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Abstract: Considering the influence of measurement error on target state estimation, there is an
uncertain dispersion region for target position estimate, that is, the area of uncertainty (AOU, area of
uncertainty). In underwater target tracking, the state estimation is point estimation without AOU
estimation and its accuracy is poor in the early stage because of large measurement errors. Fast
tracking with higher accuracy and AOU estimation are of great significance to time-sensitive target
tracking. To improve the state estimation accuracy in the early stage, and estimate the AOU, a method
of AOU estimation of underwater moving target is presented based on a stochastic maneuvering
motion (SMM, stochastic maneuvering motion) model. The stochastic maneuvering motion model is
established based on the Langevin equation to reflect the movement characteristics of an underwater
moving target. Then, the target state is estimated with a noise adaptive Kalman filter by constructing
the measurement equation and state equation according to measurement error characteristic and
stochastic maneuvering model. Based on the physical significance of the error covariance matrix
from the Kalman filter, the parameters of AOU are deduced. Simulation results of underwater target
tracking and AOU estimation are presented to demonstrate the relative performance of the proposed
algorithm compared with the adaptive Kalman filter. It is clearly shown from the results that SMM
tracking algorithm achieves higher accuracy of state estimation in the initial stage of tracking, and the
predicted AOU is consistent with the actual distribution of underwater moving targets while yielding
more concentrated distribution, which reveals that estimated AOU can be precisely represented by
the confidence ellipses. The presented approach and obtained results may be useful in time-sensitive
target threat analysis and weapon strike applications.

Keywords: area of uncertainty; underwater target tracking; Kalman filter; stochastic maneuvering
motion model

1. Introduction

Target tracking is a very important technology since it plays an important role in
many applications. Real-time estimation is always a crucial consideration for tracking
algorithms, especially for time sensitive target tracking. Range and bearing measurements
of sensors are widely used in target tracking. However, the state estimation results are
point estimation and yield appropriate estimators of the target position. Because of the
measurement error of the sensor, especially the large measurement error of the remote
target, the estimated state, as well as the predicted value of the target state, changes greatly;
therefore, the point estimation cannot effectively reflect the error level of the estimated
target state. Considering the influence of measurement error on the estimation error of
target state, there is an uncertain dispersion region under a confidence degree, that is, the
area of uncertainty (AOU) of the target. With the search ability improvement of intelligent
weapons, the attack mode is no longer concerned with hitting a single point, but to make
the searching area of the weapon consistent with the area of uncertainty of a moving target,
which aims to maximize the weapon’ s capture probability. Therefore, accurate estimation
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of the AOU is of great importance, as well as the target motion parameters for the precision
strike of intelligent weapons.

In recent years, researchers have suggested many efficient algorithms for target state
estimation in the field of underwater target tracking [1–9]. In the existing literature, under-
water target tracking algorithms are usually based on a Kalman filter, extended Kalman
filter (EKF), unscented Kalman filter (UKF), and particle Filter (PF). As bearing measure-
ments are nonlinear to the target state, EKF [10,11] and PF are adopted in many bearing-only
tracking cases [12–17]. However, EKF has limitations, such as track divergence and poor
estimation accuracy, particularly for high initial errors [18]. To improve the estimation
accuracy, a few deterministic sample point filters, such as the unscented Kalman filter
(UKF) [19,20], Gauss-Hermite filter (GHF) [21,22], and cubature Kalman filter (CKF) [23,24],
have been studied. In these filters, probability density functions are required and may
result in error covariance to be asymmetric and non-positive definite [25]. Because the angle
changes little during the sampling interval for the limited speed of the target compared
with the long distance between targets and receivers, underwater target maneuvering can
be described as an approximate linear model in practice [26]. Based on this concept, the
authors in [27] used KF, which is an optimal estimation algorithm with lower computation
complexity compared with EKF, UKF, and PF, to track the underwater target. In [28], an
adaptive KF was proposed by estimating the process noise variance, which effectively
improved the tracking accuracy of an underwater maneuvering target.

As most the target tracking problems have been investigated based on a target motion
model, this may lead to the divergence of the subsequent filtering process if the model
is far different from the actual situation [29]. In the marine environment, there are three
frequently used target motion models: the constant velocity (CV) model, the constant
acceleration (CA) model, and the turning model [26]. The tracking performances of EKF,
UKF, and PF for an underwater target with different motion models such as CA, CV, and
the variable speed linear model were investigated in [30], the results indicating that all
EKF, UKF, PF based methods can provide accurate tracking results for the linear model,
while PF has superior performance when systems are nonlinear and with non-Gaussian
noise. However, the measurement error is large due to the complexity of the underwater
environment, and may result in large tracking error even employing filtering techniques,
especially at the initial stage of target tracking. For a time-sensitive target, it is essential to
improve the tracking performance as quickly as possible while the existing methods do not
achieve fast tracking under the condition of a large measurement error.

