Intelligent Medical IoT-Enabled Automated Microscopic Image Diagnosis of Acute Blood Cancers
<p>Three different samples from microscopic blood data set, representing: (<b>a</b>) Acute lymphocytic leukemia; (<b>b</b>) Acute myelogenous leukemia; and (<b>c</b>) Normal blood cells.</p> "> Figure 2
<p>(<b>a</b>) Basic structures of the GAN model; and (<b>b</b>) the GAN with auxiliary classifier.</p> "> Figure 3
<p>Workflow of our developed GAN classifier for identifying acute leukemias and normal cases from microscopic blood images.</p> "> Figure 4
<p>Schematic diagram of our proposed medical IoT-based diagnosis framework for automatic identification of the blood conditions of patients using wireless microscopic imaging of samples and the developed GAN classifier.</p> "> Figure 5
<p>A confusion matrix and evaluation metrics for the microscopic blood image classification results presented in this study.</p> "> Figure 6
<p>Confusion matrices for binary classification of ALL disease versus normal cases for all tested deep network models.</p> "> Figure 7
<p>Confusion matrices for multi-class classification of ALL, AML, and normal blood cells for all tested deep network models.</p> ">
Abstract
:1. Introduction
- Showing the feasibility of applying our IoT-based diagnosis systems for cancer patients, saving leukemia test times and requiring minimal hardware resources at the clinical laboratories.
- Diagnosing acute leukemia diseases for COVID-19 patients can be done in a safe clinical environment using our proposed medical IoT framwork.
- Developing a new generative adversarial network (GAN) classifier to handle a small image data set of blood cells without using data augmentation and/or transfer learning techniques.
- Conducting comparative evaluation between our developed GAN model with other deep classification models, in order to demonstrate the superior performance of our IoT-based framework when identifying cancer blood cases.
2. Related Works
3. Methods
3.1. Microscopic Blood Data Set
3.2. Generative Adversarial Networks
3.3. Proposed Blood Diagnosis System
3.4. Performance Analysis of GAN Classifier
4. Experiments
4.1. Acute Leukemia Classification Results
4.2. Comparison with Previous Studies
5. Discussion
6. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okikiolu, J.; Dillon, R.; Raj, K. Acute leukaemia. Medicine 2021, 49, 274–281. [Google Scholar] [CrossRef]
- Hutter, J.J. Childhood leukemia. Pediatr. Rev. 2010, 31, 234–241. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar]
- Huang, F.; Guang, P.; Li, F.; Liu, X.; Zhang, W.; Huang, W. AML, ALL, and CML classification and diagnosis based on bone marrow cell morphology combined with convolutional neural network: A STARD compliant diagnosis research. Medicine 2020, 99, e23154. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Ma, S. Racial differences in four leukemia subtypes: Comprehensive descriptive epidemiology. Sci. Rep. 2018, 8, 548. [Google Scholar] [CrossRef]
- Shah, A.; Naqvi, S.S.; Naveed, K.; Salem, N.; Khan, M.A.; Alimgir, K.S. Automated Diagnosis Of Leukemia: A Comprehensive Review. IEEE Access 2021, 9, 132097–132124. [Google Scholar] [CrossRef]
- Mohammed, Z.F.; Abdulla, A.A. An efficient CAD system for ALL cell identification from microscopic blood images. Multimed. Tools Appl. 2021, 80, 6355–6368. [Google Scholar] [CrossRef]
- Abhishek, A.; Jha, R.K.; Sinha, R.; Jha, K. Automated classification of acute leukemia on a heterogeneous dataset using machine learning and deep learning techniques. Biomed. Signal Process. Control. 2022, 72, 103341. [Google Scholar] [CrossRef]
- Vogado, L.H.; Veras, R.D.M.; Andrade, A.R.; de Araujo, F.H.; Silva, R.R.; Aires, K.R. Diagnosing leukemia in blood smear images using an ensemble of classifiers and pre-trained convolutional neural networks. In Proceedings of the 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Niteroi, Brazil, 17–20 October 2017; pp. 367–373. [Google Scholar]
