A Cantilever Beam-Based Triboelectric Nanogenerator as a Drill Pipe Transverse Vibration Energy Harvester Powering Intelligent Exploitation System
<p>The concept diagram of this work.</p> "> Figure 2
<p>Application scenario and structure of CB-TENG device (<b>a</b>) Application of CB-TENG in vibration energy collection of drill pipe for offshore oil extraction; (<b>b</b>) the structure of array-type CB-TENG; (<b>c</b>) the composition of CB-TENG; (<b>d</b>) the partial enlargement of the tip of CB-TENG; (<b>e</b>) SEM image of PTFE surface (Not sanded); (<b>f</b>) SEM image of sanded PTFE surface.</p> "> Figure 3
<p>(<b>a</b>) Working principle of CB-TENG; (<b>b</b>) diagram of CB-TENG voltage output under different backplane structures and different number of vibrators; (<b>c</b>) diagram of CB-TENG voltage output at <span class="html-italic">f</span> = 3.0 Hz, <span class="html-italic">A</span> = 50 mm with different thickness of spring steel; (<b>dI</b>) force analysis diagram of unit length vibrator section; (<b>dII</b>) schematic diagram of single vibrator overall force.</p> "> Figure 4
<p>The performance of CB-TENG under different vibration parameters. (<b>a</b>) 3D contour of short-circuit current variation with the vibration amplitude and frequency; (<b>b</b>) 3D contour of open-circuit voltage variation with the vibration amplitude and frequency; (<b>c</b>) 3D contour of transferred charge variation with the vibration amplitude and frequency; (<b>d</b>) the short-circuit current variation with the vibration amplitude; (<b>e</b>) the short-circuit current variation with the vibration frequency; (<b>f</b>) the transferred charge variation with the vibration amplitude; the percentage of (<b>g</b>) open-circuit voltage and (<b>h</b>) transferred charge varying with azimuth; (<b>i</b>) dependence of the voltage and output power density on the external load resistance for the CB-TENG working at <span class="html-italic">f</span> = 3 Hz, <span class="html-italic">A</span> = 50 mm.</p> "> Figure 5
<p>The output performance of the array-type CB-TENG for vibration energy harvesting: (<b>a</b>) Array-type CB-TENG layout diagram; (<b>b</b>) the working circuit of array-type CB-TENG for vibration energy harvesting to power sensor or testing; (<b>c</b>) transferred charge for each TENG unit in the CB- array-type TENG; (<b>d</b>) charging performances to a capacitor of 10 μF for different CB-TENG arrays; (<b>e</b>) open-circuit voltage and short-circuit current with different amounts of integrated units; (<b>f</b>) the output power and the external load resistance with different amounts of integrated units working at <span class="html-italic">f</span> = 3 Hz, <span class="html-italic">A</span> = 50 mm.</p> "> Figure 6
<p>Demonstration applications: (<b>a</b>) Voltage of different capacitors (C = 10, 22, 33, 47, 100, and 220 µF) charged by array-type CB-TENG at <span class="html-italic">f</span> = 3 Hz, <span class="html-italic">A</span> = 50 mm; (<b>b</b>) voltage of the same capacitor (C = 33 µF) charged by array-type CB-TENG at different vibration frequency and the same vibration amplitude of 50 mm; (<b>c</b>) sensitivity of CB-TENG to relative humidity; (<b>d</b>) durability of the CB-TENG; (<b>e</b>) the array-type CB-TENG lighting 204 LEDs; (<b>f</b>) powering a temperature sensor with array-type CB-TENG.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Performance of CB-TENG