For AOU estimation, the uncertainty region of the stationary and passive target has
been investigated by researchers [31–33]. Precise expressions concerning two-dimensional
confidence regions for an unknown position of object was presented in [31], and uncertainty
regions were defined as error ellipses and confidence ellipses. The subject of estimating
the position region of a passive stationary object was studied in [32,33]. On the other hand,
the AOU of an active target, especially an underwater moving target, has received less
attention. An example of such an estimation was investigated in [34], where the current
AOU of a target moving in a straight line with constant velocity was estimated based on
least square algorithm that recalculated all the measured information as the observation
was updated; the algorithm was not applicable to AOU prediction. From a literature study,
it is understood that the AOU prediction of active target motion analysis has not yet been
studied; in our research work this topic is discussed in detail.

In this paper, an algorithm of AOU estimation based on a stochastic maneuvering
motion model for an underwater target is proposed, where the accuracy of the predicted
position is improved at the initial tracking stage, and the position uncertainty area is more
concentrated. Our contributions can be summarized as follows. First, a stochastic ma-
neuvering motion model for an underwater target is established based on the Langevin
equation. Second, the underwater target state is estimated based on a stochastic maneu-
vering motion model with an adaptive noise Kalman filter. In addition, the parameters
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of the area of uncertainty are deduced based on the physical significance of the error
covariance matrix.

This article is organized as follows. In Section 2, we describe the problem of AOU
and discuss the influencing factors. Section 3 formulates and presents an underwater
target tracking algorithm based on stochastic maneuvering motion model. In Section 4, the
parameters of AOU are deduced based on the physical significance of the error covariance
matrix. Comprehensive simulation studies are presented in Section 5. The article ends in
Section 6 with concluding remarks.

2. Problem Statement

The size of AOU of the moving target is affected by two factors, the measurement error
and the state estimation error. A schematic diagram of AOU of a moving target is shown in
Figure 1. Due to the limitation of sensor performance, the measurements inevitably have
error, which leads to error in the initial position of the target. The initial AOU of the target
is the ellipse region centered on the initial detected position M0. On the other hand, it takes
a long time for a long-range attack weapon to reach the designated target, during which
the target is still moving, and the error of target state estimation leads to the significant
expansion of the predicted target position error. Thus, the predicted AOU of the target is
the ellipse region centered on the predicted position M1. Therefore, to estimate AOU of the
moving target accurately, the target state estimation should be calculated effectively as well
as the error characteristics of state estimation.
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3. State Estimation of an Underwater Moving Target

To estimate the state of an underwater moving target, a stochastic maneuvering motion
model was adopted which conforms to the motion characteristics of underwater target.
Then the target measurement equation and state equation are established in Cartesian
coordinate system. The target motion state is estimated accurately by using noise-adaptive
Kalman filter [26], and finally the AOU of underwater target is calculated according to the
predicted position and covariance.

3.1. Stochastic Maneuvering Motion Model

When the target moves underwater, it is affected by a variety of marine physical
factors. The external forces the underwater target receives are mainly divided into two
categories. One has a macroscopic and continuous effect, and can be represented as viscous
resistance in Stokes’ theorem. The other type has only microscopic effects and is changing
constantly, mathematically represented by the Wiener process. The kinematic equation of
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the underwater target was established by synthesizing the above two forces; that is the
Langevin Equation [34] as shown in Equation (2).

Let X(t) denotes the target position in Cartesian coordinate system and V(t) denotes
the target velocity. V(t) is the derivative of X(t), that is

V(t) =
dX(t)

dt
(1)

The Langevin Equation, which reflects the underwater target state is a first-order linear
stochastic differential equation as follows

dV(t) = −βV(t)dt + σdW(t) (2)

where −βV(t)dt represents the viscous resistance proportional to the target velocity, β is
damping coefficient, σdW(t) denotes the random force of a large number of molecules on
the target while W(t) is the Wiener process.