- Atitallah, S.B.; Driss, M.; Boulila, W.; Ghézala, H.B. Leveraging Deep Learning and IoT big data analytics to support the smart cities development: Review and future directions. Comput. Sci. Rev. 2020, 38, 100303. [Google Scholar] [CrossRef]
- Magaia, N.; Fonseca, R.; Muhammad, K.; Segundo, A.H.F.N.; Neto, A.V.L.; de Albuquerque, V.H.C. Industrial Internet-of-Things Security Enhanced With Deep Learning Approaches for Smart Cities. IEEE Internet Things J. 2020, 8, 6393–6405. [Google Scholar] [CrossRef]
- Rahman, M.A.; Asyhari, A.T.; Kurniawan, I.F.; Ali, M.J.; Rahman, M.M.; Karim, M. A scalable hybrid MAC strategy for traffic-differentiated IoT-enabled intra-vehicular networks. Comput. Commun. 2020, 157, 320–328. [Google Scholar] [CrossRef]
- Ali, W.; Din, I.U.; Almogren, A.; Guizani, M.; Zuair, M. A lightweight privacy-aware iot-based metering scheme for smart industrial ecosystems. IEEE Trans. Ind. Inform. 2021, 17, 6134–6143. [Google Scholar] [CrossRef]
- Haseeb, K.; Ud Din, I.; Almogren, A.; Islam, N. An energy efficient and secure IoT-based WSN framework: An application to smart agriculture. Sensors 2020, 20, 2081. [Google Scholar] [CrossRef] [PubMed]
- Karar, M.E.; Alsunaydi, F.; Albusaymi, S.; Alotaibi, S. A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alex. Eng. J. 2021, 60, 4423–4432. [Google Scholar] [CrossRef]
- Karar, M.E.; Abdel-Aty, A.H.; Algarni, F.; Hassan, M.F.; Abdou, M.A.; Reyad, O. Smart IoT-based system for detecting RPW larvae in date palms using mixed depthwise convolutional networks. Alex. Eng. J. 2021, 61, 5309–5319. [Google Scholar] [CrossRef]
- Ali, Z.; Shah, M.A.; Almogren, A.; Ud Din, I.; Maple, C.; Khattak, H.A. Named data networking for efficient iot-based disaster management in a smart campus. Sustainability 2020, 12, 3088. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Alotaibi, M.A.; Alolah, A.I.; Ahmed, M.A. IoT-Based Hybrid Renewable Energy System for Smart Campus. Sustainability 2021, 13, 8555. [Google Scholar] [CrossRef]
- Khan, J.; Li, J.P.; Ahamad, B.; Parveen, S.; Haq, A.U.; Khan, G.A.; Sangaiah, A.K. SMSH: Secure surveillance mechanism on smart healthcare IoT system with probabilistic image encryption. IEEE Access 2020, 8, 15747–15767. [Google Scholar] [CrossRef]
- Banerjee, A.; Maity, S.; Mastrangelo, C.H. Nanostructures for Biosensing, with a Brief Overview on Cancer Detection, IoT, and the Role of Machine Learning in Smart Biosensors. Sensors 2021, 21, 1253. [Google Scholar] [CrossRef]
- Din, I.U.; Guizani, M.; Rodrigues, J.J.; Hassan, S.; Korotaev, V.V. Machine learning in the Internet of Things: Designed techniques for smart cities. Future Gener. Comput. Syst. 2019, 100, 826–843. [Google Scholar] [CrossRef]
- Wang, E.K.; Chen, C.M.; Hassan, M.M.; Almogren, A. A deep learning based medical image segmentation technique in Internet-of-Medical-Things domain. Future Gener. Comput. Syst. 2020, 108, 135–144. [Google Scholar] [CrossRef]
- Khan, S.R.; Sikandar, M.; Almogren, A.; Din, I.U.; Guerrieri, A.; Fortino, G. IoMT-based computational approach for detecting brain tumor. Future Gener. Comput. Syst. 2020, 109, 360–367. [Google Scholar] [CrossRef]
- Janjua, K.; Shah, M.A.; Almogren, A.; Khattak, H.A.; Maple, C.; Din, I.U. Proactive forensics in IoT: Privacy-aware log-preservation architecture in fog-enabled-cloud using holochain and containerization technologies. Electronics 2020, 9, 1172. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Nawaz, M.H.; Ulusar, U.D. Intelligence in the Internet of Medical Things era: A systematic review of current and future trends. Comput. Commun. 2020, 150, 644–660. [Google Scholar] [CrossRef]
- Dai, H.N.; Imran, M.; Haider, N. Blockchain-enabled internet of medical things to combat COVID-19. IEEE Internet Things Mag. 2020, 3, 52–57. [Google Scholar] [CrossRef]
- Karar, M.E.; Reyad, O.; Abd-Elnaby, M.; Abdel-Aty, A.H.; Shouman, M.A. Lightweight transfer learning models for ultrasound-guided classification of covid-19 patients. Comput. Mater. Contin. 2021, 69, 2295–2312. [Google Scholar] [CrossRef]