3.2. Demonstration Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, X.; Zhang, G.; Wang, Z.; Wen, Z.; Tian, Z.; Wang, H.; Ma, F.; Wu, Y. Distribution and potential of global oil and gas resources. Pet. Explor. Dev. 2018, 45, 779–789. [Google Scholar] [CrossRef]
- Nakken, E.I.; Mjaaland, S.; Solstad, A. A New MWD Concept for Geological Positioning of Horizontal Wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 22–25 October 1995. [Google Scholar]
- Fripp, M.L.; Hamid, S.; Moore, D.W.; Kyle, D.; Caja, J.; Dunstan, T.D. Development of a High-Temperature Rechargeable Battery for Downhole Use in Petroleum Industry. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 2008. [Google Scholar]
- Wang, Z.; Jian, Z.; Guo, Y.; Zhu, W.; Wang, H. The Turbine Parameter Study of Down-hole Turbine Generator of While Drilling for Exploring of China Sea. In Proceedings of the Twenty-Fourth International Ocean and Polar Engineering Conference, Busan, Korea, 15–20 June 2014. [Google Scholar]
- Gooneratne, C.P.; Li, B.; Deffenbaugh, M.; Moellendick, T. Downhole Communication and Power Supplies to Instruments and Communication Modules. In Instruments, Measurement Principles and Communication Technologies for Downhole Drilling Environments; Springer International Publishing: Cham, Switzerland, 2019; pp. 97–109. [Google Scholar]
- Chen, J.; Wang, Y. A dual electromagnetic array with intrinsic frequency up-conversion for broadband vibrational energy harvesting. Appl. Phys. Lett. 2019, 114, 053902. [Google Scholar] [CrossRef]
- Naifar, S.; Bradai, S.; Viehweger, C.; Kanoun, O. Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation. Measurement 2017, 106, 251–263. [Google Scholar] [CrossRef]
- Remick, K.; Dane Quinn, D.; Michael McFarland, D.; Bergman, L.; Vakakis, A. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity. J. Sound Vib. 2016, 370, 259–279. [Google Scholar] [CrossRef] [Green Version]
- Saha, C.R.; Donnell, T.O.; Loder, H.; Beeby, S.; Tudor, J. Optimization of an Electromagnetic Energy Harvesting Device. IEEE Trans. Magn. 2006, 42, 3509–3511. [Google Scholar] [CrossRef]
- Swallow, L.M.; Luo, J.K.; Siores, E.; Patel, I.; Dodds, D. A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater. Struct. 2008, 17, 025017. [Google Scholar] [CrossRef]
- Peigney, M.; Siegert, D. Piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Mater. Struct. 2013, 22, 095019. [Google Scholar] [CrossRef] [Green Version]
- Delnavaz, A.; Voix, J. Flexible piezoelectric energy harvesting from jaw movements. Smart Mater. Struct. 2014, 23, 105020. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, C.; Wang, W.; Xu, R.; Chen, P.; Du, T.; Xue, T.; Wang, Z.; Xu, M. A Stackable Triboelectric Nanogenerator for Wave-Driven Marine Buoys. Nanomaterials 2022, 12, 594. [Google Scholar] [CrossRef]
- Chang, J.; Zhu, C.; Wang, Z.; Wang, Y.; Li, C.; Hu, Q.; Xu, R.; Du, T.; Xu, M.; Feng, L. A full-set and self-powered ammonia leakage monitor system based on CNTs-PPy and triboelectric nanogenerator for zero-carbon vessels. Nano Energy 2022, 98, 107271. [Google Scholar] [CrossRef]
- Liu, L.; Guo, X.; Lee, C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021, 88, 106304. [Google Scholar] [CrossRef]
- Carneiro, P.; Soares dos Santos, M.P.; Rodrigues, A.; Ferreira, J.A.F.; Simões, J.A.O.; Marques, A.T.; Kholkin, A.L. Electromagnetic energy harvesting using magnetic levitation architectures: A review. Appl. Energy 2020, 260, 114191. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Closson, A.B.; Jin, C.; Trase, I.; Chen, Z.; Zhang, J.X.J. Vibration-Energy-Harvesting System: Transduction Mechanisms, Frequency Tuning Techniques, and Biomechanical Applications. Adv. Mater. Technol. 2019, 4, 1900177. [Google Scholar] [CrossRef]
