Segmentation for Multi-Rock Types on Digital Outcrop Photographs Using Deep Learning Techniques
<p>Overall flow of the proposed system.</p> "> Figure 2
<p>Experimental framework.</p> "> Figure 3
<p>An example of (<b>a</b>) an original image and (<b>b</b>) its labels—background (blue), mudstone (wine) and sandstone (green).</p> "> Figure 4
<p>Training and validation loss curve for a Standard U-Net model (<b>a</b>) vs. U-Net with <span class="html-italic">Efficientb7</span> encoder (<b>b</b>).</p> "> Figure 5
<p>Average values of precision, recall and F1-score for U-Net models with different backbones for test data.</p> "> Figure 6
<p>Average values of precision, recall and F1-score for LinkNet models with different backbones for test data.</p> "> Figure 7
<p>Mean intersection of union (MIoU) for U-Net models with different backbones and image color representations for test data.</p> "> Figure 8
<p>Mean intersection of union (MIoU) for LinkNet models with different backbones and image color representations for test data.</p> "> Figure 9
<p>Prediction results for LinkNet model with different backbones.</p> "> Figure 10
<p>Prediction results for U-Net model with different backbones on a test set.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Collection and Annotation
2.2. Pre-Processing
2.3. Segmentation Models
2.4. Network Training
2.5. Ensemble Predictions
2.6. Performance Evaluation
3. Results and Discussion
3.1. Individual Models vs. Ensemble
3.2. U-Net vs. LinkNet
3.3. Comparison of Different Backbone Architecture
3.4. Effect of Image Enhancement and Color Transformations
3.5. Qualitative Analysis of Segmentation Models
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ran, X.; Xue, L.; Zhang, Y.; Liu, Z.; Sang, X.; He, J. Rock Classification from Field Image Patches Analyzed Using a Deep Convolutional Neural Network. Mathematics 2019, 7, 755. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, H.; Jing, H.; Shao, A.; Wang, L. Research on Intelligent Identification of Rock Types Based on Faster R-CNN Method. IEEE Access 2020, 8, 21804–21812. [Google Scholar] [CrossRef]
- Salman, S.M.; Bellah, S. Rock Typing: An Integrated Reservoir Characterization Tool to Construct a Robust Geological Model in Abu Dhabi Carbonate Oil Field. In Proceedings of the SPE/EAGE Reservoir Characterization & Simulation Conference, Abu Dhabi, United Arab Emirates, 19–21 October 2009; p. cp-170. [Google Scholar]
- Yu, Y.; Rashidi, M.; Samali, B.; Mohammadi, M.; Nguyen, T.N.; Zhou, X. Crack Detection of Concrete Structures Using Deep Convolutional Neural Networks Optimized by Enhanced Chicken Swarm Algorithm. Struct. Health Monit. 2022, 21, 2244–2263. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Gu, X.; Li, J. A Novel Deep Learning-Based Method for Damage Identification of Smart Building Structures. Struct. Health Monit. 2018, 18, 143–163. [Google Scholar] [CrossRef] [Green Version]
- Ringer, R.; Yoon, H. Semantic Segmentation of Rock Images Using Deep Learning Methods; Geomechanics Department, Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2020. [Google Scholar]
- Alfarisi, O.; Ouzzane, D.; Sassi, M.; Zhang, T. Digital Rock Typing DRT Algorithm Formulation with Optimal Supervised Semantic Segmentation. arXiv 2021, arXiv:2112.15068v2. [Google Scholar]
- Xu, Z.; Ma, W.; Lin, P.; Hua, Y. Deep Learning of Rock Microscopic Images for Intelligent Lithology Identification: Neural Network Comparison and Selection. J. Rock Mech. Geotech. Eng. 2022, 14, 1140–1152. [Google Scholar] [CrossRef]
- Jin, C.; Wang, K.; Han, T.; Lu, Y.; Liu, A.; Liu, D. Segmentation of Ore and Waste Rocks in Borehole Images Using the Multi-Module Densely Connected U-Net. Comput. Geosci. 2022, 159, 105018. [Google Scholar] [CrossRef]
- Pascual, A.D. Autonomous and Real Time Rock Image Classification Using Convolutional Neural Networks. 2019. Available online: https://www.preprints.org/manuscript/202109.0285/v1 (accessed on 9 August2022).