Let
η(t) = V(t)eβt

Through Itô Integration by the Parts Formula [35], the differentiation of η(t) can be
written as follows:

dη(t) = eβtdV(t) + V(t)d(eβt) + d
〈

V, eβt
〉

t
(3)

As d(eβt) = βeβtdV(t) + 0dW(t),
Thus d

〈
V, eβt〉

t = 0.
Equation (3) can be obtained from Equation (2) as the follow expression

dη(t) = eβt[−βV(t)dt + σdW(t)] + βV(t)eβtd(t) = σeβtdW(t) (4)

That is

η(t) = η(0) + σ
∫ t

0
eβsdW(s) = V(0) + σ

∫ t

0
eβsdW(s) (5)

The ergodic solution of the stochastic differential Equation is obtained. The velocity of
the target is shown in Equation (6)

V(t) = η(t)e−βt = V(0)e−βt + σe−βt
∫ t

0
eβsdW(s), ∀t ≥ 0 (6)

Equation (6) describes the law of the target motion velocity and provides a suitable
motion model for the establishment of the underwater target state equation.

3.2. Target State Equation

Let X(k) denote the target state at time step k, that is

X(k) =
[

xk
vxk

]
where xk is the position coordinates along x axis, and vxk is the velocity vector. Thus, based
on Equation (2), the state equation can be described as

.
X(k) =

[
0 1
0 −β

][
xk
vxk

]
+

[
0
σ

]
dW(k) (7)

Equation (7) can be abbreviated as follows

.
X(k) = F(k)X(k) + Gw(k) (8)
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where F(k) =
[

0 1
0 −β

]
and G =

[
0
σ

]
.

Let X(0) denote the initial state at time t0. The target state at any time tk(tk > t0) can
be obtained from Equation (6) as follows.

X(k) = X(0)Φ(tk, t0) +
∫ tk

τ=t0

Φ(tk, τ)GdW(τ) (9)

where Φ(tk, t0) is the state transition matrix from t0 to tk. Φ(tk, t0) is given by

Φ(tk, t0) = eF(tk)(tk−t0) (10)

As F(k) is time invariant, Φ(tk, t0) has nothing to do with initial time t0. The state
equation in the form of a differential equation can be obtained from the state transition
matrix Φ(tk, t0) thus: {

v(tk+1) = v(tk)e−βt

x(tk+1) = x(tk) +
1
β (v(tk)− v(tk+1))

(11)

As shown in Equation (11), the mean of the target velocity decays by e−βt times the
previous velocity, and the change in target position is equal to β−1 times the change in
velocity. Φ(tk, t0) depends on the parameters β and tk only and has nothing to do with
σ; thus, Φ(tk, t0) can be written as Φ(k). The system noise matrix Q is the noise variance
matrix reflecting the Wiener process W(k) and can be reflected as follows:

Q = E

[(∫ tk

τ=t0

Φ(tk, τ)Gw(τ)dτ

)(∫ tk

s=t0

Φ(tk, s)Gw(s)ds
)T
]
=
∫ tk

τ=t0

Φ(tk, τ)GGTΦT(tk, τ)dτ (12)

Take Equation (10) into Equation (12), Q can be written as:

Q =
∫ tk

τ=t0

Φ(tk, τ)

[
0 0
0 σ2

]
ΦT(tk, τ)dτ (13)

Therefore, the system noise matrix Q is defined by β, σ and tk.

3.3. Target Measurements Model

In target tracking, sensors generally provide range measurements r(k) and bearing
measurements b(k) with error. In sensor coordinates, these measurements are expressed in
the following form with additive noise:

r(k) = r(k) + vrk
b(k) = b(k) + vbk

where (r(k), b(k)) is the true value of target position in sensor polar coordinates at time
tk. vrk and vbk are random error of range and bearing measurements, which are random
variables that obey zero-mean Gaussian distribution and uncorrelated with each other.

Let t0 denote the initial time, VW and CW are velocity and course of the sensor platform,
respectively. At time tk, the range and bearing measurements of the underwater target are
r(k) and b(k). Then at time tk, the measured position coordinates of target in Cartesian
coordinates are (xk, yk) and can be described as:

xk = r(k) sin b(k) + VW · sin CW · (tk − t0)

yk = r(k) cos b(k) + VW · cos CW · (tk − t0)
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Let Vk denote noise covariance matrix. Vk is a random vector with zero mean and it is
independent of system noise matrix Wk. The measurement matrix Z(k) can be modeled as

Z(k) =
[

xk
yk

]
= HX(k) + Vk

The observation matrix H is

H =

[
1 0 0 0
0 1 0 0

]
(14)

