Auditory Feedback for Enhanced Sense of Agency in Shared Control
<p>Shared control of grasping assistance to resolve differences in human and robot physical structures: (<b>a</b>) Humans plan movements based on information about their own physical structure. (<b>b</b>) When robots are manually and remotely operated by humans, differences in the physical structures of humans and robots reduce operability. (<b>c</b>) Shared control, which fuses control commands from humans and robots, supports task execution.</p> "> Figure 2
<p>Experimental setup: (<b>a</b>) The operator wears the HMD while sitting on a chair and holds the controller in his right hand. (<b>b</b>) An image of the operator’s viewpoint displayed on the HMD.</p> "> Figure 3
<p>Position and orientation relationships between controller, virtual gripper, and target cube: (<b>a</b>) The gripper synchronizes with the controller. (<b>b</b>) The position and orientation of the gripper are between the controller and the target cube. (<b>c</b>) The gripper synchronizes with the target cube. In these figures, the controller model is shown for comparison but was not used during the experiment.</p> "> Figure 4
<p>Movement of the target cube: The target cube makes one round trip on a line segment connecting two different points (start point and turning point) in virtual space, taking approximately 15 s. At the same time, the cube repeatedly rotates <math display="inline"><semantics> <mrow> <mo>±</mo> <msup> <mn>15</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> around the <span class="html-italic">z</span>-axis in 2 s per round trip.</p> "> Figure 5
<p>Procedure for one set of the tracking task.</p> "> Figure 6
<p>Mean agency ratings at each level of automation under four different auditory feedback conditions. Error bars represent standard errors. The SoA decreases with increasing automation level and is significantly higher in mixed condition than in none and controller condition when the automation ratio <math display="inline"><semantics> <mi>α</mi> </semantics></math> is 0.50 (*: <math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0.05</mn> </mrow> </semantics></math>).</p> "> Figure 7
<p>Mean performance ratings at each level of automation under four different auditory feedback conditions. Error bars represent standard errors. Performance rating increases with increasing level of automation.</p> ">
Abstract
:1. Introduction
- 1
- Increasing the level of automation by shared control for robot manipulation decreased the SoA and increased task performance;
- 2
- At a moderate level of automation, auditory feedback linked to both the operator’s manipulations and the robot’s movements suppressed the decline in the SoA.
2. Related Works
3. Auditory Feedback and Experiments
3.1. Experimental Setup
3.2. Auditory Feedback
None | No sound presentation. |
Controller | Present sound linked to controller speed and angular speed. |
Gripper | Present sound linked to gripper speed and angular speed. |
Mixed | Present mixed sound of the Controller and Gripper conditions. |
3.3. Participants
3.4. Tracking Task
3.5. Experimental Procedure
4. Results
4.1. Sense of Agency Rating
4.2. Task Performance Rating
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SoA | Sense of Agency |
VR | Virtual Reality |
HMD | Head-Mounted Display |
References
- Nagatani, K.; Kiribayashi, S.; Okada, Y.; Otake, K.; Yoshida, K.; Tadokoro, S.; Nishimura, T.; Yoshida, T.; Koyanagi, E.; Fukushima, M.; et al. Emergency Response to the Nuclear Accident at the Fukushima Daiichi Nuclear Power Plants Using Mobile Rescue Robots. J. Field Robot. 2013, 30, 44–63. [Google Scholar] [CrossRef]