- Cheng, G.; Guo, W. Rock Images Classification by Using Deep Convolution Neural Network. J. Phys. Conf. Ser. IOP Publ. 2017, 887, 12089. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Cui, Q.; Luo, X.; Xie, Z. Research on Classification of Fine-Grained Rock Images Based on Deep Learning. Comput. Intell. Neurosci. 2021, 2021, 5779740. [Google Scholar] [CrossRef]
- Goyal, M.; Yap, M.H.; Hassanpour, S. Multi-Class Semantic Segmentation of Skin Lesions via Fully Convolutional Networks. arXiv 2017, arXiv:1711.10449. [Google Scholar]
- Monteiro, M.; Newcombe, V.F.J.; Mathieu, F.; Adatia, K.; Kamnitsas, K.; Ferrante, E.; Das, T.; Whitehouse, D.; Rueckert, D.; Menon, D.K.; et al. Multiclass Semantic Segmentation and Quantification of Traumatic Brain Injury Lesions on Head CT Using Deep Learning: An Algorithm Development and Multicentre Validation Study. Lancet Digit. Health 2020, 2, e314–e322. [Google Scholar] [CrossRef]
- Niu, Y.; Mostaghimi, P.; Shabaninejad, M.; Swietojanski, P.; Armstrong, R.T. Digital Rock Segmentation for Petrophysical Analysis with Reduced User Bias Using Convolutional Neural Networks. Water Resour. Res. 2020, 56, e2019WR026597. [Google Scholar] [CrossRef]
- Puasa, I. Fine-Grained Deep-Water Turbidites, Baram Delta Province, Offshore Brunei Darussalam. Ph.D. Thesis, Imperial College London, London, UK, 2018. [Google Scholar]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Martinez-Gonzalez, P.; Garcia-Rodriguez, J. A Survey on Deep Learning Techniques for Image and Video Semantic Segmentation. Appl. Soft Comput. 2018, 70, 41–65. [Google Scholar] [CrossRef]
- Ismail, N.; Malik, O.A. Real-Time Visual Inspection System for Grading Fruits Using Computer Vision and Deep Learning Techniques. Inf. Process. Agric. 2021, 9, 24–37. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, A.; Liu, J.; Faheem, M. A Comparative Study of Semantic Segmentation Models for Identification of Grape with Different Varieties. Agriculture 2021, 11, 997. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, J.H.; Jung, H.Y. An Efficient Color Space for Deep-Learning Based Traffic Light Recognition. J. Adv. Transp. 2018, 2018, 2365414. [Google Scholar] [CrossRef] [Green Version]
- Gowda, S.N.; Yuan, C. ColorNet: Investigating the Importance of Color Spaces for Image Classification. In Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2019; Springer: Cham, Switzerland, 2019; pp. 581–596. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 7, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. IEEE Access 2015, 9, 234–241. [Google Scholar]
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10-13 December 2017; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable Are Features in Deep Neural Networks? Adv. Neural Inf. Process. Syst. 2014, 27, 2560–2567. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- Hao, S.; Zhou, Y.; Guo, Y. A Brief Survey on Semantic Segmentation with Deep Learning. Neurocomputing 2020, 406, 302–321. [Google Scholar] [CrossRef]
Literature | Type of Images | (S)ingle or (M)ultiple Rock Type Per Image | Techniques | Semantic Segmentation |
---|---|---|---|---|
Ran et al. [1] | digital camera photographs | S | CNN | N |
Liu et al. [2] | digital camera photographs | M 1 | faster R-CNN, simplified VGG16 | N |
Ringer and Yoon [6] | SEM, CT | S | U-Net, U-VGG16, U-Resnet | Y |
Alfarisi et al. [7] | SEM, CT, MRI | S | ML, CNN | Y 2 |
Xu et al. [8] | polarizing microscope | S | Xception, MobileNetv2, Inception_Resnetv2, Inceptionv3, Densenet121, Resnet101v2, and Resnet101 | N |
Pascual et al. [10] | digital camera photographs | S | 3-layer CNN, Transfer Learning | N |
Cheng and Guo [11] | polarized light microscopy | S | CNN | N |
Liang et al. [12] | digital camera photographs | S | EfficientNetB0 | N |
Niu et al. [15] | μCT, SEM | S | LeNet5 | N |
Ours | digital camera photographs | M | U-Net, LinkNet, Transfer learning, Ensemble learning | Y |