- Manimurugan, S.; Almutairi, S.; Aborokbah, M.M.; Narmatha, C.; Ganesan, S.; Chilamkurti, N.; Alzaheb, R.A.; Almoamari, H. Two-Stage Classification Model for the Prediction of Heart Disease Using IoMT and Artificial Intelligence. Sensors 2022, 22, 476. [Google Scholar] [CrossRef]
- Mohamed, H.; Omar, R.; Saeed, N.; Essam, A.; Ayman, N.; Mohiy, T.; AbdelRaouf, A. Automated detection of white blood cells cancer diseases. In Proceedings of the 2018 First International Workshop on Deep and Representation Learning (IWDRL), Cairo, Egypt, 29 March 2018; pp. 48–54. [Google Scholar]
- Kumar, S.; Mishra, S.; Asthana, P. Automated detection of acute leukemia using k-mean clustering algorithm. In Advances in Computer and Computational Sciences; Springer: Singapore, 2018; pp. 655–670. [Google Scholar]
- Sharma, R.; Kumar, R. A novel approach for the classification of leukemia using artificial bee colony optimization technique and back-propagation neural networks. In Proceedings of 2nd International Conference on Communication, Computing and Networking; Springer: Singapore, 2019; pp. 685–694. [Google Scholar]
- Jothi, G.; Inbarani, H.H.; Azar, A.T.; Devi, K.R. Rough set theory with Jaya optimization for acute lymphoblastic leukemia classification. Neural Comput. Appl. 2019, 31, 5175–5194. [Google Scholar] [CrossRef]
- Bibi, N.; Sikandar, M.; Ud Din, I.; Almogren, A.; Ali, S. IoMT-based automated detection and classification of leukemia using deep learning. J. Healthc. Eng. 2020, 2020, 6648574. [Google Scholar] [CrossRef]
- Ahmed, N.; Yigit, A.; Isik, Z.; Alpkocak, A. Identification of leukemia subtypes from microscopic images using convolutional neural network. Diagnostics 2019, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Labati, R.D.; Piuri, V.; Scotti, F. All-IDB: The acute lymphoblastic leukemia image database for image processing. In Proceedings of the 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 2045–2048. [Google Scholar]
- The American Society of Hematology. Available online: http://www.hematology.org (accessed on 15 December 2021).
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Wolterink, J.M.; Dinkla, A.M.; Savenije, M.H.; Seevinck, P.R.; van den Berg, C.A.; Išgum, I. Deep MR to CT synthesis using unpaired data. In Proceedings of the International Workshop on Simulation and Synthesis in Medical Imaging, Quebec City, QC, Canada, 10 September 2017; Springer: Cham, Switzerland, 2017; pp. 14–23. [Google Scholar]
- Madani, A.; Moradi, M.; Karargyris, A.; Syeda-Mahmood, T. Chest X-ray generation and data augmentation for cardiovascular abnormality classification. In Proceedings of the Medical Imaging 2018: Image Processing, Houston, TX, USA, 10–15 February 2018; Volume 10574, p. 105741M. [Google Scholar]
- Karar, M.E.; Shouman, M.A.; Chalopin, C. Adversarial neural network classifiers for COVID-19 diagnosis in ultrasound images. Comput. Mater. Contin. 2022, 70, 1683–1697. [Google Scholar] [CrossRef]
- Wolterink, J.M.; Leiner, T.; Viergever, M.A.; Išgum, I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 2017, 36, 2536–2545. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Chen, J.; Fredericksen, M.; Hughes, D.P.; Chen, D.Z. Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Quebec City, QC, Canada, 11–13 September 2017; Springer: Cham, Switzerland, 2017; pp. 408–416. [Google Scholar]
- Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 2019, 58, 101552. [Google Scholar] [CrossRef] [Green Version]
- Negi, A.; Raj, A.N.J.; Nersisson, R.; Zhuang, Z.; Murugappan, M. RDA-UNET-WGAN: An accurate breast ultrasound lesion segmentation using wasserstein generative adversarial networks. Arab. J. Sci. Eng. 2020, 45, 6399–6410. [Google Scholar] [CrossRef]
- Wang, K.; Gou, C.; Duan, Y.; Lin, Y.; Zheng, X.; Wang, F.Y. Generative adversarial networks: Introduction and outlook. IEEE/CAA J. Autom. Sin. 2017, 4, 588–598. [Google Scholar] [CrossRef]
- Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier gans. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2642–2651. [Google Scholar]
