ANN-Based Discernment of Septic and Inflammatory Synovial Fluid: A Novel Method Using Viscosity Data from a QCR Sensor
<p>Experimental set-up.</p> "> Figure 2
<p>Artificial Neural Network model.</p> "> Figure 3
<p>ANN algorithm for SF classification.</p> "> Figure 4
<p>Training and test in the ANN model.</p> "> Figure 5
<p>ROC curves for parameters measured with the sensor for: SF in tubes with EDTA (<b>left</b>) and SF in tubes with lithium heparin (<b>right</b>).</p> "> Figure 6
<p>Confusion matrix for SF classification.</p> "> Figure 7
<p>Accuracy and loss curves for SF in tubes with EDTA. ANN with 2 hidden layers and 200 epochs. (<b>a</b>) Accuracy for unbalanced data. (<b>b</b>) Accuracy for balanced data. (<b>c</b>) Loss for unbalanced data. (<b>d</b>) Loss for balanced data.</p> "> Figure 8
<p>Accuracy and loss curves for SF in tubes with Lithium heparin. ANN with 2 hidden layers and 200 epochs. (<b>a</b>) Accuracy for unbalanced data. (<b>b</b>) Accuracy for balanced data. (<b>c</b>) Loss for unbalanced data. (<b>d</b>) Loss for balanced data.</p> ">
Abstract
:1. Introduction
- It is demonstrated that the ViSQCT sensor effectively measures the viscosity change in low-volume samples of SF.
- A complete methodology is proposed to differentiate between inflammatory and infectious SF.
- We show that using classification models such as ANN improves the methodology by increasing classification accuracy.
- We compare the performance of the methodology and the system when using SF samples stored in two types of tubes (tubes with EDTA and tubes with lithium heparin) and evaluate their influences on making an accurate differentiation.
2. Materials and Methods
2.1. Synovial Fluid Samples
2.2. Sensor
2.3. Experimental Set-Up
2.4. Statistical Analysis
2.5. Artificial Neural Networks
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mundt, A.L.; Shanahan, K. Graff’s Textbook of Routine Urinalysis and Body Fluids; Print book: English; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Damiano, J.; Bardin, T. Synovial fluid. EMC-Rhumatologie-Orthopedie 2004, 1, 2–16. [Google Scholar] [CrossRef]
- Brannan, S.R.; Jerrard, D.A. Synovial fluid analysis. J. Emerg. Med. 2006, 30, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Castillo, A.; Núñez, C.; Cabiedes, J. Synovial fluid analysis. Reumatología Clínica (Engl. Ed.) 2010, 6, 316–321. [Google Scholar] [CrossRef]
- Stafford, C.T.; Niedermeier, W.; Holley, H.L.; Pigman, W. Studies on the concentration and intrinsic viscosity of hyaluronic acid in synovial fluids of patients with rheumatic diseases. Ann. Rheum. Dis. 1964, 23, 152–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, C. Estudio del líquido sinovial. In Guía de Procedimientos en Reumatología; Asociación Colombiana de Reumatología: Bogotá, Colombia, 2012; pp. 41–47. [Google Scholar]
- West, S.G. Rheumatology Secrets, 3rd ed.; Elsevier: Philadeplhia, PA, USA, 2014; p. 744. [Google Scholar]