3.4. Filtering Algorithm

It is assumed that at time tk−1 the estimated state is, X̂(k− 1|k− 1) while the covariance
matrix is. Then, the predicted state is

X̂(k|k− 1) = Φ(k− 1)X̂(k− 1|k− 1) (15)

The predicted state covariance is

P(k|k− 1) = Φ(k− 1)P(k− 1|k− 1)ΦT(k− 1) + Q (16)

The predicted measurement matrix is

Ẑ(k|k− 1) = H(k)X̂(k|k− 1) (17)

Let M̃(k) denote the innovation vector:

M̃(k) = Z(k)− HX̂(k|k− 1) = H
[
X(k)− X̂(k|k− 1)

]
+ V(k) (18)

M̃(k) is a zero-mean white noise sequence. Take the variance of Equation (18) to obtain
the variance matrix of innovation S(k):

S(k) = Var
[

M̃(k)
]
= HP(k|k− 1)HT + R(k)

Then the estimation of R(k) is

R̂(k) = Ŝ(k)− HP(k|k− 1)HT (19)

where Ŝ(k) is the statistical sampling variance of S(k)

Ŝ(k) =
1

k− 1

k

∑
i=1

[
M(i)−M(i)

][
M(i)−M(i)

]T (20)

where M(i) is statistical sampling mean of innovation.

M(i) =
1
i

i

∑
j=1

M̃(j)

The updated state estimate at time tk is

X̂(k|k) = X̂(k|k− 1) + Kk
[
Z(k)− HkX̂(k|k− 1)

]
(21)

where Kk is the Kalman gain

Kk = P(k|k− 1)H(k)T
[

H(k)P(k|k− 1)H(k)T + R(k)
]−1

(22)
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The updated state covariance at time tk is

P(k|k) = [I − Kk H]P(k|k− 1) (23)

By initializing the initial state X̂(0) and covariance P̂(0), the state of the underwater
target can be estimated through Equations (15)–(23).

4. Estimation of AOU
4.1. Analysis of AOU Distribution

Let ∆x and ∆y denote the error of the estimated position along the x and y axis, respec-
tively. The error of the estimated position has a two-dimensional Gaussian distribution [36]
and its probability distribution function is

f (∆x, ∆y) =
1

2πσXσY
√

1− ρ2
· exp

[
− 1

2(1− ρ2)

][
(∆x)2

σ2
X
− 2ρ(∆x)(∆y)

σXσY
+

(∆y)2

σ2
Y

]

where σ2
X and σ2

Y represent the error variance of the location estimate along x and y axis, ρ is
the correlation coefficient between ∆x and ∆y, which is generally non-zero. The distribution
of the target position estimates corresponds to AOU of the target, the contour curve of
which can be described by elliptic curve with follow equation [36]

m2 =
(∆x)2

σ2
X
− 2ρ(∆x)(∆y)

σXσY
+

(∆y)2

σ2
Y

where m is coefficient of AOU ellipse determined by given confidence probability. As the
correlation coefficient ρ is generally non-zero, ∆x and ∆y are not statistically independent.
Therefore, it is necessary to apply quadratic components corresponding to the major and
minor axis, respectively, to describe the elliptical AOU.

4.2. Algorithm of AOU Estimation

The center of the AOU is the predicted position which can be obtained from the state
prediction X̂(k|k− 1) of Section 3.4. If the error of the predicted positions along the x and y
axis are uncorrelated, then the target position error ellipse has an inclination angle θ of 0
degree. The error covariance matrix has the form

P =

[
s1

2 0
0 s2

2

]
where s1 and s2 denote the semi-major axis and semi-minor axis of the error ellipse, re-
spectively, and the inclination angle θ is the angle between the major axis and the x-axis
direction.

Since the errors of the target position estimation along the x and y axis are generally
related in practice, the position error covariance matrix P′ can be obtained from the state
prediction covariance P(k|k− 1) in Section 3.4, P′ has an inclination angle θ. Then, the
rotation matrix V, which transforms matrix P into P′, is [37]

V =

[
cos θ − sin θ
sin θ cos θ

]
By solving the rotation matrix V, the inclination angle θ can be obtained. The rotation

matrix V is solved according to its physical meaning. By calculating the eigenvalues and
corresponding eigenvectors of V, the square of the semi-major axis can be acquired as the
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maximum eigenvalue, while the square of semi-minor axis is the minimum eigenvalue,
and V is the matrix of eigenvector combinations corresponding to the eigenvalues as

V =
[
v1 v2

]
=

[
cos θ − sin θ
sin θ cos θ

]
where v1 is the eigenvector corresponding to eigenvalue s1

2 and v2 is the eigenvector
corresponding to eigenvalue s2

2. That is

v1 =
[
cos θ sin θ

]T , v2 =
[
− sin θ cos θ

]T (24)

According to the obtained eigenvectors, the inclination angle of AOU ellipse can be
calculated.