- Nakanishi, J.; Itadera, S.; Aoyama, T.; Hasegawa, Y. Towards the Development of an Intuitive Teleoperation System for Human Support Robot Using a VR Device. Adv. Robot. 2020, 34, 1239–1253. [Google Scholar] [CrossRef]
- Zhu, Y.; Aoyama, T.; Hasegawa, Y. Enhancing the Transparency by Onomatopoeia for Passivity-Based Time-Delayed Teleoperation. IEEE Robot. Autom. Lett. 2020, 5, 2981–2986. [Google Scholar] [CrossRef]
- Kurihara, Y.; Takei, S.; Nakai, Y.; Hachisu, T.; Kuchenbecker, K.J.; Kajimoto, H. Haptic Robotization of the Human Body by Data-Driven Vibrotactile Feedback. Entertain. Comput. 2014, 5, 485–494. [Google Scholar] [CrossRef]
- Aymerich-Franch, L.; Petit, D.; Ganesh, G.; Kheddar, A. Non-Human Looking Robot Arms Induce Illusion of Embodiment. Int. J. Soc. Robot. 2017, 9, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Aymerich-Franch, L.; Petit, D.; Ganesh, G.; Kheddar, A. Object Touch by a Humanoid Robot Avatar Induces Haptic Sensation in the Real Hand. J. Comput.-Mediat. Commun. 2017, 22, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Saraiji, M.Y.; Fernando, C.L.; Minamizawa, K.; Inami, M. MetaLimbs: Multiple Arms Interaction Metamorphism. In Proceedings of the ACM SIGGRAPH 2017 Emerging Technologies, SIGGRAPH ’17, Los Angeles, CA, USA, 30 July–3 August 2017; Association for Computing Machinery: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Segura Meraz, N.; Sobajima, M.; Aoyama, T.; Hasegawa, Y. Modification of Body Schema by Use of Extra Robotic Thumb. ROBOMECH J. 2018, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Ito, T.; Aoyama, T.; Hasegawa, Y. Development of Sense of Self-Location Based on Somatosensory Feedback from Finger Tips for Extra Robotic Thumb Control. ROBOMECH J. 2019, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Beckerle, P.; Castellini, C.; Lenggenhager, B. Robotic Interfaces for Cognitive Psychology and Embodiment Research: A Research Roadmap. WIREs Cogn. Sci. 2019, 10, e1486. [Google Scholar] [CrossRef]
- Toet, A.; Kuling, I.A.; Krom, B.N.; van Erp, J.B.F. Toward Enhanced Teleoperation Through Embodiment. Front. Robot. AI 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, S. Philosophical Conceptions of the Self: Implications for Cognitive Science. Trends Cogn. Sci. 2000, 4, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Matsumiya, K. Awareness of Voluntary Action, Rather than Body Ownership, Improves Motor Control. Sci. Rep. 2021, 11, 418. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, S.J.; Oakley, D.; Frith, C. Delusions of Alien Control in the Normal Brain. Neuropsychologia 2003, 41, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Synofzik, M.; Vosgerau, G.; Newen, A. Beyond the Comparator Model: A Multifactorial Two-Step Account of Agency. Conscious. Cogn. 2008, 17, 219–239. [Google Scholar] [CrossRef] [PubMed]
- Karsh, N.; Eitam, B. I Control Therefore I Do: Judgments of Agency Influence Action Selection. Cognition 2015, 138, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.M.; McCrary, J.W.; Smith, K.U. Delayed Visual Feedback and Behavior. Science 1960, 132, 1013–1014. [Google Scholar] [CrossRef]
- Dragan, A.D.; Srinivasa, S.S. A Policy-Blending Formalism for Shared Control. Int. J. Robot. Res. 2013, 32, 790–805. [Google Scholar] [CrossRef]
- Rakita, D.; Mutlu, B.; Gleicher, M.; Hiatt, L.M. Shared Control–Based Bimanual Robot Manipulation. Sci. Robot. 2019, 4, eaaw0955. [Google Scholar] [CrossRef]
- Tanimoto, T.; Shinohara, K.; Yoshinada, H. Research on Effective Teleoperation of Construction Machinery Fusing Manual and Automatic Operation. ROBOMECH J. 2017, 4, 14. [Google Scholar] [CrossRef]