- Swan, A.; Amer, H.; Dieppe, P. The value of synovial fluid assays in the diagnosis of joint disease: A literature survey. Ann. Rheum. Dis. 2002, 61, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Sangha, O. Epidemiology of rheumatic diseases. Rheumatology 2000, 39, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Talebi-Taher, M.; Shirani, F.; Nikanjam, N.; Shekarabi, M. Septic versus inflammatory arthritis: Discriminating the ability of serum inflammatory markers. Rheumatol. Int. 2013, 33, 319–324. [Google Scholar] [CrossRef]
- Miranda-Martínez, A.; Rivera-González, M.X.; Zeinoun, M.; Carvajal-Ahumada, L.A.; Serrano-Olmedo, J.J. Viscosity measurement sensor: A prototype for a novel medical diagnostic method based on quartz crystal resonator. Sensors 2021, 21, 2743. [Google Scholar] [CrossRef]
- Ahumada, L.A.C.; González, M.X.R.; Sandoval, O.L.H.; Olmedo, J.J.S. Evaluation of hyaluronic acid dilutions at different concentrations using a quartz crystal resonator (QCR) for the potential diagnosis of arthritic diseases. Sensors 2016, 16, 1959. [Google Scholar] [CrossRef] [Green Version]
- Tan, F.; Qiu, D.Y.; Guo, L.P.; Ye, P.; Zeng, H.; Jiang, J.; Tang, Y.; Zhang, Y.C. Separate density and viscosity measurements of unknown liquid using quartz crystal microbalance. AIP Adv. 2016, 6, 095313. [Google Scholar] [CrossRef]
- Huang, X.; Bai, Q.; Hu, J.; Hou, D. A practical model of quartz crystal microbalance in actual applications. Sensors 2017, 17, 1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao-Paz, A.M.; Rodríguez-Pardo, L.; Fariña, J.; Marcos-Acevedo, J. Resolution in QCM sensors for the viscosity and density of liquids: Application to lead acid batteries. Sensors 2012, 12, 10604–10620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fort, A.; Panzardi, E.; Vignoli, V.; Tani, M.; Landi, E.; Mugnaini, M.; Vaccarella, P. An adaptive measurement system for the simultaneous evaluation of frequency shift and series resistance of QCM in liquid. Sensors 2021, 21, 678. [Google Scholar] [CrossRef] [PubMed]
- Hai, W.; Goda, T.; Takeuchi, H.; Yamaoka, S.; Horiguchi, Y.; Matsumoto, A.; Miyahara, Y. Specific Recognition of Human Influenza Virus with PEDOT Bearing Sialic Acid-Terminated Trisaccharides. ACS Appl. Mater. Interfaces 2017, 9, 14162–14170. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Callaway, Z.T.; Lu, H.; Huang, T.J.; Li, Y. A nanowell-based QCM aptasensor for rapid and sensitive detection of avian influenza virus. Sens. Actuators B Chem. 2017, 240, 934–940. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.K.; Lim, S.I.; Cho, Y.Y.; Choi, S.; Song, J.Y.; An, D.J. Detection of H3N2 canine influenza virus using a Quartz Crystal Microbalance. J. Virol. Methods 2014, 208, 16–20. [Google Scholar] [CrossRef]
- Lim, H.J.; Saha, T.; Tey, B.T.; Tan, W.S.; Ooi, C.W. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens. Bioelectron. 2020, 168, 112513. [Google Scholar] [CrossRef]
- Wangmaung, N.; Chomean, S.; Promptmas, C.; Mas-oodi, S.; Tanyong, D.; Ittarat, W. Silver quartz crystal microbalance for differential diagnosis of Plasmodium falciparum and Plasmodium vivax in single and mixed infection. Biosens. Bioelectron. 2014, 62, 295–301. [Google Scholar] [CrossRef]
- Ly, T.N.; Park, S.; Park, S.J. Detection of HIV-1 antigen by quartz crystal microbalance using gold nanoparticles. Sens. Actuators B Chem. 2016, 237, 452–458. [Google Scholar] [CrossRef]
