Large-Scale Sensor Layout Optimization Algorithm for Improving the Accuracy of Inverse Finite Element Method. Sensors 2023, 23, 8176. https://doi.org/10.3390/s23198176
Zhao Z, Chen K, Liu Y, Bao H. A Large-Scale Sensor Layout Optimization Algorithm for Improving the Accuracy of Inverse Finite Element Method. Sensors. 2023; 23(19):8176. https://doi.org/10.3390/s23198176
Chicago/Turabian StyleZhao, Zhenyi, Kangyu Chen, Yimin Liu, and Hong Bao. 2023. "A Large-Scale Sensor Layout Optimization Algorithm for Improving the Accuracy of Inverse Finite Element Method" Sensors 23, no. 19: 8176. https://doi.org/10.3390/s23198176
APA StyleZhao, Z., Chen, K., Liu, Y., & Bao, H. (2023). A Large-Scale Sensor Layout Optimization Algorithm for Improving the Accuracy of Inverse Finite Element Method. Sensors, 23(19), 8176. https://doi.org/10.3390/s23198176