Monitoring Distribution of the Therapeutic Agent Dimethyl Sulfoxide via Solvatochromic Shift of Albumin-Bound Indocyanine Green
<p>(<b>a</b>) A schematic diagram of the wavelength-swept laser and our HER-NIRF system. SOA: semiconductor optical amplifier, P: polarization controller, CR: circulator, CL: collimator, GS: Galvo-scanner, G: grating, M: mirror, C: coupler, IS: isolator, F1: exciter bandpass filter, D: diffuser, F2: emitter bandpass filter, CCD: charge-coupled camera. (<b>b</b>) Measured output spectra of our wavelength-swept laser at different wavelengths indicated with different colors. (<b>c</b>) A graph of the optical density of F1 and F2 over the wavelength range of interest.</p> "> Figure 2
<p>(<b>a</b>) The absorption spectra of ICG in different environments. The absorption peaks of BSA-ICG, ICG in DMSO, and ICG in water are 805 nm, 795 nm, and 780 nm, respectively. (<b>b</b>) A graph that shows the absorption peak shift of a 6 M BSA-ICG solution when added to different fractions of DMSO and water solutions. The BSA-ICG bond gradually breaks until the volume fraction of 0.4, and after that point, all of ICG becomes free of the BSA-ICG bond.</p> "> Figure 3
<p>(<b>a</b>) The natural logarithmic ratio of the extinction coefficients of DMSO-ICG and BSA-ICG. A blue solid line shows a linear fit to the natural logarithmic ratio obtained with a wavelength-swept laser between 785 nm and 810 nm (red-boxed area). (<b>b</b>) A graph shows the slope change of a 6 μM BSA-ICG solution when different amounts of DMSO are added to change the volume fraction. (<b>c</b>) The slope values of our linear model for different volume fractions of DSMO. (<b>d</b>) The change in the slope values with respect to the ICG absorption peak is nearly perfectly linear.</p> "> Figure 4
<p>(<b>a</b>) The fluorescence image stack consists of 50 images obtained at different excitation wavelengths indicated by the arrow. Red-dashed circles indicate the reference BSA-ICG on the surface and the BSA-ICG embedded in the phantom. The blue-dashed circle shows the DMSO-ICG region of interest. (<b>b</b>) The ratiometric measurements of BSA-ICG in free space and phantom with respect to the reference BSA-ICG. (<b>c</b>) The ratiometric measurements of DMSO-ICG in free space and phantom with respect to the reference BSA-ICG.</p> "> Figure 5
<p>(<b>a</b>) A color-coded slope map shows the excitation blue-shift of the DMSO-ICG tube while the embedded BSA-ICG sample demonstrated a red-shift of the excitation spectrum by multiple scattering. Low-signal pixels from the intercept map are excluded from the image processing. (<b>b</b>) A binary identification map exclusively displays DMSO-ICG. All the pixels with slope values that are lower than a slope threshold are removed from the original spectral map.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. HER-NIRF System
2.2. ICG Characteristics in Water, DMSO, and Bounded to Bovine Serum Albumin
3. Results
3.1. The Ratio of Extinction Coefficients of DMSO-ICG and BSA-ICG
3.2. Phantom Experiment Results
3.2.1. Free-Space Measurements Using CCD
3.2.2. Phantom Measurements Using HER-NIRF System
3.2.3. HER-NIRF Spectral Map for DSMO Sensing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karim, M.; Boikess, R.S.; Schwartz, R.A.; Cohen, P.J. Dimethyl sulfoxide (DMSO): A solvent that may solve selected cutaneous clinical challenges. Arch. Dermatol. Res. 2023, 315, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- Swanson, B.N. Medical use of dimethyl sulfoxide (DMSO). Rev. Clin. Basic Pharmacol. 1985, 5, 1–33. [Google Scholar]
- Paul, M.M. Interval therapy with dimethyl sulfoxide. Ann. N. Y. Acad. Sci. 1967, 141, 586–598. [Google Scholar] [CrossRef]
- Kulali, A.; Akar, M.; Baykut, L. Dimethyl sulfoxide in the management of patient with brain swelling and increased intracranial pressure after severe closed head injury. Neurochirurgia 1990, 33, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, E.E.; Herschler, R.J.; Jacob, S.W. Dimethyl Sulfoxide in Musculoskeletal Disorders. JAMA 1965, 192, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Peeker, R.; Haghsheno, M.A.; Holmäng, S.; Fall, M. Intravesical bacillus Calmette-Guerin and dimethyl sulfoxide for treatment of classic and nonulcer interstitial cystitis: A prospective, randomized double-blind study. J. Urol. 2000, 164, 1912–1915; discussion 1915–1916. [Google Scholar] [CrossRef] [PubMed]