- He, F.; Zhang, L. Rapid diagnosis of M. tuberculosis using a piezoelectric immunosensor. Anal. Sci. 2002, 18, 397–401. [Google Scholar] [CrossRef]
- He, F.; Zhang, L.; Zhao, J.; Hu, B.; Lei, J. A TSM immunosensor for detection of M. tuberculosis with a new membrane material. Sens. Actuators B Chem. 2002, 85, 284–290. [Google Scholar] [CrossRef]
- Hiatt, L.A.; Cliffel, D.E. Real-time recognition of Mycobacterium tuberculosis and lipoarabinomannan using the quartz crystal microbalance. Sens. Actuators B Chem. 2012, 174, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Moss, M.A. Effect of Resveratrol and Derivatives on Interactions between Alzheimer’s Disease Associated Aβ Protein Oligomers and Lipid Membranes: A Quartz Crystal Microbalance Analysis. Biophys. J. 2016, 110, 256a. [Google Scholar] [CrossRef]
- Hwang, S.S.; Chan, H.; Sorci, M.; Van Deventer, J.; Wittrup, D.; Belfort, G.; Walt, D. Detection of amyloid β oligomers toward early diagnosis of Alzheimer’s disease. Anal. Biochem. 2019, 566, 40–45. [Google Scholar] [CrossRef]
- Yılmaz, M.; Bakhshpour, M.; Göktürk, I.; Pişkin, A.K.; Denizli, A. Quartz Crystal Microbalance (QCM) Based Biosensor Functionalized by HER2/neu Antibody for Breast Cancer Cell Detection. Chemosensors 2021, 9, 80. [Google Scholar] [CrossRef]
- Liao, S.; Ye, P.; Chen, C.; Zhang, J.; Xu, L.; Tan, F. Comparing of Frequency Shift and Impedance Analysis Method Based on QCM Sensor for Measuring the Blood Viscosity. Sensors 2022, 22, 3804. [Google Scholar] [CrossRef]
- Miranda-Martínez, A.; Yan, H.; Silveira, V.; Serrano-Olmedo, J.J.; Crouzier, T. Portable Quartz Crystal Resonator Sensor for Characterising the Gelation Kinetics and Viscoelastic Properties of Hydrogels. Gels 2022, 8, 718. [Google Scholar] [CrossRef]
- Nayak, R.; Jain, L.C.; Ting, B.K.H. Artificial neural networks in biomedical engineering: A review. In Computational Mechanics–New Frontiers for the New Millennium; Elsevier: Amsterdam, The Netherlands, 2001; pp. 887–892. [Google Scholar]
- Haglin, J.M.; Jimenez, G.; Eltorai, A.E.M. Artificial neural networks in medicine. Health Technol. 2019, 9, 1–6. [Google Scholar] [CrossRef]
- Mohan, Y.; Chee, S.S.; Xin, D.K.P.; Foong, L.P. Artificial neural network for classification of depressive and normal in EEG. In Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 4–8 December 2016; pp. 286–290. [Google Scholar]
- Olaniyi, E.O.; Oyedotun, O.K.; Helwan, A.; Adnan, K. Neural network diagnosis of heart disease. In Proceedings of the 2015 International Conference on Advances in Biomedical Engineering (ICABME), Beirut, Lebanon, 16–18 September 2015; pp. 21–24. [Google Scholar]
- Adak, M.F.; Lieberzeit, P.; Jarujamrus, P.; Yumusak, N. Classification of alcohols obtained by QCM sensors with different characteristics using ABC based neural network. Eng. Sci. Technol. Int. J. 2020, 23, 463–469. [Google Scholar] [CrossRef]
- Mumyakmaz, B.; Özmen, A.; Ebeoğlu, M.A.; Taşaltın, C.; Gürol, İ. A study on the development of a compensation method for humidity effect in QCM sensor responses. Sens. Actuators B Chem. 2010, 147, 277–282. [Google Scholar] [CrossRef]