As m is the coefficient of the AOU ellipse, the AOU under different coefficients m
correspond to different confidence probabilities [38]. Since the error of the estimated target
position is normally distributed approximately, the confidence probability corresponding
to one times the semi-major axis, the minor semi-axis of AOU ellipse (m = 1) is about
39.3%, and the confidence probability is 86.5% when the coefficient m equals to 2 while the
confidence probability is 98.9% when m is 3.

The coefficient m of elliptical AOU with confidence probability p is given by [36]

m =
√
−2 ln(1− p) (25)

which indicates that when the confidence level is p; the semi-major axis and semi-minor
axis of AOU are m times of s1 and s2.

5. Simulation Results

In this section, the results of computer simulation are presented to demonstrate
the performance of the proposed algorithm. Scenarios for tracking a moving target are
examined. The classical assumption is that favorable environmental conditions facilitate the
availability of range and bearing update at each sampling interval. In the simulation, it was
assumed that the target was moving with uniform straight-line motion at a constant velocity.
The underwater target tracking solution estimated by SMM algorithm was evaluated with
the scenarios shown in Table 1. The sampling interval Ts for short-range targets was
10 s, and 30 s for long-range targets. Measurement errors were assumed to be zero-mean,
Gaussian distributed and uncorrelated. To illustrate the effect of measurement error, four
kinds of range and bearing measurements were chosen, i.e., Pe1: σr = 0.01 · r and σb = 1◦,
Pe2: σr = 0.02 · r and σb = 1◦, Pe3: σr = 0.01 · r and σb = 2◦, Pe4: σr = 0.02 · r and σb = 2◦,
where σr and σb are the standard deviation of range and bearing measurements respectively,
and r is the target range. The simulation compared the tracking performance of the adaptive
Kalman filter and the SMM algorithm proposed in this paper.

Table 1. Scenarios of underwater target at close range used for performance evaluation.

Scenario Initial Range
(m)

Initial Bearing
(deg)

Target Speed
(m/s)

Target Course
(deg)

Observer Speed
(m/s)

Observer
Course (deg)

Sampling
Interval

(s)

1 5000 120 6 150 5 150 10
2 5000 120 6 160 5 150 10
3 5000 120 8 150 5 150 10
4 5000 150 8 120 5 150 10
5 5000 90 8 160 5 150 10
6 5000 120 4 210 5 150 10
7 20,000 60 4 270 5 150 30
8 20,000 90 4 310 5 150 30
9 20,000 90 8 310 5 150 30

10 20,000 60 6 330 5 150 30
11 20,000 60 8 150 5 150 30
12 20,000 120 6 150 5 150 30
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5.1. Simulation of Target Tracking

Figures 2–4 show the state estimation results of the underwater target in a single
simulation with scenario 1. Figure 2 shows the target trajectory tracking diagram, and the
estimation results of target velocity and course are shown in Figures 3 and 4. It can be seen
that the algorithm in this paper can effectively estimate the state of the target and has better
performance than adaptive Kalman filter.
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Figure 4. Comparison of estimated course.

To reduce the effect of random error, the simulation was carried out M(M = 10, 000)
times. With root mean square error as the statistic to indicate performance, Monte-Carlo
results are shown in Figures 5 and 6.
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The RMSE (root mean square error) of the i− th observation was calculated as fol-
lows [38]:

RMSEi =
1
M

√√√√ M

∑
k=1

(
xi − x̃i

k
)2

where xi is the true value and x̃i
k denotes the observed value.

The RMSE values of the estimated velocity and course are shown in Figure 5. Com-
pared with the adaptive Kalman filter, the SMM tracking algorithm could reduce the
estimated velocity error by more than 50% and reduce the estimated course error by 20% at
the initial stage of tracking. The estimated velocity RMSE of x-coordinate and y-coordinate
are shown in Figure 6. It is obviously that the estimated position of SMM tracking algorithm
has a better performance, especially on velocity estimation.