- Amemori, S.; Iwakiri, R.; Endo, H.; Ootani, A.; Ogata, S.; Noda, T.; Tsunada, S.; Sakata, H.; Matsunaga, H.; Mizuguchi, M.; et al. Oral dimethyl sulfoxide for systemic amyloid A amyloidosis complication in chronic inflammatory disease: A retrospective patient chart review. J. Gastroenterol. 2006, 41, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Marren, K. Dimethyl sulfoxide: An effective penetration enhancer for topical administration of NSAIDs. Physician Sportsmed. 2011, 39, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Otterbach, A.; Lamprecht, A. Enhanced Skin Permeation of Estradiol by Dimethyl Sulfoxide Containing Transdermal Patches. Pharmaceutics 2021, 13, 320. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, J.; Deng, S. Applications of Supercritical Anti-Solvent Process in Preparation of Solid Multicomponent Systems. Pharmaceutics 2021, 13, 475. [Google Scholar] [CrossRef] [PubMed]
- Pauli, G.; Tang, W.-L.; Li, S.-D. Development and Characterization of the Solvent-Assisted Active Loading Technology (SALT) for Liposomal Loading of Poorly Water-Soluble Compounds. Pharmaceutics 2019, 11, 465. [Google Scholar] [CrossRef] [PubMed]
- Dludla, P.V.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Nyambuya, T.M.; Silvestri, S.; Orlando, P.; Mxinwa, V.; Louw, J.; Tiano, L. Chapter 25—The impact of dimethyl sulfoxide on oxidative stress and cytotoxicity in various experimental models. In Toxicology; Vinood, B.P.A.V.R.P., Ed.; Academic Press: New York, NY, USA, 2021; pp. 243–261. [Google Scholar]
- Morris, C.; De Wreede, L.; Scholten, M.; Brand, R.; Van Biezen, A.; Sureda, A.; Dickmeiss, E.; Trneny, M.; Apperley, J.; Chiusolo, P.; et al. Should the standard dimethyl sulfoxide concentration be reduced? Results of a European Group for Blood and Marrow Transplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide. Transfusion 2014, 54, 2514–2522. [Google Scholar] [CrossRef] [PubMed]
- Madsen, B.K.; Hilscher, M.; Zetner, D.; Rosenberg, J. Adverse reactions of dimethyl sulfoxide in humans: A systematic review. F1000Research 2018, 7, 1746. [Google Scholar] [CrossRef]
- Marini, A.; Muñoz-Losa, A.; Biancardi, A.; Mennucci, B. What is solvatochromism? J. Phys. Chem. B 2010, 114, 17128–17135. [Google Scholar] [CrossRef]
- Truksa, J.; Kratochvíl, M.; Richtár, J.; Ivanová, L.; Weiter, M.; Krajčovič, J.; Lukeš, V. Spectroscopic behavior differences between lumazine and alloxazine in the DMSO-water mixture. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 302, 122998. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.H.; Schulz, S.A.; Povoski, S.P. The application of indocyanine green (ICG) and near-infrared (NIR) fluorescence imaging for assessment of the lymphatic system in reconstructive lymphaticovenular anastomosis surgery. Expert Rev. Med. Devices 2021, 18, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, B.; Verbeek, F.P.R.; Rietbergen, D.D.D.; Hiel, B.; Vorst, J.R.; Liefers, G.J.; Frangioni, J.V.; Velde, C.J.H.; Leeuwen, F.W.B.; Vahrmeijer, A.L. Clinical trial of combined radio- and fluorescence-guided sentinel lymph node biopsy in breast cancer. Br. J. Surg. 2013, 100, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- van der Vorst, J.R.; Hutteman, M.; Mieog, J.S.D.; de Rooij, K.E.; Kaijzel, E.L.; Löwik, C.W.; Putter, H.; Kuppen, P.J.; Frangioni, J.V.; van de Velde, C.J.; et al. Near-infrared fluorescence imaging of liver metastases in rats using indocyanine green. J. Surg. Res. 2012, 174, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, B.E.; van der Vorst, J.R.; Gaarenstroom, K.N.; Peters, A.A.; Verbeek, F.P.; de Kroon, C.D.; Trimbos, J.B.; van Poelgeest, M.I.; Frangioni, J.V.; van de Velde, C.J.; et al. Randomized comparison of near-infrared fluorescence lymphatic tracers for sentinel lymph node mapping of cervical cancer. Gynecol. Oncol. 2012, 127, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Intes, X.; Nioka, S.; Chance, B. Simulation of delivery of ICG injected intravenously into human subject for breast cancer detection. SPIE 2003, 4929, 322–329. [Google Scholar]