- Reznik, A.M.; Galinskaya, A.A.; Dekhtyarenko, O.K.; Nowicki, D.W. Preprocessing of matrix QCM sensors data for the classification by means of neural network. Sens. Actuators B Chem. 2005, 106, 158–163. [Google Scholar] [CrossRef]
- Osisanwo, F.; Akinsola, J.; Awodele, O.; Hinmikaiye, J.; Olakanmi, O.; Akinjobi, J. Supervised machine learning algorithms: Classification and comparison. Int. J. Comput. Trends Technol. (IJCTT) 2017, 48, 128–138. [Google Scholar]
- Azar, A.T.; Elshazly, H.I.; Hassanien, A.E.; Elkorany, A.M. A random forest classifier for lymph diseases. Comput. Methods Programs Biomed. 2014, 113, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Keiji Kanazawa, K.; Gordon, J.G. The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chim. Acta 1985, 175, 99–105. [Google Scholar] [CrossRef]
- Johannsmann, D. The quartz crystal microbalance in soft matter research. Soft Biol. Matter 2015, 191–204. [Google Scholar] [CrossRef]
- Lee, C.P.; Lin, C.J. A study on L2-loss (squared hinge-loss) multiclass SVM. Neural Comput. 2013, 25, 1302–1323. [Google Scholar] [CrossRef]
- Ciepliński, M.; Kasprzak, M.; Grandtke, M.; Steliga, A.; Kamiński, P.; Jerzak, L. The effect of dipotassium EDTA and lithium heparin on hematologic values of farmed brown trout Salmo trutta (L.) spawners. Aquac. Int. 2019, 27, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Baien, S.H.; Langer, M.N.; Heppelmann, M.; von Köckritz-Blickwede, M.; De Buhr, N. Comparison between K3EDTA and lithium heparin as anticoagulant to isolate bovine granulocytes from blood. Front. Immunol. 2018, 9, 1570. [Google Scholar] [CrossRef]
EDTA | Lithium Heparin | |
---|---|---|
Inflammatory | 25 | 21 |
Infectious | 8 | 7 |
Total | 33 | 28 |
Parameter | Features |
---|---|
Input Layer | Neurons: 3 (or 5) Activation function: Relu |
Hidden Layers | 1, 2 Neurons: 50 Activation function: Relu |
Output Layer | Neurons: 2 Activation function: Softmax |
Training Epochs | 100, 200, 300 |
Batch size | 16 |
Optimizer Type | Adam |
Age (yr) | 55.52 ± 27.53 | 72.75 ± 15.27 | 0.08 |
WBC (/mm) | 9060 ± 12,526 | 52,575.62 ± 75,126.19 | 0.02 |
Neutrophils (per) | 57.28 ± 36.39 | 85.50 ± 12.43 | 0.02 |
Glucose (mg/dL) | 99.23 ± 32.11 | 64.37 ± 35.97 | 0.05 |
Proteins (g/dL) | 3.87 ± 0.82 | 4.15 ± 0.49 | 0.23 |
(Hz) | −3665.36 ± 135.34 | −3675.87 ± 104.57 | 0.25 |
(Hz) | 1787.47 ± 66.97 | 1810.47 ± 53.34 | 0.04 |
(mPa· s) | 3.46 ± 0.21 | 3.43 ± 0.30 | 0.11 |
Age (yr) | 64.66 ± 18.96 | 71.85 ± 16.27 | 0.29 |
WBC (/mm) | 9032.76 ± 13,478.73 | 57,789.28 ± 79,560.83 | 0.03 |
Neutrophils (%) | 63.11 ± 36.80 | 84.00 ± 12.62 | 0.16 |
Glucose (mg/dL) | 99.23 ± 32.11 | 59.57 ± 35.98 | 0.01 |
Proteins (g/dL) | 3.87 ± 0.82 | 4.11 ± 0.52 | 0.29 |
(Hz) | −3775.40 ± 106.55 | −3812.91 ± 109.05 | 0.03 |
(Hz) | 1861.21 ± 95.89 | 1908.10 ± 72.09 | 0.01 |
(mPa· s) | 3.76 ± 0.31 | 3.67 ± 0.18 | 0.13 |
WBC (/mm) [10] | 1.00 | 1.00–1.00 | 0.00 |
PCT serum [10] | 0.82 | 0.71–0.92 | 0.05 |
PCT SF [10] | 0.65 | 0.51–0.78 | 0.06 |
WBC (/mm) | 0.78 | 0.60–0.97 | 0.09 |
Neutrophils (%) | 0.76 | 0.58–0.94 | 0.09 |
Glucose (mg/dL) | 0.26 | 0.03–0.49 | 0.12 |
Proteins (g/dL) | 0.64 | 0.44–0.85 | 0.10 |
(Hz) | 0.55 | 0.46–0.65 | 0.04 |
(Hz) | 0.60 | 0.51–0.69 | 0.04 |
(mPa· s) | 0.42 | 0.31–0.52 | 0.05 |