To compare the RMSE of estimated velocity and course with the SMM algorithm and
adaptive Kalman filter, a Monte Carlo simulation was carried out 10,000 times for short-
range target tracking (Scenario 1) and long-range target tracking (Scenario 7). The RMSE
of estimated velocity for the short-range target with different detection errors is shown
in Figure 7. In the considered scenario, the RMSE of velocity decreased as the number of
measurements increased. The change of estimated velocity with the SMM algorithm was
not as dramatic as with the Kalman filter at the beginning of tracking and has a smaller
RMSE from four to eight points. For example, when the amount of target detection was
4 and the detection error was Pe4(σr = 0.02 · r, σb = 2◦), RMSE with the SMM algorithm
was 5.1632 m/s and the result with Kalman filter was 12.29 m/s. The RMSE comparison of
estimated course is shown in Figure 8, which illustrates that the RMSE of course decreased
as the number of measurements increased. As is shown in Figure 9, RMSE of estimated
velocity for the long-range target SMM algorithm was 3.7324 m/s, while the result was
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17.2346 m/s with the Kalman filter, which means velocity RMSE can be reduced more than
50% at the beginning of tracking, which is significant for time-sensitive target tracking.
The RMSE of estimated course for a long-range target with different detection errors is
also shown in Figure 10. Similarly, the RMSE of the course decreased as the number of
measurements increased. For the short-range target, the performance of the estimated
course with the SMM algorithm was a little better than that with the Kalman filter. On the
other hand, for the long-range target, RMSE of estimated course with the SMM algorithm
was reduced by more than 15% compared with the Kalman filter for the initial stage of
tracking.
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5.2. Simulation of AOU Estimation

In order to show the effectiveness of AOU estimation algorithm, the simulation is
carried out. The simulation condition is the same to the state estimation simulation with
scenarios in Table 1. The movement situation of Scenario 1 with the detection error Pe4 is
shown in Figure 11 and the AOU of underwater target is predicted after 200 s movement.

Figure 11. Underwater target tracking and its AOU.

In order to analyze the distribution of predicted target position and reduce the in-
fluence of random error, the Monte Carlo simulation was carried out 10,000 times. The
simulation results of AOU estimation are shown in Figures 12 and 13.
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Figure 12 shows the distribution of estimated target position with Monte Carlo simula-
tion. The magenta ellipse is the contour of AOU (under confidence probability 98.9%) with
SMM algorithm while the green ellipse is the contour of AOU with adaptive Kalman filter.
It is obviously that the contour of calculated AOU ellipse agrees well with the distribution
of estimated target position. The estimated AOU with SMM algorithm is more centralized
than that with adaptive Kalman filter.

Figure 13 illustrates the marginal distribution of AOU along major and minor axis
with bar graph. The red curve is the marginal probability density curve satisfying normal
distribution generated by the long and short axes of the target AOU calculated with the
method in this paper. As is shown in Figure 13, the actual distribution of predicted target
position is consistent with the assumption of two-dimensional normal distribution, which
verifies the effectiveness of the algorithm.

In order to analyze the performance of AOU estimation with different affecting factors,
the simulation study involves the evaluation of 12 scenarios of short-range and long-range
target for various values of Pe. The comparison between RMSE of predicted position, semi-
major of AOU, and semi-major of AOU after 200 s is shown in Table 2 with different values
of Pe for short-range target Scenario 1 to Scenario 6 of Table 1. The results for long-range
target is shown in Table 3.

The influence of prediction time and number of measurements on the RMSE of the
predicted position is analyzed in Figure 14 with Scenario 1 (for detection error Pe1). As is
shown, the RMSE of predicted position increased longer prediction time. With the increase
of the number of measurements, the prediction error became smaller. As is shown in
Figure 15, the RMSE of the predicted position for different numbers of measurements (7, 9,
11 and 13 points) varies with detection errors as listed in Figure 15. It is apparent that the
predicted position is more accurate with lower RMSE when the detection error is smaller.
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Table 2. RMSE of estimated position and AOU with different scenarios versus detection error values
(close-range underwater target).