- Lei, H.; Cao, K.; Chen, Y.; Liang, Z.; Wen, Z.; Jiang, L.; Sun, X. 3D-printed endoplasmic reticulum rGO microstructure based self-powered triboelectric pressure sensor. Chem. Eng. J. 2022, 445, 136821. [Google Scholar] [CrossRef]
- Lei, H.; Xiao, J.; Chen, Y.; Jiang, J.; Xu, R.; Wen, Z.; Dong, B.; Sun, X. Bamboo-inspired self-powered triboelectric sensor for touch sensing and sitting posture monitoring. Nano Energy 2022, 91, 106670. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, L.M.; Chen, X.; Han, C.B.; Tang, W.; Zhang, C.; Xu, L.; Wang, Z.L. Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy. ACS Nano 2015, 9, 12562–12572. [Google Scholar] [CrossRef]
- Liang, X.; Jiang, T.; Liu, G.; Xiao, T.; Xu, L.; Li, W.; Xi, F.; Zhang, C.; Wang, Z.L. Triboelectric Nanogenerator Networks Integrated with Power Management Module for Water Wave Energy Harvesting. Adv. Funct. Mater. 2019, 29, 1807241. [Google Scholar] [CrossRef]
- Liang, X.; Jiang, T.; Liu, G.; Feng, Y.; Zhang, C.; Wang, Z.L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285. [Google Scholar] [CrossRef]
- Zhang, L.M.; Han, C.B.; Jiang, T.; Zhou, T.; Li, X.H.; Zhang, C.; Wang, Z.L. Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 2016, 22, 87–94. [Google Scholar] [CrossRef]
- Liu, J.; Wen, Z.; Lei, H.; Gao, Z.; Sun, X. A Liquid–Solid Interface-Based Triboelectric Tactile Sensor with Ultrahigh Sensitivity of 21.48 kPa−1. Nano-Micro Lett. 2022, 14, 88. [Google Scholar] [CrossRef]
- Chen, C.; Wen, Z.; Shi, J.; Jian, X.; Li, P.; Yeow, J.T.W.; Sun, X. Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 2020, 11, 4143. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Kang, Z.; Liao, Q.; Zhang, Q.; Gao, F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969. [Google Scholar] [CrossRef]
- Qi, Y.; Liu, G.; Gao, Y.; Bu, T.; Zhang, X.; Xu, C.; Lin, Y.; Zhang, C. Frequency Band Characteristics of a Triboelectric Nanogenerator and Ultra-Wide-Band Vibrational Energy Harvesting. ACS Appl. Mater. Interfaces 2021, 13, 26084–26092. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, G.; Yang, W.; Jing, Q.; Bai, P.; Yang, Y.; Hou, T.-C.; Wang, Z.L. Harmonic-Resonator-Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self-Powered Active Vibration Sensor. Adv. Mater. 2013, 25, 6094–6099. [Google Scholar] [CrossRef]
- Xu, M.; Wang, P.; Wang, Y.-C.; Zhang, S.L.; Wang, A.C.; Zhang, C.; Wang, Z.; Pan, X.; Wang, Z.L. A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self-Powered Vibration Sensing. Adv. Energy Mater. 2018, 8, 1702432. [Google Scholar] [CrossRef]
- Yang, W.; Chen, J.; Zhu, G.; Wen, X.; Bai, P.; Su, Y.; Lin, Y.; Wang, Z. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Wang, L.; Liu, G. A Contact-Mode Triboelectric Nanogenerator for Energy Harvesting from Marine Pipe Vibrations. Sensors 2021, 21, 1514. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, X.; Wang, S.; Ouyang, H.; Chen, P.; Song, L.; Yuan, H.; Ji, Y.; Wang, P.; Li, Z.; et al. Honeycomb Structure Inspired Triboelectric Nanogenerator for Highly Effective Vibration Energy Harvesting and Self-Powered Engine Condition Monitoring. Adv. Energy Mater. 2019, 9, 1902460. [Google Scholar] [CrossRef]