- Ali-Gombe, A.; Elyan, E.; Savoye, Y.; Jayne, C. Few-shot classifier GAN. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Gulli, A.; Kapoor, A.; Pal, S. Deep Learning with TensorFlow 2 and Keras: Regression, ConvNets, GANs, RNNs, NLP, and More with TensorFlow 2 and the Keras API; Packt Publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- Kingma, D.P.; Ba, J.J.C. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Genovese, A.; Hosseini, M.S.; Piuri, V.; Plataniotis, K.N.; Scotti, F. Acute Lymphoblastic Leukemia Detection Based on Adaptive Unsharpening and Deep Learning. In Proceedings of the ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 1205–1209. [Google Scholar]
- Agaian, S.; Madhukar, M.; Chronopoulos, A.T. Automated screening system for acute myelogenous leukemia detection in blood microscopic images. IEEE Syst. J. 2014, 8, 995–1004. [Google Scholar] [CrossRef]
- Tellez, D.; Litjens, G.; Bándi, P.; Bulten, W.; Bokhorst, J.M.; Ciompi, F.; van der Laak, J. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 2019, 58, 101544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baymurzina, D.; Golikov, E.; Burtsev, M. A Review of Neural Architecture Search. Neurocomputing 2022, 474, 82–93. [Google Scholar] [CrossRef]
Condition of Blood Cells | Data Set | Number of Images |
---|---|---|
ALL | ALL-IDB | 179 |
AML | ASH Image Bank | 77 |
Normal | ALL-IDB | 189 |
Total | 445 |
Classification Model | Class | Precision | Recall (Sensitivity) | F1-Score | Accuracy |
---|---|---|---|---|---|
VGG-16 | ALL | 0.84 | 1.00 | 0.91 | 0.9054 |
Normal | 1.00 | 0.82 | 0.90 | ||
ResNet-50 | ALL | 0.90 | 0.97 | 0.93 | 0.9324 |
Normal | 0.97 | 0.89 | 0.93 | ||
DenseNet-121 | ALL | 0.95 | 1.00 | 0.97 | 0.9730 |
Normal | 1.00 | 0.95 | 0.97 | ||
Developed GAN Classifier | ALL | 0.97 | 1.00 | 0.99 | 0.9865 |
Normal | 1.00 | 0.97 | 0.99 |
Classification Model | Class | Precision | Recall (Sensitivity) | F1-Score | Accuracy |
---|---|---|---|---|---|
VGG-16 | ALL | 0.86 | 0.83 | 0.85 | 0.8430 |
AML | 0.85 | 0.73 | 0.79 | ||
Normal | 0.83 | 0.89 | 0.86 | ||
ResNet-50 | ALL | 0.89 | 0.92 | 0.90 | 0.9101 |
AML | 1.00 | 0.80 | 0.89 | ||
Normal | 0.90 | 0.95 | 0.92 | ||
DenseNet-121 | ALL | 0.87 | 0.94 | 0.91 | 0.9213 |
AML | 1.00 | 0.87 | 0.93 | ||
Normal | 0.95 | 0.92 | 0.93 | ||
Developed GAN Classifier | ALL | 0.90 | 1.00 | 0.95 | 0.9550 |
AML | 1.00 | 0.87 | 0.93 | ||
Normal | 1.00 | 0.95 | 0.97 |
Classification Model | Tested Data Set | Classification Task | Accuracy (%) |
---|---|---|---|
CNN [34] | ALL-IDB and ASH image bank | Binary (ALL vs. normal) | 88.25 |
Multi-class (acute and chronic leukemia sub-types) | 81.74 | ||
SVM [55] | ASH image bank | Binary (AML vs. normal) | 98.00 |
VGG-16 [54] | ALL-IDB | Binary (ALL vs. normal) | 96.84 |
DenseNet-121 [4] | Private Dataset from Guangdong Second Provincial General | Multi-Class (ALL, AML, CML, and Normal) | 95.30 |
Hospital, and Zhujiang Hospital of Southern Medical University | |||
DenseNet-121 with SVM ResNet-50 with SVM [8] | Mixed data set including ALL-IDB | Binary (ALL vs. Normal) | 98.00 |
images | Multi-class (ALL, AML, and Normal) | 96.67 | |
Developed GAN Classifier | ALL-IDB and ASH image bank | Binary (ALL vs. Normal) | 98.65 |
Multi-class (ALL, AML, and Normal) | 95.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karar, M.E.; Alotaibi, B.; Alotaibi, M. Intelligent Medical IoT-Enabled Automated Microscopic Image Diagnosis of Acute Blood Cancers. Sensors 2022, 22, 2348. https://doi.org/10.3390/s22062348
Karar ME, Alotaibi B, Alotaibi M. Intelligent Medical IoT-Enabled Automated Microscopic Image Diagnosis of Acute Blood Cancers. Sensors. 2022; 22(6):2348. https://doi.org/10.3390/s22062348
Chicago/Turabian StyleKarar, Mohamed Esmail, Bandar Alotaibi, and Munif Alotaibi. 2022. "Intelligent Medical IoT-Enabled Automated Microscopic Image Diagnosis of Acute Blood Cancers" Sensors 22, no. 6: 2348. https://doi.org/10.3390/s22062348
APA StyleKarar, M. E., Alotaibi, B., & Alotaibi, M. (2022). Intelligent Medical IoT-Enabled Automated Microscopic Image Diagnosis of Acute Blood Cancers. Sensors, 22(6), 2348. https://doi.org/10.3390/s22062348