Pe N Scenario 1 2 3 4 5 6

σr = 0.01 · r
σb = 1◦

7

σDp 413.310 417.128 426.485 426.113 435.141 399.983

s1 368.170 366.807 371.960 370.608 366.821 356.518

s2 220.939 220.120 223.271 222.543 220.192 213.861

9

σDp 305.744 306.727 316.616 314.058 307.680 293.429

s1 271.807 270.492 275.775 274.383 270.475 259.865

s2 163.175 162.431 165.482 164.794 162.495 156.329

11

σDp 239.596 241.977 246.063 243.821 240.470 224.455

s1 214.403 213.054 218.335 216.966 213.075 202.480

s2 130.486 129.753 132.693 132.063 129.849 123.910

σr = 0.01 · r
σb = 2◦

7

σDp 629.941 643.475 652.640 647.520 765.587 630.345

s1 652.417 650.370 657.978 655.598 650.127 635.025

s2 221.181 220.399 223.555 222.985 220.547 214.126

9

σDp 505.424 504.768 522.597 518.075 553.676 491.760

s1 504.938 502.536 511.684 508.685 502.245 484.083

s2 163.336 162.593 165.674 165.202 162.817 156.505

11

σDp 414.391 411.537 417.133 419.053 440.183 395.159

s1 404.723 402.151 411.919 408.788 401.771 382.323

s2 130.582 129.881 132.822 132.445 130.144 124.057

σr = 0.02 · r
σb = 1◦

7

σDp 546.073 539.106 564.347 563.965 547.174 514.209

s1 415.476 414.109 419.742 418.352 414.146 402.624

s2 368.096 366.867 371.954 370.730 366.919 356.511

9

σDp 405.472 401.254 415.828 412.366 404.800 380.204

s1 308.233 306.777 312.739 311.213 306.809 294.716

s2 271.811 270.528 275.804 274.494 270.582 259.869

11

σDp 317.670 316.319 323.708 321.294 315.395 289.176

s1 243.213 241.650 247.655 246.225 241.742 229.578

s2 214.418 213.055 218.316 217.109 213.166 202.498

σr = 0.02 · r
σb = 2◦

7

σDp 723.203 722.177 749.495 757.848 839.797 709.008

s1 653.884 651.785 659.553 657.448 651.929 636.578

s2 415.719 414.157 419.994 418.586 414.381 402.860

9

σDp 568.903 570.687 592.456 580.603 612.238 546.415

s1 506.557 504.110 513.323 510.839 504.206 485.674

s2 308.430 306.856 312.899 311.507 307.057 294.884

11

σDp 463.964 459.507 467.443 472.610 483.452 435.332

s1 406.165 403.642 413.466 410.863 403.629 383.800

s2 243.307 241.796 247.821 246.488 241.960 229.719

Note: N, number of measured points; σDp, RMSE of predicted position; s1, semi-major axis of AOU; s2, semi-minor
axis of AOU.
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Table 3. RMSE of estimated position and AOU with different scenarios versus detection error values
(long-range underwater target).