WBC (/mm) [10] | 1.00 | 1.00–1.00 | 0.00 |
PCT serum [10] | 0.82 | 0.71–0.92 | 0.05 |
PCT SF [10] | 0.65 | 0.51–0.78 | 0.06 |
WBC (/mm) | 0.8 | 0.61–0.99 | 0.09 |
Neutrophils (%) | 0.68 | 0.46–0.91 | 0.11 |
Glucose (mg/dL) | 0.20 | 0.00–0.43 | 0.11 |
Proteins (g/dL) | 0.62 | 0.39–0.85 | 0.11 |
(Hz) | 0.61 | 0.51–0.72 | 0.05 |
(Hz) | 0.65 | 0.55–0.74 | 0.04 |
(mPa· s) | 0.42 | 0.33–0.50 | 0.04 |
Model | EDTA | Lithium Heparin | ||
---|---|---|---|---|
Data | B. Data | Data | B. Data | |
ANN; HL: 1; Epochs: 100 | 0.85 | 0.90 | 0.98 | 0.97 |
ANN; HL: 1; Epochs: 200 | 0.88 | 0.91 | 0.98 | 0.98 |
ANN; HL: 1; Epochs: 300 | 0.90 | 0.91 | 0.99 | 0.98 |
ANN; HL: 2; Epochs: 100 | 0.87 | 0.91 | 0.97 | 0.98 |
ANN; HL: 2; Epochs: 200 | 0.88 | 0.92 | 0.98 | 0.97 |
ANN; HL: 2; Epochs: 300 | 0.91 | 0.91 | 0.98 | 0.98 |
SVM | 0.79 | 0.76 | 0.87 | 0.69 |
RF | 0.91 | 0.97 | 0.96 | 0.98 |
ANN Setting | Data | Balanced Data | |||
---|---|---|---|---|---|
EDTA | HL: 1 Epochs: 100 | 488 | 86 | 485 | 99 |
20 | 152 | 05 | 553 | ||
HL: 1 Epochs: 200 | 514 | 60 | 593 | 91 | |
29 | 143 | 09 | 549 | ||
HL: 1 Epochs: 300 | 541 | 33 | 501 | 83 | |
35 | 137 | 11 | 547 | ||
HL: 2 Epochs: 100 | 504 | 70 | 496 | 88 | |
21 | 151 | 07 | 551 | ||
HL: 2 Epochs: 200 | 511 | 63 | 516 | 68 | |
26 | 146 | 23 | 535 | ||
HL: 2 Epochs: 300 | 562 | 12 | 506 | 78 | |
53 | 119 | 19 | 539 |
ANN Setting | Data | Balanced Data | |||
---|---|---|---|---|---|
Lithium heparin | HL: 1 Epochs: 100 | 627 | 04 | 586 | 10 |
10 | 147 | 22 | 623 | ||
HL: 1 Epochs: 200 | 626 | 05 | 580 | 16 | |
07 | 150 | 08 | 637 | ||
HL: 1 Epochs: 300 | 629 | 02 | 590 | 06 | |
05 | 152 | 11 | 634 | ||
HL: 2 Epochs: 100 | 615 | 16 | 589 | 07 | |
05 | 152 | 09 | 636 | ||
HL: 2 Epochs: 200 | 626 | 05 | 590 | 06 | |
06 | 151 | 20 | 625 | ||
HL: 2 Epochs: 300 | 628 | 03 | 586 | 10 | |
06 | 151 | 05 | 640 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda-Martínez, A.; Sufrate-Vergara, B.; Fernández-Puntero, B.; Alcaide-Martin, M.J.; Buño-Soto, A.; Serrano-Olmedo, J.J. ANN-Based Discernment of Septic and Inflammatory Synovial Fluid: A Novel Method Using Viscosity Data from a QCR Sensor. Sensors 2022, 22, 9413. https://doi.org/10.3390/s22239413
Miranda-Martínez A, Sufrate-Vergara B, Fernández-Puntero B, Alcaide-Martin MJ, Buño-Soto A, Serrano-Olmedo JJ. ANN-Based Discernment of Septic and Inflammatory Synovial Fluid: A Novel Method Using Viscosity Data from a QCR Sensor. Sensors. 2022; 22(23):9413. https://doi.org/10.3390/s22239413
Chicago/Turabian StyleMiranda-Martínez, Andrés, Berta Sufrate-Vergara, Belén Fernández-Puntero, María José Alcaide-Martin, Antonio Buño-Soto, and José Javier Serrano-Olmedo. 2022. "ANN-Based Discernment of Septic and Inflammatory Synovial Fluid: A Novel Method Using Viscosity Data from a QCR Sensor" Sensors 22, no. 23: 9413. https://doi.org/10.3390/s22239413
APA StyleMiranda-Martínez, A., Sufrate-Vergara, B., Fernández-Puntero, B., Alcaide-Martin, M. J., Buño-Soto, A., & Serrano-Olmedo, J. J. (2022). ANN-Based Discernment of Septic and Inflammatory Synovial Fluid: A Novel Method Using Viscosity Data from a QCR Sensor. Sensors, 22(23), 9413. https://doi.org/10.3390/s22239413