- Du, T.; Zuo, X.; Dong, F.; Li, S.; Mtui, A.E.; Zou, Y.; Zhang, P.; Zhao, J.; Zhang, Y.; Sun, P.; et al. A Self-Powered and Highly Accurate Vibration Sensor Based on Bouncing-Ball Triboelectric Nanogenerator for Intelligent Ship Machinery Monitoring. Micromachines 2021, 12, 218. [Google Scholar] [CrossRef]
- Wu, C.; Huang, H.; Yang, S.; Wen, G. Pagoda-Shaped Triboelectric Nanogenerator With High Reliability for Harvesting Vibration Energy and Measuring Vibration Frequency in Downhole. IEEE Sens. J. 2020, 20, 13999–14006. [Google Scholar] [CrossRef]
- Liu, G.; Xu, W.; Xia, X.; Shi, H.; Hu, C. Newton’s cradle motion-like triboelectric nanogenerator to enhance energy recycle efficiency by utilizing elastic deformation. J. Mater. Chem. A 2015, 3, 21133–21139. [Google Scholar] [CrossRef]
- Toprak, A.; Tigli, O. Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev. 2014, 1, 031104. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, J.; Chen, K.; Chen, J. Advances in Nanostructures for High-Performance Triboelectric Nanogenerators. Adv. Mater. Technol. 2021, 6, 2000916. [Google Scholar] [CrossRef]
- Kim, W.; Bhatia, D.; Jeong, S.; Choi, D. Mechanical energy conversion systems for triboelectric nanogenerators: Kinematic and vibrational designs. Nano Energy 2019, 56, 307–321. [Google Scholar] [CrossRef]
- Liu, W.; Xu, L.; Bu, T.; Yang, H.; Liu, G.; Li, W.; Pang, Y.; Hu, C.; Zhang, C.; Cheng, T. Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy 2019, 58, 499–507. [Google Scholar] [CrossRef]
Ref. | Frequency Range/Hz | Amplitude Range/mm | Maximum Voltage/V | Maximum Current/μA | Maximum Charges/nC | Maximum Power/μW | Maximum Power Density | Response Frequency/Hz |
---|---|---|---|---|---|---|---|---|
[31] | 4–10 | 4 | 102 | - | - | 14 | 5.56 mW/m2 | 8 |
[29] | VE 1: 5–30 HE 2: 2.5–30 | 1–20 | 83 | 5 | 30 | - | 240 mW/m2 45mW/m2 | VE: 16 HE: 8.5 |
[32] | 10–60 | 1–4.5 | 98 | 3.4 | 28.5 | - | 50 W/m3 | 25 |
[13] | 0.4–2.0 | 50–130 | - | 43.53 | 3890 | - | 49 W/m3 | 2 |
[30] | 0–5 | - | 10 | 55.7 | - | - | 252.3 mW/m3 | 3.7 |
[35] | 2.5 | 4–8 | 428 | 114 | - | - | 4.32 W/m2 | 2.5 |
This work | 0–5 | 10–100 | 113 | 49.85 | - | 30950 | - | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, Z.; Wang, Q.; Zhu, C.; Zhao, C.; Zhao, Q.; Wang, Y.; Hu, Z.; Xu, R.; Lin, Y.; Chen, T.; et al. A Cantilever Beam-Based Triboelectric Nanogenerator as a Drill Pipe Transverse Vibration Energy Harvester Powering Intelligent Exploitation System. Sensors 2022, 22, 4287. https://doi.org/10.3390/s22114287
Lian Z, Wang Q, Zhu C, Zhao C, Zhao Q, Wang Y, Hu Z, Xu R, Lin Y, Chen T, et al. A Cantilever Beam-Based Triboelectric Nanogenerator as a Drill Pipe Transverse Vibration Energy Harvester Powering Intelligent Exploitation System. Sensors. 2022; 22(11):4287. https://doi.org/10.3390/s22114287
Chicago/Turabian StyleLian, Zhenhui, Qunyi Wang, Chuanqing Zhu, Cong Zhao, Qiang Zhao, Yan Wang, Zhiyuan Hu, Ruijiang Xu, Yukai Lin, Tianyu Chen, and et al. 2022. "A Cantilever Beam-Based Triboelectric Nanogenerator as a Drill Pipe Transverse Vibration Energy Harvester Powering Intelligent Exploitation System" Sensors 22, no. 11: 4287. https://doi.org/10.3390/s22114287
APA StyleLian, Z., Wang, Q., Zhu, C., Zhao, C., Zhao, Q., Wang, Y., Hu, Z., Xu, R., Lin, Y., Chen, T., Liu, X., Xu, X., Liu, L., Xiao, X., & Xu, M. (2022). A Cantilever Beam-Based Triboelectric Nanogenerator as a Drill Pipe Transverse Vibration Energy Harvester Powering Intelligent Exploitation System. Sensors, 22(11), 4287. https://doi.org/10.3390/s22114287