Pe N Scenario 7 8 9 10 11 12

Pe1:
σr = 0.01 · r
σb = 1◦

7

σDp 413.310 417.128 426.485 426.113 435.141 399.983

s1 368.170 366.807 371.960 370.608 366.821 356.518

s2 220.939 220.120 223.271 222.543 220.192 213.861

9

σDp 305.744 306.727 316.616 314.058 307.680 293.429

s1 271.807 270.492 275.775 274.383 270.475 259.865

s2 163.175 162.431 165.482 164.794 162.495 156.329

11

σDp 239.596 241.977 246.063 243.821 240.470 224.455

s1 214.403 213.054 218.335 216.966 213.075 202.480

s2 130.486 129.753 132.693 132.063 129.849 123.910

Pe2:
σr = 0.01 · r
σb = 2◦

7

σDp 629.941 643.475 652.640 647.520 765.587 630.345

s1 652.417 650.370 657.978 655.598 650.127 635.025

s2 221.181 220.399 223.555 222.985 220.547 214.126

9

σDp 505.424 504.768 522.597 518.075 553.676 491.760

s1 504.938 502.536 511.684 508.685 502.245 484.083

s2 163.336 162.593 165.674 165.202 162.817 156.505

11

σDp 414.391 411.537 417.133 419.053 440.183 395.159

s1 404.723 402.151 411.919 408.788 401.771 382.323

s2 130.582 129.881 132.822 132.445 130.144 124.057

Pe3:
σr = 0.02 · r
σb = 1◦

7
σDp 546.073 539.106 564.347 563.965 547.174 514.209

s1 415.476 414.109 419.742 418.352 414.146 402.624

s2 368.096 366.867 371.954 370.730 366.919 356.511

9

σDp 405.472 401.254 415.828 412.366 404.800 380.204

s1 308.233 306.777 312.739 311.213 306.809 294.716

s2 271.811 270.528 275.804 274.494 270.582 259.869

11

σDp 317.670 316.319 323.708 321.294 315.395 289.176

s1 243.213 241.650 247.655 246.225 241.742 229.578

s2 214.418 213.055 218.316 217.109 213.166 202.498

Pe4:
σr = 0.02 · r
σb = 2◦

7

σDp 723.203 722.177 749.495 757.848 839.797 709.008

s1 653.884 651.785 659.553 657.448 651.929 636.578

s2 415.719 414.157 419.994 418.586 414.381 402.860

9

σDp 568.903 570.687 592.456 580.603 612.238 546.415

s1 506.557 504.110 513.323 510.839 504.206 485.674

s2 308.430 306.856 312.899 311.507 307.057 294.884

11

σDp 463.964 459.507 467.443 472.610 483.452 435.332

s1 727.026 712.529 692.990 752.298 748.716 754.345

s2 438.710 429.487 418.135 456.018 451.763 455.219

Note: N, number of measured points; σDp, RMSE of predicted position; s1, semi-major axis of AOU; s2, semi-minor
axis of AOU.
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Figure 15. RMSE comparison of predicted position versus different detection error. (a) RMSE of
predicted position with seven points. (b) RMSE of predicted position with nine points. (c) RMSE of
predicted position with eleven points. (d) RMSE of predicted position with thirteen points.

To evaluate the performance of AOU estimation, the AOU comparison between SMM
algorithm and adaptive Kalman Filter with CV motion is shown in Figures 16–18 with Scenario
1. The semi-major and semi-minor of AOU with different number of measurements (7,
9, 11, and 13 points) are shown Figures 16 and 17. The semi-major and semi-minor of
AOU with the SMM algorithm were smaller than with the adaptive Kalman filter. With
fewer measurements, the SMM algorithm was more significant than with the adaptive
Kalman Filter, especially with larger measurement error. For example, when the prediction
time was 200 s and the number of measurements was seven, the semi-major of AOU with
SMM algorithm was 653.8 m while the result with the Kalman Filter was 789.9 m, which
indicates that the SMM algorithm can shrink the semi-major of AOU by more than 20.8%.
Similar results of semi-minor can be obtained from Figure 17. From Figure 17, it can be
seen that under different error conditions, the estimated AOU of the SMM algorithm was
more concentrated than that of the Kalman Filter. When the prediction time is longer, the
AOU is larger and SMM algorithm performs better than the Kalman Filter. A comparison
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of AOU with prediction time 200 s between SMM algorithm and Kalman filter is shown in
Figure 18. When the measurement error is large (Pe4), SMM algorithm apparently performs
better than Kalman filter, especially at the initial stage of tracking, where the size of AOU
for the SMM algorithm is reduced 25% with seven points.
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6. Conclusions

In this paper, we propose an algorithm of AOU estimation for an underwater moving
target based on a stochastic maneuvering motion model. The stochastic maneuvering
motion model was established based on the Langevin equation, and a stochastic differential
equation was applied to describe the underwater target motion. By applying the stochastic
maneuvering motion model to noise adaptive Kalman filter, the underwater target state
was estimated. On the basis of the physical significance of error covariance matrix from
state estimation, the equation of AOU estimation was deduced and AOU of the underwater
moving target under different confidence levels could be estimated. The target state
estimation accuracy was studied in terms of RMSE, and AOU estimation was evaluated in
terms of predicted position and error eclipse. From the simulation results of tracking, it can
be deduced that the SMM algorithm outperformed the adaptive Kalman filter applying
CV motion. As the RMSE of estimated velocity with SMM algorithm can be reduced more
than 50% at the beginning of tracking, this provides a gentle change in velocity estimation
at the initial stage of tracking under a large detection error, which helps to reduce the
error of the predicted position and leads to a more concentrated AOU distribution. Monte
Carlo simulation of AOU estimation verified the effectiveness of the algorithm in that the
predicted target position was consistent with the assumption of a two-dimensional normal
distribution and could be defined by the confidence level. Furthermore, the size of AOU
with SMM algorithm was reduced by 25% compared to the adaptive Kalman Filter during
the initial tracking stage with a larger measurement error, which is very significant for
time-sensitive target tracking and attack. The proposed algorithm can provide predicted
position and AOU of an underwater target for weapon strike and combat decision-making.

In fact, the proposed algorithm can estimate the track of a maneuvering underwater
target by changing the model parameters. The combination of maneuver characteristics
and model parameters of a maneuvering target is within the scope of future work.
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