Validation Set | Testing Set | |||||||
---|---|---|---|---|---|---|---|---|
Network | Background | Mudstone | Sandstone | MIoU | Background | Mudstone | Sandstone | MIoU |
U-Net Standard | 0.9189 | 0.6869 | 0.6774 | 0.7611 | 0.8594 | 0.7092 | 0.7027 | 0.7571 |
U-Net Resnet34 | 0.9257 | 0.7566 | 0.7850 | 0.8225 | 0.8475 | 0.7353 | 0.7735 | 0.7854 |
U-Net Inceptionv3 | 0.9257 | 0.7140 | 0.7740 | 0.8046 | 0.8768 | 0.7266 | 0.7724 | 0.7919 |
U-Net VGG16 | 0.9288 | 0.7557 | 0.7868 | 0.8238 | 0.8798 | 0.7464 | 0.7754 | 0.8005 |
U-Net Efficientb7 | 0.9333 | 0.7983 | 0.8204 | 0.8507 | 0.8848 | 0.7615 | 0.7843 | 0.8102 |
U-Net Ensemble | 0.9381 | 0.7902 | 0.8222 | 0.8502 | 0.8873 | 0.7726 | 0.8003 | 0.8201 |
Validation Set | Testing Set | |||||||
---|---|---|---|---|---|---|---|---|
Network | Background | Mudstone | Sandstone | MIoU | Background | Mudstone | Sandstone | MIoU |
LinkNet Resnet34 | 0.9180 | 0.7426 | 0.7422 | 0.8009 | 0.8328 | 0.7223 | 0.7351 | 0.7634 |
LinkNet Inceptionv3 | 0.9287 | 0.7431 | 0.7826 | 0.8181 | 0.8721 | 0.7165 | 0.7671 | 0.7852 |
LinkNet VGG16 | 0.9322 | 0.7411 | 0.7636 | 0.8123 | 0.8855 | 0.7432 | 0.7734 | 0.8007 |
LinkNet Efficientb7 | 0.9393 | 0.8064 | 0.8331 | 0.8596 | 0.8840 | 0.7643 | 0.7922 | 0.8135 |
LinkNet Ensemble | 0.9390 | 0.8028 | 0.8246 | 0.8554 | 0.8851 | 0.7672 | 0.7961 | 0.8161 |
Backbone | Class | RGB | RGB HE | HSV | L*a*b* | YCrCb |
---|---|---|---|---|---|---|
Resnet34 | Background | 0.8475 | 0.8454 | 0.8382 | 0.8674 | 0.8654 |
Mudstone | 0.7353 | 0.7439 | 0.6346 | 0.7119 | 0.7163 | |
Sandstone | 0.7735 | 0.7735 | 0.6985 | 0.7164 | 0.7156 | |
Inceptionv3 | Background | 0.8768 | 0.8711 | 0.8504 | 0.8771 | 0.8674 |
Mudstone | 0.7266 | 0.7518 | 0.6417 | 0.7624 | 0.7413 | |
Sandstone | 0.7724 | 0.7786 | 0.6762 | 0.7921 | 0.7779 | |
VGG16 | Background | 0.8798 | 0.8631 | 0.6050 | 0.8832 | 0.8808 |
Mudstone | 0.7464 | 0.7490 | 0.6814 | 0.7370 | 0.7308 | |
Sandstone | 0.7754 | 0.7767 | 0.6923 | 0.7743 | 0.7784 | |
Efficientb7 | Background | 0.8848 | 0.8840 | 0.8596 | 0.8800 | 0.8774 |
Mudstone | 0.7615 | 0.7516 | 0.7318 | 0.7722 | 0.7567 | |
Sandstone | 0.7843 | 0.7563 | 0.7536 | 0.8012 | 0.7933 |
Backbone | Class | RGB | RGB HE | HSV | L*a*b* | YCrCb |
---|---|---|---|---|---|---|
Resnet34 | Background | 0.8328 | 0.8249 | 0.8313 | 0.8663 | 0.8643 |
Mudstone | 0.7223 | 0.7447 | 0.6581 | 0.7101 | 0.7039 | |
Sandstone | 0.7351 | 0.7600 | 0.7002 | 0.7420 | 0.7438 | |
Inceptionv3 | Background | 0.8721 | 0.8725 | 0.8504 | 0.8690 | 0.8457 |
Mudstone | 0.7165 | 0.7357 | 0.6832 | 0.7182 | 0.7074 | |
Sandstone | 0.7671 | 0.7586 | 0.7161 | 0.7545 | 0.7593 | |
VGG16 | Background | 0.8855 | 0.9258 | 0.8253 | 0.8797 | 0.8798 |
Mudstone | 0.7432 | 0.7399 | 0.1454 | 0.7293 | 0.3446 | |
Sandstone | 0.7734 | 0.7593 | 0.5618 | 0.7713 | 0.6319 | |
Efficientb7 | Background | 0.8840 | 0.8643 | 0.8480 | 0.8785 | 0.8783 |
Mudstone | 0.7643 | 0.7531 | 0.6908 | 0.7490 | 0.7618 | |
Sandstone | 0.7922 | 0.7711 | 0.7336 | 0.7882 | 0.7998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, O.A.; Puasa, I.; Lai, D.T.C. Segmentation for Multi-Rock Types on Digital Outcrop Photographs Using Deep Learning Techniques. Sensors 2022, 22, 8086. https://doi.org/10.3390/s22218086
Malik OA, Puasa I, Lai DTC. Segmentation for Multi-Rock Types on Digital Outcrop Photographs Using Deep Learning Techniques. Sensors. 2022; 22(21):8086. https://doi.org/10.3390/s22218086
Chicago/Turabian StyleMalik, Owais A., Idrus Puasa, and Daphne Teck Ching Lai. 2022. "Segmentation for Multi-Rock Types on Digital Outcrop Photographs Using Deep Learning Techniques" Sensors 22, no. 21: 8086. https://doi.org/10.3390/s22218086
APA StyleMalik, O. A., Puasa, I., & Lai, D. T. C. (2022). Segmentation for Multi-Rock Types on Digital Outcrop Photographs Using Deep Learning Techniques. Sensors, 22(21), 8086. https://doi.org/10.3390/s22218086