- Gurfinkel, M.; Thompson, A.B.; Ralston, W.; Troy, T.L.; Moore, A.L.; Moore, T.A.; Gust, J.D.; Tatman, D.; Reynolds, J.S.; Muggenburg, B.; et al. Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study. Photochem. Photobiol. 2000, 72, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Yoneya, S.; Saito, T.; Komatsu, Y.; Koyama, I.; Takahashi, K.; Duvoll-Young, J. Binding properties of indocyanine green in human blood. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1286–1290. [Google Scholar]
- Berezin, M.Y.; Lee, H.; Akers, W.; Achilefu, S. Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems. Biophys. J. 2007, 93, 2892–2899. [Google Scholar] [CrossRef] [PubMed]
- Nouizi, F.; Cho, J.; Algarawi, M.; Kim, C.-S.; Gulsen, G. Application of a wavelength-swept laser for spectrally resolved wide-field near-infrared fluorescence imaging. Opt. Contin. 2022, 1, 1768. [Google Scholar] [CrossRef]
- Lim, H.; De Boer, J.F.; Park, B.H.; Lee, E.C.; Yelin, R.; Yun, S.H. Optical frequency domain imaging with a rapidly swept laser in the 815–870 nm range. Opt. Express 2006, 14, 5937–5944. [Google Scholar] [CrossRef] [PubMed]
- Malone, J.D.; El-Haddad, M.T.; Bozic, I.; Tye, L.A.; Majeau, L.; Godbout, N.; Rollins, A.M.; Boudoux, C.; Joos, K.M.; Patel, S.N.; et al. Simultaneous multimodal ophthalmic imaging using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography. Biomed. Opt. Express 2017, 8, 193–206. [Google Scholar] [CrossRef]
- Cho, J.; Gulsen, G.; Kim, C.-S. 800-nm-centered swept laser for spectroscopic optical coherence tomography. Laser Phys. 2014, 24, 45605. [Google Scholar] [CrossRef]
- Mustari, A.; Nishidate, I.; Wares, M.A.; Maeda, T.; Kawauchi, S.; Sato, S.; Sato, M.; Aizu, Y. Agarose-based Tissue Mimicking Optical Phantoms for Diffuse Reflectance Spectroscopy. J. Vis. Exp. 2018, 138, e57578. [Google Scholar]
- Lualdi, M.; Colombo, A.; Farina, B.; Tomatis, S.; Marchesini, R. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine. Lasers Surg. Med. 2001, 28, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Boas, D.A.; O’leary, M.A.; Chance, B.; Yodh, A.G. Scattering and wavelength transduction of diffuse photon density waves. Phys. Rev. E 1993, 47, R2999–R3002. [Google Scholar] [CrossRef]
- Nouizi, F.; Brooks, J.; Zuro, D.M.; Hui, S.K.; Gulsen, G. Development of a theranostic preclinical fluorescence molecular tomography/cone beam CT-guided irradiator platform. Biomed. Opt. Express 2022, 13, 6100–6112. [Google Scholar] [CrossRef]
- Nouizi, F.; Kwong, T.C.; Ruiz, J.; Cho, J.; Chan, Y.-W.; Ikemura, K.; Erkol, H.; Sampathkumaran, U.; Gulsen, G. A thermo-sensitive fluorescent agent based method for excitation light leakage rejection for fluorescence molecular tomography. Phys. Med. Biol. 2019, 64, 035007. [Google Scholar] [CrossRef]
- Jang, H.; Lim, G.; Hong, K.-S.; Cho, J.; Gulsen, G.; Kim, C.-S. Effect of Shot Noise on Simultaneous Sensing in Frequency Division Multiplexed Diffuse Optical Tomographic Imaging Process. Sensors 2017, 17, 2752. [Google Scholar] [CrossRef]
- Thompson, A.B.; Sevick-Muraca, E.M. Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: Measurement precision and accuracy. J. Biomed. Opt. 2003, 8, 111–120. [Google Scholar] [CrossRef]
- Yu, S.; Yao, T.; Yuan, B. An ICCD camera-based time-domain ultrasound-switchable fluorescence imaging system. Sci. Rep. 2019, 9, 10552. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Sevick-Muraca, E.M. A review of performance of near-infrared fluorescence imaging devices used in clinical studies. Br. J. Radiol. 2015, 88, 20140547. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, J.; Nouizi, F.; Kim, C.-S.; Gulsen, G. Monitoring Distribution of the Therapeutic Agent Dimethyl Sulfoxide via Solvatochromic Shift of Albumin-Bound Indocyanine Green. Sensors 2023, 23, 7728. https://doi.org/10.3390/s23187728
Cho J, Nouizi F, Kim C-S, Gulsen G. Monitoring Distribution of the Therapeutic Agent Dimethyl Sulfoxide via Solvatochromic Shift of Albumin-Bound Indocyanine Green. Sensors. 2023; 23(18):7728. https://doi.org/10.3390/s23187728
Chicago/Turabian StyleCho, Jaedu, Farouk Nouizi, Chang-Seok Kim, and Gultekin Gulsen. 2023. "Monitoring Distribution of the Therapeutic Agent Dimethyl Sulfoxide via Solvatochromic Shift of Albumin-Bound Indocyanine Green" Sensors 23, no. 18: 7728. https://doi.org/10.3390/s23187728
APA StyleCho, J., Nouizi, F., Kim, C. -S., & Gulsen, G. (2023). Monitoring Distribution of the Therapeutic Agent Dimethyl Sulfoxide via Solvatochromic Shift of Albumin-Bound Indocyanine Green. Sensors, 23(18), 7728. https://doi.org/10.3390/s23187728