- Yang, G.Z.; Cambias, J.; Cleary, K.; Daimler, E.; Drake, J.; Dupont, P.E.; Hata, N.; Kazanzides, P.; Martel, S.; Patel, R.V.; et al. Medical Robotics—Regulatory, Ethical, and Legal Considerations for Increasing Levels of Autonomy. Sci. Robot. 2017, 2, eaam8638. [Google Scholar] [CrossRef]
- Moore, J.; Fletcher, P. Sense of Agency in Health and Disease: A Review of Cue Integration Approaches. Conscious. Cogn. 2012, 21, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, W.; Yamashita, A.; Asama, H. The Sense of Agency during Continuous Action: Performance Is More Important than Action-Feedback Association. PLoS ONE 2015, 10, e0125226. [Google Scholar] [CrossRef] [PubMed]
- Ueda, S.; Nakashima, R.; Kumada, T. Influence of Levels of Automation on the Sense of Agency during Continuous Action. Sci. Rep. 2021, 11, 2436. [Google Scholar] [CrossRef] [PubMed]
- Aoyagi, K.; Wen, W.; An, Q.; Hamasaki, S.; Yamakawa, H.; Tamura, Y.; Yamashita, A.; Asama, H. Modified Sensory Feedback Enhances the Sense of Agency during Continuous Body Movements in Virtual Reality. Sci. Rep. 2021, 11, 2553. [Google Scholar] [CrossRef]
- Maeda, T.; Kato, M.; Muramatsu, T.; Iwashita, S.; Mimura, M.; Kashima, H. Aberrant Sense of Agency in Patients with Schizophrenia: Forward and Backward over-Attribution of Temporal Causality during Intentional Action. Psychiatry Res. 2012, 198, 1–6. [Google Scholar] [CrossRef]
- Maeda, T.; Takahata, K.; Muramatsu, T.; Okimura, T.; Koreki, A.; Iwashita, S.; Mimura, M.; Kato, M. Reduced Sense of Agency in Chronic Schizophrenia with Predominant Negative Symptoms. Psychiatry Res. 2013, 209, 386–392. [Google Scholar] [CrossRef]
- Wen, W.; Yamashita, A.; Asama, H. The Influence of Action-Outcome Delay and Arousal on Sense of Agency and the Intentional Binding Effect. Conscious. Cogn. 2015, 36, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Minohara, R.; Wen, W.; Hamasaki, S.; Maeda, T.; Kato, M.; Yamakawa, H.; Yamashita, A.; Asama, H. Strength of Intentional Effort Enhances the Sense of Agency. Front. Psychol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Imaizumi, S.; Tanno, Y. Intentional Binding Coincides with Explicit Sense of Agency. Conscious. Cogn. 2019, 67, 1–15. [Google Scholar] [CrossRef]
- Ohata, R.; Asai, T.; Kadota, H.; Shigemasu, H.; Ogawa, K.; Imamizu, H. Sense of Agency Beyond Sensorimotor Process: Decoding Self-Other Action Attribution in the Human Brain. Cereb. Cortex 2020, 30, 4076–4091. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Ernst, M.O.; Bülthoff, H.H. Merging the Senses into a Robust Percept. Trends Cogn. Sci. 2004, 8, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Alais, D.; Burr, D. The Ventriloquist Effect Results from Near-Optimal Bimodal Integration. Curr. Biol. 2004, 14, 257–262. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morita, T.; Zhu, Y.; Aoyama, T.; Takeuchi, M.; Yamamoto, K.; Hasegawa, Y. Auditory Feedback for Enhanced Sense of Agency in Shared Control. Sensors 2022, 22, 9779. https://doi.org/10.3390/s22249779
Morita T, Zhu Y, Aoyama T, Takeuchi M, Yamamoto K, Hasegawa Y. Auditory Feedback for Enhanced Sense of Agency in Shared Control. Sensors. 2022; 22(24):9779. https://doi.org/10.3390/s22249779
Chicago/Turabian StyleMorita, Tomoya, Yaonan Zhu, Tadayoshi Aoyama, Masaru Takeuchi, Kento Yamamoto, and Yasuhisa Hasegawa. 2022. "Auditory Feedback for Enhanced Sense of Agency in Shared Control" Sensors 22, no. 24: 9779. https://doi.org/10.3390/s22249779
APA StyleMorita, T., Zhu, Y., Aoyama, T., Takeuchi, M., Yamamoto, K., & Hasegawa, Y. (2022). Auditory Feedback for Enhanced Sense of Agency in Shared Control. Sensors, 22(24), 9779. https://doi.org/10.3390/s22249779